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New insights into maladaptive
vascular responses to donor
specific HLA antibodies in organ
transplantation
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Transplant vasculopathy (TV) causes thickening of donor blood vessels in
transplanted organs, and is a significant cause of graft loss and mortality in
allograft recipients. It is known that patients with repeated acute rejection and/
or donor specific antibodies are predisposed to TV. Nevertheless, the exact
molecular mechanisms by which alloimmune injury culminates in this disease
have not been fully delineated. As a result of this incomplete knowledge, there
is currently a lack of effective therapies for this disease. The immediate
intracellular signaling and the acute effects elicited by anti-donor HLA
antibodies are well-described and continuing to be revealed in deeper detail.
Further, advances in rejection diagnostics, including intragraft gene expression,
provide clues to the inflammatory changes within allografts. However,
mechanisms linking these events with long-term outcomes, particularly the
maladaptive vascular remodeling seen in transplant vasculopathy, are still being
delineated. New evidence demonstrates alterations in non-coding RNA profiles
and the occurrence of endothelial to mesenchymal transition (EndMT) during
acute antibody-mediated graft injury. EndMT is also readily apparent in
numerous settings of non-transplant intimal hyperplasia, and lessons can be
learned from advances in those fields. This review will provide an update on
these recent developments and remaining questions in our understanding of
HLA antibody-induced vascular damage, framed within a broader consideration
of manifestations and implications across transplanted organ types.

KEYWORDS
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Introduction

Transplantation is an important treatment for end-stage organ failure. In 2022, the

United Network for Organ Sharing (UNOS) reported its one millionth transplant, and in

the United States there are more than 350,000 people living with an organ transplant.

Despite its success stemming from improvements in surgical techniques and advances in

immunosuppression and histocompatibility, median graft survival continues to lag behind

recipient life expectancy. Within one year of transplant, generally 90% or more of grafts

are still functioning, but acute rejection rates and 5 year graft survival rates are highly
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disparate across organs (ranging from 49.2% to better than 85%).

These are summarized from OPTN and SRTR data in Table 1.

The long-term success of solid organ transplantation is

hampered by the frequent incidence of acute rejection and

development of transplant vasculopathy (TV). Chronic rejection

culminating in transplant vasculopathy is reported in all

transplanted organs and vascularized tissue types with an

incidence ranging from 20%–50% by 10 years post-transplant

(3–7). It manifests as concentric inward thickening of the intimal

layer of donor blood vessels. This neointimal hyperplasia is in

fact a conserved maladaptive response to chronic injury, that

occurs after a wide variety of diseases with different etiologies,

including systemic sclerosis, STING-associated vasculopathy,

sickle cell vasculopathy, and neointimal hyperplasia of grafts and

arteriovenous fistulas. The majority of these diseases have an

inflammatory component. Indeed, in transplantation in

particular, there is a strong association between prior acute

alloimmune injury and later development of transplant

vasculopathy. Nonetheless, causal connections between

inflammation and chronic progression of transplant vasculopathy

have been lacking. As a result, the field critically needs insights

that reveal new therapeutic avenues to halt or reverse vascular

occlusion and fibrosis.

This review focuses on the role of vascular endothelial cells in

the pathobiology of acute transplant rejection and chronic vascular

proliferative disease, and discusses recent advances in clinical and

experimental knowledge indicating a putative mechanistic bridge

between these processes.
Acute antibody-mediated rejection

Rejection of organ transplants is a result of recognition of

donor proteins, particularly the highly polymorphic human

leukocyte antigens (HLA), as foreign by the recipient immune

system. Allorecognition of nonself is mediated by multiple

immune compartments, including T cells, B cells/antibodies, NK

cells, and, more recently appreciated, innate myeloid cells.

Alloimmunity may be preformed prior to transplant, as a result
TABLE 1 Transplant waitlist and rejection rates across organs in the US.

Organ Number of
candidates on

waitlist until Feb.
2023

Number of
waitlist

additions in
2022

Number of
transplants

performed in 202

All 104,004 62,592 42,888

Kidney 88,722 42,232 25,499

Liver 10,602 13,180 9,528

Heart 3,350 5,023 4,111

Kidney/
Pancreas

1,917 1,443 810

Lung 955 3,104 2,692

Pancreas 844 399 108

Intestine 211 5,023 82

Source OPTN national data (1) OPTN national data
(1)

OPTN national data (
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of prior exposure to allogeneic tissue through pregnancy,

transfusion, tissue grafting or failed organ transplant; or it may

emerge post-transplant. Mainstay immunosuppression consisting

of calcineurin inhibitors, anti-proliferatives and steroids,

effectively prevents severe acute T cell mediated rejection

(TCMR), although the incidence of early acute rejection ranges

widely, from 6.82% in the kidney to 37.84% among intestinal

transplant recipients [OPTN]. Additionally, AMR is a common

occurrence in the first year post-transplant and beyond.

Histological antibody-mediated rejection criteria vary across

organs [see our prior review (8), but AMR is generally diagnosed

by the histological presence of complement deposition (C4d/

C3d), mononuclear cell infiltration, and/or microvascular

inflammation (9), with or without a requirement for concurrent

detection of donor specific HLA antibody (DSA) by serological

methods. Clinical AMR presents with organ dysfunction, while

subclinical AMR can be detected on surveillance biopsy in

patients with otherwise stable organ function metrics.

Transcriptomic studies of allograft biopsies have universally

shown signatures of endothelial, NK cell, macrophage and

endothelial-associated gene expression during antibody-mediated

rejection that appear to be conserved across organs (10). Among

the most strongly increased genes are the CXCR3 chemokines

CXCL11 and CXCL9, and HLA class II genes HLA-DRB1,

-DQA1, and -DPB1, all of which are IFNγ inducible.
Clinical significance

Donor specific antibodies (DSA) are associated with poor

prognostic in graft survival in all transplanted organs (11–14).

DSA may be preformed in allosensitized individuals, or develop

in the post-transplant period. In kidney transplantation, patients

with DSA had a higher risk of graft loss after both living and

deceased donation, and unfavorable long-term cardiac and

cerebrovascular outcomes (11, 15, 16). Further, the presence of

pre-transplant DSA (DSApos) was associated with ABMR-related

graft failure in the first year after transplantation, unlike T cell

mediated rejection (TCMR). Interestingly, the biopsies from
2

Acute rejection
<1 year (adult) %

of patients

Graft survival at 1
year (primary
transplants)

Graft Survival at 5
years (primary
transplants)

– – –

6.8 94.7 78.6

11.5 89.6 72.8

23.6 90.5 77.7

12.5 95.8 81.4

14.6 87.2 53.5

21.8 81.8 60.1

41.2 77.2 50.6

1) OPTN/SRTR Annual
Report 2020 (2)

OPTN National data (1) OPTN national data (1)
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patients with DSA were associated with graft rejection due the

development of intra-arterial thrombi or thrombotic

microangiopathy in the allografts (12). Furthermore, there was a

negative association between delayed graft function (DGF) and

DSApos that influenced 5-year graft survival prognosis (17). In a

decreased-donor kidney transplant cohort, patients with DGF

and DSA pre-transplant had a seven fold greater risk of graft

failure (18). Pre-formed DSA in lung transplant recipients is

associated with more days of mechanical ventilation and longer

index hospitalization after transplantation (19).

