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A treatment within sight:
challenges in the development of
stem cell-derived photoreceptor
therapies for retinal degenerative
diseases
Davinia Beaver and Ioannis Jason Limnios*

Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia

Stem cell therapies can potentially treat various retinal degenerative diseases,
including age-related macular degeneration (AMD) and inherited retinal diseases
like retinitis pigmentosa. For these diseases, transplanted cells may include stem
cell-derived retinal pigmented epithelial (RPE) cells, photoreceptors, or a
combination of both. Although stem cell-derived RPE cells have progressed to
human clinical trials, therapies using photoreceptors and other retinal cell types
are lagging. In this review, we discuss the potential use of human pluripotent
stem cell (hPSC)-derived photoreceptors for the treatment of retinal
degeneration and highlight the progress and challenges for their efficient
production and clinical application in regenerative medicine.
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1. Introduction

The global burden of vision loss is significant, with an estimated 61 million people

predicted to be blind and another 474 million people experiencing moderate to severe

vision impairment by 2050 (1). The root cause of irreparable vision loss is often the

degeneration of photoreceptor cells in the retina, which can occur as a primary or

secondary disease process. Therefore, developing effective therapeutic approaches for

retinal degenerative diseases is crucial in the fight against vision loss.

The retina is a layer of nervous tissue in the eye responsible for vision. The outer nuclear

layer of the human retina contains light-sensitive cells called photoreceptors that convert

light signals into electrical impulses (2). The inner nuclear retinal layer consists of

bipolar, horizontal and amacrine cells that receive and modulate visual information before

synapsing with the ganglion cell layer to transmit electrical impulses sent to the brain for

visual processing (3).

The human retina contains approximately 110 million rods and 4.6 million cones (4).

Rods account for 95% of photoreceptor neurons and are concentrated in the peripheral

retina, largely absent in the fovea. They are specialized cells that provide scotopic vision,

having low contrast sensitivity and acuity. Rods are extremely sensitive to a single photon

of light and can become light-saturated in bright light (5).

Cones constitute 5% of photoreceptors in humans. The macula is a small region of the

retina that contains the highest density of cones, resulting in high visual acuity. Humans and

some primates have three cone subtypes (blue, green, red) for trichromatic vision (6). Unlike
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rods, cones are not light-saturated and can recover their membrane

current from photobleaching within milliseconds (7).

The health and function of photoreceptors are carefully

maintained within the retinal ecosystem. Retinal pigment

epithelial (RPE) cells interdigitate with photoreceptors and

perform critical functions, such as the phagocytosis of

photoreceptor outer segments, recycling of opsins (visual cycle),

barrier function, nutrient supply, waste removal, and cytokine

secretion to preserve retinal function (8). Müller glial cells of

the retina provide structural support and help balance

neurotransmitters, trophic factors, and metabolites (9). Cones

also depend on rods for their survival through the regulation of

glucose uptake (10). Disturbance of the retinal ecosystem can

cascade toward retinal degeneration when cell functions are

compromised.

Age-related macular degeneration (AMD) is a leading cause of

blindness in elderly individuals in Western nations, affecting

approximately 200 million people worldwide (11, 12). AMD

begins as yellowish deposits called drusen in the retina of the

macula and can progress to either dry AMD (geographic

atrophy) or wet AMD (choroidal neovascularization). Late-stage

AMD leads to severe vision impairment and irreversible loss of

central vision due to the death or dysfunction of the RPE in the

macula, followed by secondary loss of cone photoreceptors (13).

Multiple contributing factors to AMD, including age, light

exposure, genetics and lifestyle, lead to dysregulation of

metabolic, redox and complement systems (14). While current
FIGURE 1

Schematic diagrams of retinas from healthy and diseased eyes. The healthy reti
photoreceptors of the macula vs. the peripheral retina. Age-related Macular De
cone photoreceptors. Intermediate (Int) AMD—The presence of sub-RPE druse
of RPE cells and cones in the macula. Retinitis Pigmentosa: Retinal schemat
Intermediate (Int) RP—partial loss of rod. Advanced (Adv) RP—widespread loss
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treatments can slow the progression of AMD, approximately 15%

of patients will ultimately lose their central vision (15) (Figure 1).

Inherited retinal diseases (IRDs) are a group of genetic

disorders that result in blindness due to the primary death or

dysfunction of photoreceptors. There are over 300 known

mutations that can cause IRDs, resulting in conditions such as

retinitis pigmentosa (RP), Stargardt disease (SD), cone-rod

dystrophy (COD) and Leber congenital amaurosis (LCA) (16).