Another factor associated with negative graft prognosis is de

novo DSA (dsDSA) antibodies, which appear after the first three

months post-transplant. Patients who develop dnDSA have more

mismatches for HLA-A, B, and DR (11). New approaches have

established a negative prognostic relationship between more eplet

mismatches in HLA-DQ in kidney transplants, that are

associated with de novo DSA formation, graft failure, and

rejection (20, 21). Wiebe et al. reported that recipients who

developed class II dnDSA alone or class I and II dnDSA had

poor graft survival. The authors stratified the alloimmune risk by

the HLA-DR/DQ single molecule eplet mismatch and reported

that all categories are associated with dnDSA development, T

cell-mediated rejection, antibody-mediated rejection, and all

cause graft loss (13). This characterization at the molecular

level of donor/recipient HLA mismatches could improve graft

survival prognostic and immunosuppression therapy strategies

(13, 14, 20). The molecular donor/recipient HLA mismatches in

kidney transplantation influence the anti-donor cellular

alloimmune activation affecting de novo humoral alloreactivity

(21). In kidney transplant biopsies, DSA and HLA B eplet MM

were associated with peritubular capillary C4d deposition (22).

These results agree with the analysis of transplant

glomerulopathy in patients with HLA-DSA, which was associated

with microvascular inflammation including glomerulitis,

peritubular capillaritis, C4d deposition, and interstitial

inflammation. Interestingly, the patients with HLA-DSA that

became negative had a similar probability of graft survival or

failure as HLA-DSA negative patients (23). In heart transplant

recipients, Zhang et al. established an average of 2000 days for

the appearance of dnDSA, especially against HLA-A and HLA-B

antigens, compared with later development of HLA-DR or DQ.

Furthermore, patients with HLA-DQ dnDSA had lower

survival. This result is consistent with kidney and liver transplant

studies that postulate the HLA-DQ mismatch is more

immunogenic than the other loci (14, 24). Another study

reported that dn-DSApos patients have around three times more

risk of graft loss or chronic rejection compared to dn-DSAneg

patients. Moreover, the higher risk of rejection due to ds-DSApos

was significant for the pediatric population. The analysis of

allograft rejection alone, demonstrated around 6 times higher

rejection rate in the long-term follow up for the patients with

dn-DSApos (25). The report of liver biopsies from pediatric

recipients underlines an association between DSA and

inflammation due the prevalence of C1q in inflammation

and fibrosis, and higher number of lymphoid cells in the portal

area (26).
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Thus, there is substantial evidence of the negative association of

HLA-DSA and de novo DSA in the diverse types of organ

transplantation. Continual monitoring of donor specific

antibodies, in the context of screening of eplet mismatches, may

further advance the field to avoid or reduce allograft loss.

Mechanisms of acute antibody-mediated rejection
Decades of research have elucidated the mechanisms that

underpin antibody-mediated rejection, which has been reviewed

extensively elsewhere (27). Endothelial cells are highly and

specifically responsive to a wide array of cytokines, microbial

products, and damage-associated signals. They are capable of

selectively upregulating adhesion molecules, chemokines, and

antigen presentation molecules that are specific to the stimulus,

and which exert an important influence on the innate and

adaptive immune compartment beyond simple recruitment

(Figure 1). DSA in particular provide multiple independent

signals that exert effects on many graft cell types (28–34)

(Figure 2). Here we will briefly review the early effects on

vascular endothelial cells with a perspective of the temporal

dynamics and relevance to long-term vascular changes.

DSA binding at the lumenal donor endothelial cell surface can

trigger activation of the classical complement cascade, yielding

upstream products C3a and C5a within an hour of exposure (35,

36). C5a in particular is pro-inflammatory for endothelial cells,

which rapidly release the adhesion molecule P-selectin (35, 36),

and later, after 2–4 h, transcriptionally upregulate a host of pro-

inflammatory chemokines and adhesion molecules (37).

Extensive complement activation can also produce the membrane

attack complex (MAC) that damages cell membrane integrity,

although lytic deposition is now rare beyond the context of

hyperacute rejection. One explanation for their relative resistance

to complement-induced lysis is that endothelium expresses high

levels of complement regulatory proteins, including DAF, CD55/

CD59, and complement factor H. Additionally, low levels of

antibody-induced complement deposition elicit survival signaling

through Akt/BCL2/BCL-XL in endothelium (38, 39) to

antagonize cell death.

Nonetheless, sublytic deposition of complement promotes pro-

inflammatory endothelial cell signaling. The Platt lab first

demonstrated that pore formation by MAC induces IL-1α and

tissue factor production by endothelium (40). The Pober and

Jane-Wit groups went on to describe the subsequent activation

by sublytic MAC deposition of non-canonical NFκB/NIK and IL-

1β/IL-18 pathways. These signaling pathways converge to

promote early expression of adhesion molecules and chemokines

after 3–4 h (41–43).

In addition to complement activation, bivalent antibodies

binding to HLA molecules can force crosslinking of these

molecules and activate several parallel intracellular signaling

events. It is hypothesized that this signaling is an upshot of

endogenous mechanisms of outside-in engagement of HLA by

TCR at the interface of antigen presenting cells and T cells (44).

Most of the literature has described the effects of antibodies

against HLA class I molecules. Within minutes, phosphorylation

of MAPK and mTOR proteins can be detected in vitro. In
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FIGURE 1

Pro-inflammatory functions of endothelial cells. Endothelial cells inducibly express a host of adhesion molecules and chemokines that promote leukocyte
recruitment. Additionally, select stimuli, such as IFNγ, cause conditional expression of HLA molecules including HLA class II, and several costimulatory
molecules and cytokines, which collectively can influence the activation of allogeneic leukocytes. Made in biorender.
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particular, mTOR mediates phosphorylation of downstream

signaling molecules S6K and S6RP, and detection of these

proteins in clinical biopsies discriminates AMR from no rejection

(45, 46). Further, rapid phosphorylation of Src kinases and

nuclear localization of the transcription factor YAP occurs upon

HLA I crosslinking (47). Next, within minutes to hours, DSA

causes cytoskeletal rearrangement, including stress fiber

formation and clustering of the constitutively expressed adhesion

molecule ICAM-1 (48). Clustering of ICAM-1 permits the

endothelial cell to more effectively support adherence of

tethering leukocytes. Further, by 30 min, endothelial cells

exocytose stored vesicles called Weibel-Palade bodies to

externalize the adhesion molecule P-selectin and the thrombotic

mediator von Willebrand Factor. Together, these events rapidly

increase adhesion of platelets, monocytes and neutrophils (27, 49,

50). Lastly, over several days, endothelial cell proliferation and

migratory capacity is increased, in a manner that is dependent

on mTOR (51).

How does HLA crosslinking by antibodies lead to such broad

cellular signaling? Work from the Reed lab demonstrated that

HLA class I molecules form a complex with the endothelial

integrin subunit integrin β4 (52). Thereby, HLA class I molecules

evoke integrin-mediated signaling to act on the endothelial
Frontiers in Transplantation 04
cytoskeleton and promote proliferation. Additionally, HLA class I

molecules separately bind to TLR4, to trigger exocytosis of

Weibel-Palade bodies, externalization of P-selectin, and

adherence of monocytes (53). Whether integrin β4 is required

for pro-inflammatory gene expression, or if HLA class II

molecules similarly complex with cell surface receptors to elicit

signaling, remain open and important questions.

Because HLA class II expression by endothelium is conditional

in vivo, and lost in vitro, mechanistic investigation of the

pathogenic effects of HLA class II antibodies has been

much more limited. Initially, studies relied on IFNγ cytokine

priming of endothelial cells in vitro to upregulate HLA class II.

More recently, several groups have used HLA class II

overexpression approaches to investigate the functional effects of

anti-HLA II antibodies. Like HLA class I-mediated pathways,

HLA class II antibodies activated Akt, mTOR and MAPK

pathways (51, 54, 55), leading to increased proliferation and

migration. Yet some features of HLA class II-stimulated

pathways were distinct from those of HLA class I. In particular,

HLA class II-mediated pathways appear to be more dominated

by ERK (51, 55). This signaling pathway divergence has possible

implications for therapeutic targeting of chronic antibody-

induced injury, depending on the HLA target class of DSA.
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FIGURE 2

Effects of anti-HLA antibodies on acute inflammatory phenotypes of endothelium. Antibodies bound to the surface of endothelial cells can engage Fc
gamma receptors on NK cells, neutrophils, and monocytes to enhance their adhesion and activation. Crosslinking of HLA by antibodies causes complex
formation with TLR4 and integrin molecules at the cell surface of endothelium, which promotes intracellular signaling. This results in increased activation
of pro-growth and survival signaling, predominantly through mTOR, as well as expression of adhesion molecules and release of exosomes. Finally, high
levels of HLA antibodies can activate the classical complement cascade, producing split products C3a and C5a, which in turn can act on endothelial cells
through their G protein coupled receptors for these molecules. In cases of extensive complement activation, deposition of the membrane attack complex
(MAC) causes intracellular activation of NFκB, promoting inflammatory gene expression. Endothelial cells rapidly exocytose Weibel-palade body vesicles
to externalize P-selectin, through which neutrophils, platelets and monocytes can tether. Cytoskeletal remodeling also promotes clustering of pre-
formed ICAM-1 molecules, which supports tethering and firm adhesion of adhering leukocytes. Concurrent engagement of Fc receptors further
enhances the strength of the adhesion. Made in biorender.
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Endothelial release of extracellular
exosomes

The role of exosomes in graft rejection has recently attracted

attention. Exosomes are tissue-specific extracellular microvesicles

released by many cell types, including transplanted organ cells

(56). The Mohanakunar lab has investigated exosomes in lung

transplant rejection, often diagnosed as bronchiolitis obliterans

syndrome (BOS). They characterized circulating exosomes from

lung transplant recipients undergoing chronic rejection and

compared them to stable lung transplant recipients. Interestingly,

not only mismatched donor HLA and self antigens were present

in exosomes from patient undergoing graft rejection, but also
Frontiers in Transplantation 05
microRNAs known to activate antibody-mediated rejection,

endothelial activation, and inflammation (57). Moreover, after

further investigation, they demonstrated that circulating

exosomes from patients with chronic rejection after lung

transplant had significantly different levels of several molecules

implicated in graft rejection compared with exosomes isolated

from stable lung transplant recipients. First, the costimulatory

molecules CD40, CD80, and CD86 were increased, which

respectively promote endothelial cells adhesion to facilitate

activation of immune cell and regulate acute vascular rejection

(58, 59). Additionally, transcription factors NFκB and HIF-1α

were also higher. HIF-1α is a transcription factor sensitive to

dioxygen, and its induction significantly improves vascular
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damage after transplantation in murine models and porcine kidney

transplantation as summarized here (60). NFκB serves as key

mediator of inflammation, mainly as an activator of pro-

inflammatory gene expression (61). TLR4 pathway-associated

signaling mediators IRAK1 and MyD88 are known to induce

activation of NFκB (62), and were present in the exosome from

transplanted patients with BOS but not in stable patients (57).

Further, exosomes from patients undergoing chronic rejection

also contained MHC-II transactivator (CIITA), MHC-II

molecules, and 20S proteasomes (63). MHC II transactivator and

MHC molecules play a critical role in acute rejection, as their

role is to present processed antigen to CD4+ T cells (64). The

20S proteasome core has been shown to induce autoantibody

production and accelerate rejection (65) (Figure 3A).

Profiling exosomes from patients with graft rejection compared

to stable patients demonstrated that molecules contained in

exosome reflect the biological state of the cells surrounding it

(66). Here, the exomes harbor molecules linked to rejection and

autoimmune response after organ transplant and appear to be a

reliable predictive marker. Migneault et al. showed the presence

of specific apoptotic exosome-like vesicles released after the

Caspase 3 dependent death of microvascular endothelial cell

(ApoExo). These vesicles induced pro-inflammatory responses in

transplanted mice and increased the production of

autoantibodies (67). Dieudé et al. confirmed that ApoExo vesicles

stimulate autoantibody production using injection of apoptotic

exosome-like in mice. Those injections led to increased graft
FIGURE 3

Exosome and exosome-like vesicles (ApoExo) released during graft rejectio
undergoing lung transplant rejection, compared to stable transplants. (B)
endothelial cells. Made in biorender.
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rejection after transplant. After further analysis, they showed that

the Apo Exo contains the 20S proteasome involved in graft

rejection, and inhibition accordingly decreased immunogenicity.

Circulating ApoExo and increased anti-autoantibody titers were

also observed in mouse models of ischemia-reperfusion injury

(65) (Figure 3B). Circulating donor exosome profiling might

therefore enable a noninvasive detection of antibody mediated

rejection. Going in this direction, the Vallabhajosyula group

aimed to use C4d+ exosomes as predictive biomarkers to detect

rejection after heart transplantation. After analyzing the plasma

of four patients, they showed that only the patients that

undergone AMR had exosomes containing Cd4. This finding

might open a window to less invasive diagnostic methods,

although the standard remains endomyocardial biopsy. In

conclusion, exosomes are a promising noninvasive marker of

AMR and endothelial damage as they reflect the state of the cells

surrounding it. Early detection of AMR will allow for better

control of vascular damage (56) and follow-up studies with larger

cohorts are required.
Endothelial immunogenicity

In addition to the well-characterized function promoting

leukocyte adherence and transmigration, endothelial cells can act

as semi-professional antigen presenters to enhance activation and

skewing of T cells (68, 69). Although they lack B7 ligands needed
n. (A) Molecules present or overexpressed in exosomes from patients
ApoExo released after Caspase 3-dependent death of microvascular
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to activate naïve T cells, we and others have shown that

endothelium is capable of producing a wide array of pro-

adhesive, antigenic and immunogenic molecules that can activate

memory T cells (68–72), particularly in response to IFNγ.

Therefore, EC are able to influence alloimmune activation and

tolerance.

Antibody-stimulated endothelium has direct effects on

phenotypic skewing of the immune compartment. Allogeneic

regulatory T cells were expanded by direct contact with HLA II

antibody-treated endothelium (73), through PD-L1 (74),

although as noted above, studies investigating HLA II may be

confounded by pretreatment of endothelium with IFNγ, which is

a strong inducer of PD ligand expression on its own. HLA class

II antibody-stimulated endothelium also produced IL-6 after 48 h

(55, 73). The Mooney group has carefully shown that coculture

of HLA antibody-stimulated endothelial cells with allogeneic T

cells promoted expansion of pro-inflammatory Th17 CD4 cells in

an IL-6-dependent manner (55, 74). Th17-mediated immunity is

increasingly recognized as an important, detrimental, pathway in

organ transplantation. Interestingly, IL-17 augments B cell

activation and antibody production, suggesting that there may be

an amplifying axis by which endothelial cells stimulate

generation of more alloantibodies [extensively reviewed in (75).

Further, murine donors deficient in IL-6 had reduced intimal

expansion of allogeneic aortic grafts, accompanied by a decrease

in activation of alloreactive T cells (76). Together, these data

support that graft-derived IL-6 influences adaptive alloimmune

responses. These results are therefore intriguing in the context of

IL-6 and IL-6R antagonists currently under investigation for the

reduction in HLA donor specific antibodies, and prevention and

treatment of AMR (NCT03380377, NCT04561986). It will be

interesting to see the long-term chronic rejection outcomes in

these trials.

Lastly, HLA antibodies bound to endothelium can form a

bridge through the Fc gamma receptors (FcγRs) to enhance

adherence of NK cells, monocytes and neutrophils (27, 77, 78).

For example, we showed in vitro that high affinity FcγRIIa

variants expressed on monocytes exhibited increased adherence

to HLA antibody-treated endothelial cells with IgG1 and IgG3

subclasses (27). Further, Arnold at al (79). demonstrated that

renal transplant recipients carrying high affinity FcγRIII variants

(expressed on NK cells) had greater microcirculation

inflammation in their biopsies, and a higher production of IFNγ

when cultured with HLA DSA-coated target cells. NK cell

activation through FcγRs elicits multiple pathogenic effector

functions, including pro-inflammatory cytokine expression and

antibody-dependent cell lysis (80, 81), although histological

evidence for this is difficult to identify. Interaction with HLA

antibody-exposed endothelium through FcγRs can also influence

macrophage differentiation, at least in vitro, and promote a

unique remodeling phenotype, as shown by the Reed lab (82).