RP is the most common type of inherited retinal disease,

affecting approximately 1 in 5,000 births, and typically causes

progressive vision loss beginning in the third or fourth decade of

life due to the loss of rod photoreceptors in the peripheral retina

(17) (Figure 1). This leads to night blindness and narrowing of

vision, and ultimately complete blindness due to secondary loss

of cones (18).

Current treatment options for AMD and IRDs are limited and

primarily focused on slowing the progression of degeneration (19,

20). The standard treatment for neovascular AMD is anti-VEGF

therapy to reduce abnormal blood vessel growth and leakage (21). In

early 2023 the FDA approved Pegcetacoplan (marketed as Syfovre)

as the first treatment for geographic atrophy (GA). Syfovre works by

inhibiting complement factor 3 (22) and can reduce the growth of

geographic atrophic regions by up to 30% compared to controls (23,

24). In addition to limited efficacy, patients with dry AMD are at

increased risk of developing wet AMD (25).

Several alternative therapeutic approaches to target early and

intermediate-stage retinal degeneration, including gene therapies
na shows the major cells of the retina, with a clear distinction between the
generation: Retinal schematic of the macula, as shown by the presence of
n deposits and early signs of RPE dysfunction. Advanced (Adv) AMD—loss
ic showing the progressive degeneration of rods in the peripheral retina.
of rods in the peripheral retina.
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to restore normal cell function, neuroprotection to support cell

survival and reduce inflammatory signalling, pharmacotherapies

to compensate for metabolic and biochemical imbalances (26),

exosome therapies to deliver packages of mRNAs, miRNAs,

proteins to augment gene expression and cell function (27) and

optogenetics to confer light sensitivity on other retinal cells (28).

Luxturna is the first and only FDA-approved gene therapy for

the treatment of an IRD (LCA), however, other disease targets

are under development, including AMD and RP using gene-

specific and gene-indifferent approaches (16, 29, 30). The long-

term efficacy of these therapies is yet to be determined in patients.

Human photoreceptors do not have the capacity to regenerate,

and there are currently no treatments to restore vision once they

are lost. Cell replacement is a promising approach to treat

various types of retinal degeneration. Human pluripotent stem

cells offer the potential for unlimited amounts of transplantable

retinal cells and photoreceptors. This review discusses progress

and challenges in the efficient production of photoreceptors from

human pluripotent stem cells and their clinical translation.
1.1 Cell transplantation for retinal
degenerative diseases

The purpose and goal of cell therapy for retinal diseases is to

restore or improve vision in individuals who suffer from various

retinal disorders. In the early stages of age-related macular

degeneration (AMD), cell therapies aim to preserve cone

photoreceptors by transplanting retinal pigment epithelial (RPE)

cells (31). In advanced stages of AMD, transplantation of both

RPE and cones may be required to restore vision, while other

retinal degenerative diseases may require the transplantation of

rods and/or cones.

The possibility of photoreceptor integration depends on the

structural and functional preservation of the remaining retina,

particularly the ONL and retinal ganglia (32, 33) to process and

transmit visual information to the brain (34). To achieve retinal

integration, donor cells are transplanted into the subretinal space

above the RPE layer and must then migrate and extend processes

towards the host ONL while overcoming the barriers of the outer

limiting membrane (OLM) (35). Subsequently, photoreceptors

must mature and function normally through interactions within

the surrounding retinal environment.

The retina is an ideal anatomical location for cell

transplantation as it is relatively simple to access and monitor

and requires relatively few cells to achieve a therapeutic effect

(36). Furthermore, the eye is an immune-privileged site with a

reduced risk of graft rejection (37). Graft function can be

assessed using several non-invasive techniques, such as optical

coherence tomography, fundus autofluorescence, fluorescein

angiography and visual field tests (38, 39). In the past four

decades, the potential for cell therapies to treat various retinal

conditions has spurred the development of surgical techniques

and has led to numerous clinical trials (40–45).

The transplantation of cells into the retina to treat degenerative

diseases has been pursued since the early 1980s. Proof-of-concept
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was first established in owl monkeys by Peter Gouras and others,

who subsequently published a series of studies demonstrating

photoreceptor rescue by RPE transplantation in rodents (46).