Markers of alternatively activated macrophages have also been

detected in clinical transplant biopsies (83), supporting the

potential relevance of these observations.

One major remaining gap between experimental models and

clinical data is that the strong IFNγ gene expression signature in
Frontiers in Transplantation 07
acute AMR has yet to be mechanistically linked back to the

intrinsic signaling activated within the graft by DSA. IFNγ is a

central cytokine in the pathogenesis of organ transplant rejection.

Although it exerts complex and contradictory effects on allograft

outcome, animal models have demonstrated that IFNγ

production by infiltrating leukocytes (84, 85) and donor IFNγ

responsiveness both contribute to acute and chronic rejection

(86, 87). Rejection can be reduced by deficiency of IFNγ-

stimulated effectors such as HLA class II or CXCL10 within the

transplanted organ (88, 89), while intragraft PD ligands attenuate

alloimmune responses (90, 91). Deletion of IFNγ receptors in the

graft abrogates MHC expression and immune cell infiltration

(92). IFNγ activates the transcription factors STAT1 and IRF1 to

trigger expression of interferon stimulated genes (ISGs).

Reflecting the importance of this pathway, antagonism of

intragraft STAT1 ameliorates rejection of heart transplants in

mice (93). We found that stimulation of human endothelium

with HLA antibodies in the presence of complement caused

secretion of IFN-related CXCR3 chemokines (42). It also seems

reasonable that IFNγ-induced endothelial activation is a

secondary effect of HLA antibodies on the vasculature, as a

sequela of infiltration of IFNγ-producing NK cells (94–96).

Another substantial gap in knowledge is organ-specific

differences in endothelial response to AMR-related injury. There

are long-standing differences in the rates of rejection and failure,

and perceived risk of pre-formed DSA across transplanted organ

types. New single cell –omics technologies are revealing

astounding fundamental organotypic features of endothelial cells

across tissue types (97–99), that may provide some clues to

tissue-specific alloimmune injury. As yet, the translation of this

knowledge to inflammation, including in context of transplant,

remains to be investigated. We initiated this question by asking if

endothelium from heart, lung, liver and kidney exhibited

differential responses to inflammatory cytokines and antibodies +

complement (42). We found that endothelium from the liver

failed to upregulate the canonical tethering adhesion molecule E-

selectin, and expressed lower VCAM-1, in response to

inflammatory stimuli, compared to endothelial cells from other

organs. We also observed that cardiac endothelial cells

upregulated VCAM-1 to a greater extent than other endothelial

cell types, and that patterns of chemokine expression varied.

Lastly, we identified a large number of immune-regulatory

transcripts that were differentially enriched in an organ-specific

manner in endothelium, pointing to an unexplored contribution

of intrinsic identity in differential organ transplant outcomes.

Recent advances in the induction of alloimmune tolerance have

demonstrated that protocols are effective in liver and kidney

transplant recipients. These have been translated to promising

clinical approaches currently under investigation. However,

animal models have disappointingly revealed that heart and lung

allografts are refractory to the same tolerance induction protocols

(100–102). Clinical experience also demonstrates protection of

more susceptible organs from rejection in multi-organ transplant

patients. These observations suggest that there is organotypic

heterogeneity in the mechanisms of alloimmune activation and

tolerance, likely at the level of the graft parenchymal cells. It is
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commonly accepted that liver endothelial cells have a uniquely

tolerogenic function, deriving from their scavenger functions and

refractoriness to PRR ligands exposed via the digestive input

(103). However, it has never been directly tested whether

endothelial cells from other organs, especially the kidney, heart

and lung, differ in their propensity and quality of T cell

activation, nor how one organ may so profoundly shape the

alloimmune response that it prevents rejection of another.

Despite existing clues, there exists a major gap in definitive

knowledge of whether heart and lung endothelial cells are

intrinsically less tolerogenic than liver and kidney endothelium,

particularly under inflammatory conditions. This lack of

understanding hinders the application of tolerance protocols to

thoracic organs.

In summary, experimental models have shown that immediate

changes occur in vascular endothelial and smooth muscle cells

exposed to HLA antibodies. These events are reflected in the

histology of biopsies during acute antibody-mediated rejection

(8). The acute responses can be exacerbated by concurrent

complement activation and engagement of FcγRs on myeloid

cells. Moreover, long-term exposure to DSA causes a further shift

in the inflammatory phenotype, that shapes the activation

response of interacting T cells and monocytes. Nonetheless,

much more work is needed in area of endothelial heterogeneity

to reveal inflammatory and immunogenicity mechanisms in

distinct vascular beds relevant to transplant outcomes.
Chronic antibody-mediated rejection
and transplant vasculopathy

Chronic antibody-mediated rejection occurs as a result of

persistent injury to the graft by DSA. In the kidney, chronic

AMR is recognized as a separate entity from active acute AMR.

Here, transplant glomerulopathy, necessarily unique to kidneys,

is diagnosed by double layering of the glomerular basement

membrane. Additionally, transplant arteriopathy is apparent from

occluded blood vessels (104).

In other organs, chronic and acute AMR are not yet

distinguished by criteria, but there are histological features

indicative of a chronic phenotype. In heart transplants, chronic

AMR can affect nearly every vascular branch, ranging from

capillary rarefaction in the endomyocardium to inflammatory

fibroproliferative disease in the epicardial coronary arteries that

can be detected by angiogram or intravascular ultrasound (9,

105). In the lung, chronic rejection has a more complex

physiological manifestation, generally termed chronic lung

allograft dysfunction (CLAD). AMR is significantly associated

with the risk of developing CLAD. Grafts exhibit phenotypes of

bronchiolitis obliterans syndrome (BOS) and/or restrictive

allograft syndrome (RAS), characterized by fibrosis,

microvascular damage, and occluded bronchioles (106–108).

Additionally, occlusive pulmonary arteriopathy is observed in

lung transplants with chronic rejection (109, 110). Diagnosis of

AMR has lagged behind in the liver because of the unique

resistance of this organ to overt damage by DSA. Liver transplant
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(111). And, both hepatic arteries and portal veins in transplanted

livers can exhibit intimal expansion accompanied by fibrosis

(obliterative arteriopathy and portal venopathy, respectively)

(112, 113), and this has been proposed as a feature of chronic

AMR in liver transplants (7).

Transplant vasculopathy is therefore a universal, insidious

disease that compromises donor blood vessels while sparing the

recipient vasculature. Transplant vasculopathy affects up to 50%

of transplant recipients by 10 years post-transplant and is a

significant cause of graft failure and patient death. Generally,

transplant vasculopathy arises from neointimal thickening of the

lumenal layer by loose connective tissue and smooth muscle-like

cells, leading to occlusion of arteries and veins. In the donor

heart, however, larger arteries, not samples by endomyocardial

biopsies, are more commonly affected. There, intimal hyperplasia

with loose connective tissue and smooth muscle-like intimal cells,

as well as inflammation, myocardial fibrosis and capillary

rarefaction are seen in hearts with vasculopathy (105, 114–116).

Beyond the affected larger vessels, in grafts with chronic

rejection, other vascular beds exhibit inflammation, myocardial

capillary rarefaction and fibrosis (105, 114–117). Extensive

collagen deposition can be found (33). Further, many cells within

the neointimal layer stain positively for αSMA in both mouse

and human studies (33), leading some investigators to propose a

myofibroblast or smooth muscle origin of neointimal cells.

Nevertheless, the medial layer is usually intact, although some

proliferating SMC can be found in the tunica media (33).
Immunologic risk factors and predictive
models

TV is chiefly thought to arise from an unresolved, chronic

repair response to alloimmune-mediated injury, modified by

nonimmune factors. Both recipient formation of donor specific

HLA antibodies (DSA) and prior acute rejection episodes

strongly associate with the development of transplant

vasculopathy (10, 118, 119). Anti-donor HLA antibodies and

prior acute rejection in the first year post-transplant were

independently associated with cardiac allograft progression in a

large study of heart transplant recipients (3). In an international

cohort, the trajectory of CAV after heart transplantation was

associated with the presence of preexisting or de novo circulating

class II anti-HLA DSA and the development of acute cellular

rejection in the first years after transplantation (3). In kidney

allografts, transplant glomerulopathy is significantly associated

with prior ABMR episodes, and 85% of patients with TG had

anti-donor HLA antibodies (5, 104). In lung, HLA DSA

positivity was significantly associated with increased risk of

CLAD and graft loss, especially in patients who had prior AMR

diagnosis (6). Further, dnDSA was more prevalent in Chronic

lung allograft dysfunction (CLAD) compared to living-donor

lobar lung transplantation (LDLLT) and had worse graft

prognosis (120). Liver transplant recipients are not routinely

monitored for HLA DSA; however, O’Leary et al. did find a
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significant correlation between the presence of HLA DSA and

portal venopathy and fibrosis (7).

In the last decade, the rise of artificial intelligence (AI) and data

science had led to major advances in predictive medicine. In

transplantation, the application of AI could improve the

prediction of graft rejection apparition and optimization of

immunosuppressive treatments. In a common effort, groups from

Europe and US, led by the Paris transplant group, developed the

first universal tool to reliably predict the risk of kidney graft loss,

called IBOX. Compared to previous attempts that used parameter

like eGFR, proteinuria, HLA profiling or histology individually,

or used combined parameters but were restricted by small

sample size, the IBOX integrates functional, histological, and

HLA antibody profiling parameters, and based on data from

more than 7,000 kidney recipients. Moreover, it was validated in

three randomized controlled trials. Parameters directly associated

with TV are used in the algorithm, including preexisting anti-

HLA donor-specific antibody and cold ischemia time (121–123).

Another integrative study from the Paris transplant group

determined the contribution of immune and non-immune factors

in CAV development, and defined 4 different trajectories of the

long-term progression of cardiac allograph. Those findings could

help to adapt monitoring after transplantation and help CAV

management according to likelihood of a patient to belong to

one of the four trajectories (1: absence of CAV, 2: mild and late

onset, 3: early onset, progressive evolution, 4: early onset rapid

evolution). Class II DSA are a predominant trigger of CAV in

the cohort studied, a putative sign of endothelial activation (3).

The predictive model’s efficiency is partly related to the accuracy

of the parameter it uses. Therefore, the discovery of organotypic,

rejection-specific new biomarkers will allow the improvement of

the model and lead to more personalized treatment. Additional

efforts to discover biomarker are ongoing, and the development

to donor cell free DNA (dd-cfDNA) analysis marked a new era

where bleeding, organ injury and sampling error risks of the

allograft biopsy might be overcome (124). Indeed, several studies

demonstrated the use of dd-cfDNA to monitor heart rejection.

For example Knutten et al. have shown that dd-cfDNA values in

plasma were significantly associated with cardiac rejection in a

cohort of 87 patients (125). These results were confirmed in a

recent multicenter study (126). The advantages of using cell free

DNA for detection of kidney allograft are well described in this

review (127). Also, in a recent review Maldonado et al.

summarized these advances in personalized medicine in solid

organ transplantation (128). Yet, no cell free DNA studies have

been conducted to analyze endothelial activation evolution over

time, and current progress in rapid RNA sequencing and cell free

DNA detection may lead to further dissection of endothelial

signaling during AMR rejection.

Despite the evidence that dd-cfDNA is a peripheral marker of

acute allograft injury, there are conflicting reports of the association

between elevated dd-cfDNA and chronic allograft rejection. In lung

transplant patients, two studies have shown that higher dd-cfDNA

levels in the early post-transplant period correlated with later

development of CLAD. For example, measuring dd-cfDNA in

first week post-transplant among patients with PGD was
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significantly predictive of later development of CLAD, than the

incidence of PGD alone (129). Further, higher levels of dd-

cfDNA averaged over the first three months post-transplant

conferred a 6.6-fold higher risk of severe CLAD (130). One small

single center study did find an association after 2 years post-

heart transplant, where a majority of patients with established

CAV had higher levels of dd-cfDNA, compared with a minority

of patients without CAV (131). In contrast, in a Spanish cohort,

there was no significant difference in levels of dd-cfDNA

comparing heart transplant patients with and without CAV on

concurrent angiogram >1 year after transplant (132). Therefore,

the utility of dd-cfDNA to indicate chronic vascular changes

within the graft warrants more investigation.
Transplant vasculopathy: mechanistic
knowledge

Multiple steps contributing to CAV have now been defined. An

anti-donor immune response develops which induces significant

changes in vascular endothelial cells. This eventually leads to

vascular occlusion and graft failure. However, clear evidence

linking these events has not yet been provided. Furthermore,

intermediate signals in the development of CAV have not been

identified. However, the casual links filling the gap between early

alloimmune injury with the progressive vascular remodeling in

CAV are still mostly unidentified. Consequently, to date there are

no therapies that can halt or reverse CAV.

Historically, animal models of alloantibody-induced transplant

vasculopathy have been relatively challenging. One frequently used

model is the grafting of allogeneic murine arteries or veins (133).

Alternatively, investigators may use major or minor

histocompatibility mismatches [Bm12, minor histocompatibility

mismatches], or passive transfer of cells or antibodies into

immunocompromised recipients, to elicit an alloimmune

response leading to TV (134). Several groups have described

human arterial grafts with injection of anti-HLA I antibody (32).

Such grafts develop intimal thickening after 4–5 weeks and show

evidence of neointimal proliferation as marked by PCNA. The

findings of these vessel grafting experiments, although elegant,

should be interpreted with caution when extending to whole

organ allografts, because isogeneic vessel grafts also exhibit

neointimal thickening due to vascular adaptive responses to

differential shear stress. Moreover, treatment with monoclonal

MHC class I antibody variably prompted transplant vasculopathy

in murine whole cardiac allografts (9), which has been difficult

to reproduce by other laboratories.

The Fairchild and Baldwin labs reported development of a new

mouse model of CAV in which CCR5−/−CD8−/− B6 recipients of

MHC mismatched heart or kidney allografts develop high titers

of donor specific MHC antibody and inflammation (135, 136).

They found that when recipients are treated with CD4 depletion

to slow DSA development and prevent T cell mediated rejection,

grafts go on to develop fibrosis and CAV (137). This

recapitulates the human disease, induced by chronic injury with
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HLA DSA, and represents a new tool with which to study the

mechanisms of transplant vasculopathy.
Endothelial to mesenchymal transition
contributes to neointimal hyperplasia and
fibrosis

It is not definitively settled that lumenal endothelial cell

proliferation is the definitive driving mechanism of transplant

vasculopathy, and conflicting evidence exists on the contribution

of medial smooth muscle cells to neointimal cellularity. Rather,

neointimal cells exhibit a myofibroblast-like phenotype, which

some have argued supports a smooth muscle cell origin instead.

Recent studies provide convincing alternative evidence that

neointimal cells do derive, at least in part, from endothelium,

through the process of endothelial-to-mesenchymal transition

(EndMT). EndMT is a transdifferentiation of endothelial cells

characterized by loss of some or all major endothelial phenotype

and markers, and acquisition of fibroblast and smooth muscle

cell features (Figure 4). EndMT occurs as a normal

developmental process, particularly in the heart (138), but also

contributes to pathogenic vascular remodeling in the adult in

numerous diseases.