Photoreceptor transplantation was pioneered using retinal

microaggregates and enriched photoreceptors in rodents and pigs

(47–51). Studies focused on the fundamentals of surgery,

preparation of cells and tissues for grafting, and labelling methods

to track grafted cells in vivo. The feasibility and short-term efficacy

of retinal tissue grafting were tested by transplanting retinal

clumps from newborn rats into the subretinal space of adult rats

with outer retinal lesions (48, 52–55). Studies in wild-type and

degenerative model rodents demonstrated graft survival for up to

nine months, and preliminary evidence of integration, suggested

by the formation of primitive outer segments and synapses

(48, 56, 57), and in some cases demonstrated observable

behavioral changes such as light avoidance in rodents (58).

Transplantation of retinal tissues and cells of various

developmental ages suggested that younger cells provided better

outcomes than more developed cells (59). In 2006, Maclaren

determined that the optimal developmental age of photoreceptors

in mice was post-mitotic precursors, derived from postnatal days 3

and 7 in mice (60). This preference may be attributed to the

enhanced resilience exhibited by these precursors relative to fully

matured cells, characterized by elongated and delicate structures

that may render them vulnerable to dissociation techniques.

Additionally, precursors may be better suited to migrate from

the subretinal space to establish synaptic connections with the ONL.

Preclinical studies in large animal studies showed subretinally

transplanted retinal sheets survived and improved cone responses,

despite a lack of evidence of retinal integration (51, 61). However,

several human trials conducted between the late 1990s and early

2000s using fetal retinal sheets and cells resulted in limited or

transient visual benefit in RP patients (62–65).

Despite their lack of clinical efficacy, these pioneering studies

demonstrated that photoreceptor replacement could potentially

be developed into a therapy for retinal degenerative diseases by

overcoming the obstacles of survival and retinal integration, as

well as a reliable source of cells.
1.2. Human pluripotent stem cells in cell
therapy

The isolation of human embryonic stem cells (hESCs) in 1998

(66) and the subsequent generation of human induced

pluripotent stem cells (hIPSCs) by somatic cell reprogramming

in 2007 (67, 68) opened a multitude of opportunities for

regenerative medicine.

The critical properties of hESCs and hIPSCs (together, hPSCs)

include pluripotent differentiation potential (the ability to form

any cell type of the body) and self-renewal (maintenance of an

undifferentiated state during mitosis), making them an ideal and

possibly limitless source of cells for therapeutic purposes. Unlike

hESCs, hIPSCs do not require human embryos and can be

generated by reprogramming somatic cells. Reprogramming

allows for the generation of hIPSCs with patient-specific
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genetics for personalized medicine and disease modelling and

avoids the ethical concerns associated with human embryo

research (69).

One of the most promising applications of hPSCs is cell

replacement therapies for retinal degenerative diseases. The

earliest completed human trials to use hPSC-derived cell

products were hESC and hIPSC-derived RPE cells in AMD

patients (70, 71). Over the past decade, hPSC-RPE

transplantation accounted more human trials than any other

hPSC-derived product (22/102) (72). Moreover, the first clinical

trial for RP using hIPSC-derived retinal organoid sheets

(jRCTa050200020) recently began in Japan (73).

Most clinical trials for AMD have generated hPSC-RPE by

spontaneous differentiation (70, 74–76). This approach is

inefficient, time-consuming and highly variable across cell lines

(77). Furthermore, hPSC-RPE cell stocks must be expanded to

generate sufficient cell numbers, leading to reduced cell function

and increased risk of mutations (78). By contrast, the directed

differentiation of hPSC-RPE cells using cytokines and small

molecules results in higher efficiencies and final yields (79–81).

Some groups have refined their protocols to produce hPSC-RPE

under current good manufacturing practice (cGMP) conditions

for human trials (70, 75, 82–84), and commercial approval,

though not yet granted, is anticipated (44).

Although photoreceptors and RPE cells are derived from the

same progenitor cell type, photoreceptors are more challenging

to generate efficiently and are post-mitotic. These two factors

make producing large numbers of cells difficult for clinical use. It

is, therefore, critical that efficient methods for the production
FIGURE 2

A schematic showing the source of human pluripotent stem cells from
reprogramming factors. hPSCs are then directed toward the eye field pro
Progression of differentiation to the RPE is governed by WNT signalling
differentiation of EFPCs towards neural retinal progenitor cells (NRPCs) is dr
differentiation potential to form all cells of the neural retina and can be cult
2D conditions under directed differentiation towards rod or cone photorecep
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and harvest of photoreceptors can be developed for therapeutic

applications (85).
1.3. Retinal development in vivo

Developing differentiation protocols for specific retinal cell

types requires knowledge of retinal development in vivo. While

the key drivers of early retinal development are known, the

extrinsic factors that drive the development of specific neuronal

cell subtypes are not yet fully understood.