EndMT features can be induced by a variety of stimuli and

conditions. In vitro, long-term exposure to TGFβ alone or in

combination with cytokines causes endothelial cells to acquire

mesenchymal gene expression [CDH2, TAGLN, COL1A2, α-

smooth muscle actin, SM22α, FSP1, Notch3, calponin and/or

vimentin] and downregulate endothelial markers [PECAM1,

CDH5, ICAM2, NOS3]. TGFβ predominantly acts through

SMAD transcription factors, particularly Smad2/3, with

contribution from other key transcription factors including Snail,

Slug, Twist and ZEB1/2 (139, 140). EndMT can contribute to

pathogenic vascular remodeling in multiple ways. Compared with

quiescent endothelial cells, EndMT cells lose quiescence, are less

organized, more proliferative and migratory, and produce more

extracellular matrix and matrix metalloproteases (141),

promoting the cellularity of the neointima. They also generate

factors that can stimulate fibrosis and osteogenesis by other cells

(142), and importantly display a strong proinflammatory

signature that can promote leukocyte recruitment (143).

In humans, EndMT is found in many diverse diseases of

occlusive vasculopathies and fibrosis, including atherosclerosis

(144), pulmonary arterial hypertension, vein graft failure (145),

systemic sclerosis (146, 147); SAVI/interferonopathy; and

Kawasaki disease. Several studies in these non-transplant vascular

occlusive diseases have shown that a key feature of EndMT is the

loss of pioneer endothelial transcription factors of the ETS

family. For example, lung endothelium from patients with

pulmonary arterial hypertension show reduced nuclear ERG

(148). ERG was also notably absent in the lumenal layer

overlaying human coronary artery atherosclerotic plaques (149)

and in pulmonary veno-occlusive disease (150). In scleroderma-

associated vasculopathy, a related ETS factor FLI1 was lost (151).

It is plausible that dysregulation of the ETS family of pioneering
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endothelial transcription factors may therefore play a role in

transplant vasculopathy.

Animal models of fibrosis and native neointimal hyperplasia

have also provided some deeper insights into the dynamics and

signaling involved in this process (152–154). Moonen et al.

found the presence of “myo-endothelial cells” in several models

of neointimal hyperplasia, further highlighting the role of

EndMT (155). Murine kidney fibrosis was rescued by deficiency

in the mesenchymal transcription factors TWIST and SNAIL

(156). Elegant lineage tracing experiments in the mouse showed

unequivocally that fibroblast-like cells within scarred native

hearts were endothelial in origin and exhibited TGFβ signaling

(p-Smad2, Smad3) (154). Similarly, Cooley et al. (145) employed

an inducible Endotrack mouse with an isogeneic vein graft that

develops hyperplastic neointima. They too clearly demonstrated a

preponderance of endothelial-derived cells in the day 35

neointima. In particular, they reported a progressive reduction of

PECAM1, CDH5 and CD105 in YFP+ cells between 7 and 14

days after grafting, which were fully lost by 35 days. A

concomitant increase in N-cadherin, Thy1, SMA and SM22α was

observed in YFP+ EC-derived cells, although few also expressed

mature VSMC markers calponin or fibroblast FSP1. The TGFβ

signaling pathway p-Smad2/3 along with transcription factors

Slug and Twist were increased transiently; p-Smad1/5/8 up by 3

days and persistent. Accordingly, anti-TGFβ antibody reduced

neointimal formation in vein grafts (145). Longitudinal profiling

of single cell expression after transient cardiac ischemia similarly

highlighted the temporal acquisition of mesenchymal genes by

endothelium early after injury (152). Remarkably, unlike vein

grafting, in this model normality was recovered day 14,

suggesting that temporary EndMT may be a normal process of

remediation, that fails to resolve under chronic injury in

progressive diseases like transplant vasculopathy.
Endothelial to mesenchymal transition
occurs in transplant vasculopathy

Although the upstream process that cause alloimmune injury

are distinct from those in native diseases discussed above, recent

experimental and clinical evidence shows that EndMT is evident

in end-stage organ transplant vasculopathy. Both smooth muscle

and endothelial markers are detectable within the neointima of

transplanted organs with TV. For example, in CAV, expression

of matrix metalloproteases (MMPs) and TGFβ can be found in

affected vessels (114). Likewise, transplant vasculopathy in

kidneys exhibits CD31 + SMA+ double positive cells (156).

TGFβ1 and its downstream WNT signaling were specifically

upregulated in renal allografts with microvascular injury; and

within that pathway the genes most highly associated with graft

failure are markers of EndMT: ZEB2 and SMAD3 (157). And,

endothelial expression of NOTCH4 was downregulated during

transplant arteriosclerosis (158), again implicating EndMT.

Similar findings come from animal models of TV. In a murine

chronic rejection model, markers of repair and angiogenesis were

persistently upregulated in both microvasculature and coronary
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FIGURE 4

Endothelial to mesenchymal transition (EndMT) contributes to vasculopathy. EndMT development is triggered by pro-fibrotic and pro-inflammatory stimli,
leading to transcriptional modifications in endothelial cells. Gene expression changes lead to phenotypic loss of canonical endothelial markers and gain of
mesenchymal features. These EndMT cells can then promote extracellular matrix deposition, and expression of matrix metalloproteases, contributing to
vascular remodeling. Made in biorender.
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artery endothelial cells of the heart (159). Although the majority of

intimal cells are donor in origin, the myofibroblast-like cells did not

arise from the vessel medial smooth muscle cells SMC, at least in a

rodent model (115, 160). Fate-mapping experiments by the Simons

and other labs in murine heart transplant chronic rejection (154),

murine artery transplant (133) and vein grafting (161) models

demonstrated that the neointimal smooth muscle-like cells partly

derive from endothelium, with a majority of neointimal

endothelial cells coexpressing αSMA and Notch3. Therefore, in

many diseases of neointimal hyperplasia, including in transplant

vasculopathy, endothelial cell transition to a fibroblast/smooth

muscle like phenotype occurs frequently within affected vessels.
The relationship between inflammation,
antibodies and endothelial to mesenchymal
transition

Given the correlative relationship between acute rejection and

transplant vasculopathy, what process bridges alloimmune

inflammation with vascular remodeling? Although central, TGFβ
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alone is insufficient to promote full EndMT. Inflammation is a

critical second input for full EndMT and neointimal hyperplasia.

Increased levels of both TGFβ and the inflammatory cytokine

TNFα were found in CAV (158), and it has long been known

that IFNγ related transcripts predict TV (162, 163). A

mechanistic role for IFNγ responses is supported by experimental

models (164, 165). Similarly, in native coronary artery restenosis,

IFNγ-related genes were strikingly upregulated in the neointima,

and mice deficient in IFNGR exhibited reduced neointimal

formation (166). In vitro, TNFα increased CDH2+CD31+ double

positive EC, as well as αSMA and SNAIL expression (167). And,

the combination of IL-1β and TGFβ synergistically induces

EndMT through NFκB. Additionally, IFNγ downregulated the

endothelial marker CDH5, while upregulating mesenchymal

genes ACTA2, CTGF, TGFB2, COL1A1, and PAI-1, and

functional features of EndMT (168). Therefore inflammatory

cytokines cause features of EndMT.

Several recent key studies strongly suggest that the acute

process of AMR itself may trigger an EndMT phenomenon that

could drive transplant vasculopathy. For example, it is well-

established that cardiac and renal biopsies with antibody-
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mediated rejection exhibit marked changes in gene expression (10,

96), including endothelial-specific genes. Further, in renal

allografts, markers of EndMT were evident during acute

antibody-mediated rejection, and were significantly associated

with the presence of microvascular inflammation (2.52 & 3.5

OR), HLA DSA (2.1 OR), and later graft loss (169, 170). In

particular, Xu-Dubois et al. found that fascin1, vimentin and

hsp47 were increased in kidneys with AMR, whereas such

staining was absent in normal kidneys and was specifically

associated with peritubular capillaritis and glomerulitis. Patients

whose renal grafts had a greater degree of this staining also

experienced a significantly greater deterioration of function after

biopsy. These findings connect acute alloimmune vascular injury

with EndMT in the physiological transplant setting and warrant

follow-up studies to elucidate the mechanisms at play.

Immune complexes from patients with systemic sclerosis

upregulate also TGFβ and collagen production by endothelium

(171), and in situ complement activation was associated with

phosphorylated SMAD2/3 in dialysis-associated occlusive

arteriopathy (172), suggesting a conserved mechanism of

antibody/complement-mediated injury and EndMT. In a new

MHC antibody-driven CAV mouse model, COL1A1 and DLL4,

both implicated in EndMT, were significantly changed in more

severe CAV with higher titers of DSA (137). In vitro, stimulation

of human glomerular endothelium with anti-HLA class I

antibodies for 48 h upregulated secretion of TGFβ (173).

In addition to direct effects on endothelial cells, it is possible

that infiltrating immune cells influence the pro-fibrotic milieu

and contribute to neointimal expansion and EndMT. In clinical

renal transplant biopsies, there was a greater number of CD68

macrophages associated with worse degree of fibrosis, and further

staining for markers CD163 and CD206 demonstrated a

predominance of M2-like macrophages among the infiltrates

(174). Pioneering follow-up work from Dangi et al. (175)

employed single cell RNA-sequencing to profile infiltrating

leukocyte gene expression in mouse renal transplants, and

identified a unique inflammatory macrophage population in

rejecting but not tolerized grafts. Functionally, interactions

between inflamed endothelium and macrophages alters

expression of Notch ligands (discussed in more detail below),

which in turn promotes macrophage differentiation (176).

Recently, in vitro studies demonstrated that HLA antibody-

activated endothelium promoted skewing of adherent monocytes

to a unique pro-repair phenotype characterized by higher CD68,

CD162, IL-10 expression, and genes involved in phagocytosis (49).

The expansion of Th17 cells by HLA antibody-activated

endothelium described above may also represent one link

between acute inflammation and chronic rejection. In particular,

IL-17 plays an important role in fibrosis, and mice with

enhanced Th17 immunity experienced accelerated rejection and

transplant vasculopathy. Moreover, IL-17 has been strongly

implicated in organ fibrosis in several native diseases, including

atherosclerosis and renal fibrosis. It is therefore possible that

HLA antibodies trigger endothelial activation, which in turn

expand Th17 immunity, and that this contributes to the long-

term association with fibrosis and vascular occlusion seen in
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chronic rejection (75, 177–179). Taken together, this body of

work suggests that antibody-induced inflammation may trigger a

cycle of profibrotic signaling and vascular remodeling leading to

transplant vasculopathy (Figure 4).
Non-coding RNAs in antibody-mediated
rejection and transplant vasculopathy

HLA I antibodies induced a change in the endothelial profile of

miRNA expression, which was more pronounced when

complement was included (180). The authors were able to

further validate differential expression of miRNA within human

living donor renal transplant biopsies with DSA, which showed

elevated Let-7C, miR-125a-5p and miR-520e (180). Franzin et al.

(181) recently reported that extracellular vesicles isolated from

the plasma of 14 renal transplant patients with AMR reduced

expression of hallmark endothelial cell markers CD31 and VE-

cadherin, while increasing vimentin and collagen expression.

These EV contained several miRNA involved in regulation of

fibrotic pathways, as well as complement regulation. In

particular, miR-604, miR-515, miR-let-7d and miR-590 were

higher. As in the study from Xu-Dubois, the authors observed

significantly increased αSMA staining in kidney allografts,

particularly in the glomeruli and peritubular capillaries, with

AMR compared with those without rejection. miR-let-7 is likely

to be a particularly important candidate, since the Simons lab

separately showed (133).

In cardiac endothelial and interstitial cells, the expression

changes of miR-10a, miR-31, miR-92a, and miR-155 were

associated with inflammatory response during rejection. Further,

serum level of miRNA was able to discriminate patients with and

without heart transplant rejection (182). In particular, in heart

transplant recipients, differential levels of plasma microRNAs

were particularly abundant in subjects with AMR, including

Let7b, miR-142-3p (183). Within cardiac biopsies, Di Francesco

et al. identified diverse miRNAs related to AMR and heart

allograft rejection including miR- 31-5p, -144-3p, and miR-29c-

3p, -29b-3p, -199a-3p respectively (184). Also, murine cardiac

transplant models have described mechanisms by which miRNAs

participate in allograft impairment. For example, deletion of

miR-142 and miR-146a augmented allograft survival, while miR-

142 promoted tolerance. This was associated with increased

peripheral regulatory T cells (Treg) (185). Further, miR-146a

decreased fibrosis formation and alleviated rejection, via Tregs

regulation through the IFN-γ/STAT1 pathway (186). Lastly, miR-

21 was upregulated in murine and human allograft vasculopathy,

and its in vivo reduced infiltrating macrophages. The authors

postulated that miR-21 is a potential target to decrease

inflammatory response (187).

Therefore, changes in non-coding RNA are observed both in

experiment models and in clinical transplant rejection (Figure 5).

It will be interesting to follow-up these observations with

mechanistic studies to determine which are graft-derived, and

their mechanistic effects on vascular changes leading to TV.
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FIGURE 5

Non-coding RNAs in antibody-mediated rejection and transplant vasculopathy. The influence of miRNAs in fibrotic pathways, complement regulation,
inflammatory responses and rejection has been analyzed in biopsies and plasma samples from kidney and heart transplant recipients. Murine models
have further described the impact of miR-146a and miR-142 in heart transplant survival. Made in biorender.
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The contribution of Notch signaling in
vascular health and disease

Occurring via cell-cell communication, Notch ligands (Delta-

like-1,3,4 & Jagged-1,2) activate Notch receptors (Notch-1,2,3,4)

via ligand binding and subsequent cleavage events to enable

Notch intracellular domain nuclear translocation and

transcription via the RBPJ transcription factor (188). The Notch

signaling pathway plays a critical role both in vascular

development and blood vessel homeostasis (189). Decades of

work have demonstrated the requirement of Notch signaling for

effective angiogenesis, hierarchical vascular patterning, arterial

specification, vessel integrity and vascular inflammation (190).

Intricate control of Notch signaling is important in both

homotypic and heterotypic cell-cell interactions and the loss or

hyper-activation of these signaling events contribute to multiple

vasculopathies, including endothelial cell activation, immune cell

recruitment, vascular smooth muscle cell hyperproliferation and

extracellular matrix remodeling (191). Multiple reports have

demonstrated that loss of Notch activity in endothelial cells

results in endothelial dysfunction, as evidenced by increased cell

proliferation, loss of junctional integrity and enhanced

inflammatory signaling (192). These consequences were shown

to increase the atherosclerotic plaque burden in

hypercholesterolemic mice lacking endothelial Notch1 compared

to hypercholesterolemic control mice (193). Further evidence of

its role in vascular inflammation, the presence of oxidized lipids

and cytokines associated with atherosclerosis progression can

suppress endothelial Notch1 expression (194). In the context of

atherosclerosis, multiple Notch ligands and receptors are

expressed in the atherosclerotic lesion and Notch activity in the

smooth muscle compartment promotes the development of

plaque cells in the fibrous cap (195). The authors also found that

the sequence of Notch signaling events shared characteristics
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with arterial media assembly during embryogenesis and therefore

point to the importance of Notch activity not only during

development but also in disease states to maintain a connection

between the endothelium and subendothelial smooth muscle

layer (195). Furthermore, in a vein graft model, antagonism of

the Notch ligand Dll4 attenuated neointimal hyperplasia,

suppressed inflammatory M1 macrophage differentiation and

reduced endothelial inflammatory gene expression in vivo (196).

Notch signaling has been reported to contribute to the

pathogenesis of arteriosclerosis after transplant. Although the

exact role of Notch signaling in allografted vessels and the

development of transplant arteriosclerosis is still an active area of

exploration, a study by Quillard et al. found that impaired

Notch4 activity aggravated transplant arteriosclerosis by

triggering endothelial cell dysfunction and apoptosis (158).

Further suggesting the role of Notch signaling in vascular

inflammation, the Notch family of ligands and receptors are

important regulators of immune cells (197). Reports have shown

that graft failure due to antibody-mediated rejection is associated

with changes in Notch signaling between endothelial cells and

immune cells. Specifically, endothelial Notch4 was downregulated

while the Notch ligand Dll4 was upregulated in both endothelial

cells and macrophages during antibody-mediated rejection (176).

This endothelial cell to immune cell signaling promoted the

differentiation of monocytes into macrophages with a pro-

inflammatory phenotype, concurrent with production of the

inflammatory cytokine IL-6. This highlights the importance of

heterotypic cell interactions at the vessel wall and indicates Dll4

as a potential immunotherapy target for treatment of vascular

inflammation after cardiac transplantation. With regard to

vasculopathies associated with cardiac transplant, work by

Norum et al. revealed a correlation between the Notch ligand

Dll1 and cardiac allograft vasculopathy (198). The importance

of Notch signaling in allograft vasculopathy is further supported
frontiersin.org
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TABLE 2 Current and novels strategies to treat chronic AMR in solid organ
transplantation.

Current treatment strategies

• The most validated strategy is:
- Plasmapheresis, Immunoglobulin G (IVIG), Rituximab, and/ or Bortezomib
(203–206)

• In kidney, KDIGO recommend reducing, withdrawing, or replacing calcineurin
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by transcriptional analysis of allograft arteries showing an

elevated expression of Dll4 is associated with both high

titers of donor-specific antibodies and the occurrence of

vasculopathy (137).

Notch signaling is also reported in the context of endothelial-

to mesenchymal transition. Noseda et al. revealed some of the first

evidence for Jagged1-Notch activation in the induction of

endothelial-to-mesenchymal transition (EndMT) during cardiac

development (199). The authors showed that Notch activation

in endothelial cells resulted in phenotypic changes consistent

with EndMT and established the idea that Notch signaling was

required for proper endocardial cushion differentiation.

Mounting evidence suggests that EndMT also plays a role in

adult cardiovascular disease (142, 200). In fact, it was recently

shown that activation of the Notch pathway can induce EndMT

and promote the development of atherosclerosis (201). Staining

of human atherosclerotic plaques found the co-expression of

both endothelial and mesenchymal markers, thereby suggesting

an intermediate stage of EndMT in the lesions (155). The

researchers also showed that oscillatory shear stress promoted

EndMT while high laminar shear stress suppressed this

transition (155). Considering that endothelial Notch1 signaling

is responsive to the level of shear stress (193), it is provoking to

consider that Notch activity could be influenced by the local

shear stress environment and thereby influence EndMT at the

aortic wall. It is thereby possible that blood flow perturbations

after engraftment could induce changes in endothelial Notch

activity, thus linking the role of Notch signaling to vasculopathy

after transplant.

inhibitors with mTOR inhibitors (207).

Novel treatment approaches

• Anti-Interleukin-6

Clazakizumab
• Phase three clinical trial. Kidney
transplant recipients with caAMR.
Decreased DSA MFI and rejection
scores per biopsy (208).

• Kidney transplant biopsy-proven
caAMR. Patients had stable eGFR,
decreased DSA and improved Treg
cells in peripheral blood (209).

Tocilizumab
• caAMR cohort. Patients showed stable
renal function and histological injury
(210).

• In caAMR patients resistant to
conventional treatment (IVIG +
rituximab ± PLEX), Tocilizumab
decreased some IgG subclasses, and
anti–HLA-total (211).

• Extracorporeal photopheresis in chronic AMR patients. Reduced HLA serum
levels and improved graft survival (212).

• caAMR patients treated with BM-MSCs combined with Immunosuppressive
drugs reduce DSA levels, pro-inflammatory cytokines and maintain allograft
function (213).

• Belatacept administration to caAMR patients after discontinuation of CNI
decelerated renal function loss, and decrease gene expression scores associated to
histological damage (214).

mTOR, Mammalian Target of Rapamycin Inhibitors; IVIG, Immunoglobulin G; AMR,

Antibody Mediated Rejection; caAMR, Chronic Active AMR; PLEX, Plasmapheresis;

BM-MSCs, Bone Marrow-Derived Mesenchymal Stem Cells; CNI, Calcineurin

Inhibitors.
Translation to therapy and gaps in
knowledge

Many of the in vitro studies described above have stimulated

endothelium with monoclonal murine antibodies to HLA class I,

and should be confirmed using human allele specific antibodies or

alloserum. Further, experiments testing the effects of HLA II

antibodies on endothelium in vitro are limited by the

requirement to artificially induce HLA class II expression—

usually through priming with IFNγ, which independently

induces myriad phenotypic changes in endothelium (72).

Therefore the individual effects of antibodies themselves can be

difficult to discern in such studies. Some approaches have

delivered HLA II genes or the master transcription factor

CIITA directly to circumvent this confounder. Another

important caveat is that most of the studies cited above employ

a limited range of human endothelial cells, usually derived

either from the umbilical cord or aorta. Extensive recent work

in the vascular biology field has characterized the complex

transcriptional, functional, and phenotypic heterogeneity of

endothelial cells from different organs and vascular beds (97,

99, 202). Some work, including our own, has demonstrated

differential responses of organotypic endothelial cells to

inflammatory stimuli, including in response to HLA antibodies

and complement (42, 97, 99, 202). Given disparities in
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outcomes across different transplant organs, it will be important

for the transplantation field to extend its investigations to

endothelial cells from relevant tissue-specific vascular beds. It

will be particularly critical to distinguish effects on liver

endothelium from others, given the unique phenotype and

tolerogenic characteristics of sinusoidal endothelium.

Despite the advances summarized above, there are very few

examples of how knowledge of the acute injury triggered by

HLA donor specific antibodies have translated to effective

therapies for CAV (Table 2). mTOR inhibitors are widely used

as an alternative renal-sparing maintenance immunosuppression

to calcineurin inhibitors. Several studies have demonstrated

reduced neointimal thickening and CAV incidence in heart

transplant patients taking mTOR inhibitors (215, 216). These

clinical observations are in line with in vitro experiments that

demonstrated a reduction in HLA antibody-induced

proliferation of endothelial cells (217), which may represent one

mechanism of the development of CAV. Nevertheless, mTOR

inhibitors also suppress signal 3 in the activation of T cells, and

this is a potential confounder in interpreting mechanism. Its
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independent beneficial effects on vascular changes remain to be

determined.

Complement inhibition has been avidly explored as a

treatment for the prevention or reversal of acute antibody-

mediated rejection. Similarly, IL-6/IL-6R inhibitors are being

actively investigated to reduce HLA donor specific antibodies,

and may have an ancillary benefit of reducing inflammation

mediated by this pleiotropic cytokine (218). Transplant

vasculopathy outcomes in patients treated with IL-6/IL-6R or

complement inhibitors have not been specifically reported, but

are included as secondary/exploratory endpoints in several

ongoing clinical trials.
Conclusions and future directions

In summary, anti-donor HLA antibodies prompt a wide array

of functional changes in allograft endothelial cells as an acute

response. Emerging evidence about TGFβ production, Th17

skewing, and differential miRNA expression during acute

antibody-mediated injury supports the recent separate

observations that allografts with AMR and transplant

vasculopathy show hallmarks of EndMT and fibrosis. Future

studies linking the early processes of vascular injury with the

progressive remodeling seen in transplant vessels have the

potential to identify new therapeutic avenues to counteract and

prevent this insidious disease.
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