Ontologically, the retina is part of the brain and follows early

forebrain development in vivo. During mammalian embryogenesis,

this is achieved by dual SMAD inhibition of TGFβ and BMP

signalling pathways, as well as inhibition of WNT signalling along

an anterior-posterior gradient that defines this axis, resulting in

the anterior neurectoderm (Figure 2) (86, 87). hPSCs can be

directed to the same fate using small molecules or cytokine

inhibition of the same pathways (81, 88, 89). Eyefield progenitor

cells (EFPC) are multipotent and have the potential to form the

RPE, neural retina and associated progeny cells, including

photoreceptors. Under appropriate conditions, EFPCs can be

generated with nearly 100% efficiency, as determined by the

expression of specific eyefield markers like RAX, LHX2 and PAX6

(90). The efficient formation of hPSC-derived EFPCs in vitro is

thus a critical platform for producing the RPE or neural retinal

progenitor cells.

Bifurcation of the eyefield to the RPE or neural retina is

governed by the expression of MITF and VSX2, respectively (91).
either a blastocyst-stage embryo or through hIPSC cell induction by
genitor cells (EFPCs) by inhibition of TGFβ, BMP and WNT signalling
and is enhanced through inhibition of FGF signalling. Conversely, the
iven by FGF signalling and inhibition of WNT signalling. NRPCs have the
ured in suspension as 3D aggregates to form retinal organoids or under
tors. Blue boxes show markers for each cell type.
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Extrinsic factors that regulate this process include FGF and WNT

signalling (92). Support for this model can be observed in vitro

and in vivo, where FGF signalling is required for the

development of the neural retina in the developing chick (93)

and is sufficient for the transdifferentiation of the RPE to the

neural retinal in vitro (94). This model complements studies

showing that loss of WNT signalling during mouse development

results in the transdifferentiation of the presumptive RPE to the

neural retina (95) and is also supported by retinal differentiation

studies using hPSCs (91). Thus, the directed differentiation of

EFPCs to neural retinal progenitor cells (NRPCs) has the

potential to yield photoreceptors with high efficiency in vitro.
1.4. Towards photoreceptor production

Early studies on the directed differentiation of mouse

embryonic stem cells (mESCs) and hPSCs towards retinal cells

used a combination of 3D/2D hybrid protocols to achieve retinal

differentiation and, in some cases, showed the production of

photoreceptors after extended culture periods. In 2005, a

landmark study demonstrated the generation of retinal

precursors by culturing mESCs as embryoid bodies in serum-free

conditions in the presence of Dkk1 and LeftyA, followed by the

addition of serum and Activin, resulting in about 6% Rx+/Pax6+

cells (96). Overexpression of Crx in these cells through lentiviral

transduction, or co-culture with retinal explants, resulted in the

upregulation of rhodopsin (Rho) and recoverin (Rcvrn).

Shortly after, Lamba et al. (97) demonstrated retinal progenitor

differentiation by culturing hESCs as embryoid bodies in serum-

free media (SFEB) with IGF-1, DKK1 and Noggin. After three

weeks, cells expressed PAX6 and VSX2 (CHX10) in approximately

80% of cells (97). In 2008, Osakada et al. adapted and refined

SFEB differentiation in mouse, monkey and human ESCs using

retinoic acid and taurine to enhance rod production by day 130

(98). This study also marked the first-time photoreceptor

progenitors were generated in the absence of mature retinal tissue,

with photoreceptors representing about 20% of cultured cells.

Lamba et al. (99) also demonstrated the differentiation of multiple

hESC and hIPSC lines towards retinal progenitors through the

suspension culture of aggregates in DKK-1, IGF-1 and Noggin.

These cultures showed patches of retinal pigment epithelial,

amacrine and neural ganglion cells. After two months of culture,

photoreceptor markers, including Crx and Otx2, were detected in

about 10% of cells. Approximately 30% of the photoreceptors

produced were rods, as indicated by the expression of Nrl, and

about 1% of cells expressed more mature photoreceptor markers

such as recoverin, AIPL-1, Rho and S-Opsin (99).

By contrast, Meyer et al. (100) induced retinal differentiation

using a 3D/2D/3D protocol by culturing hIPSCs without specific

factors. For this, hIPSCs were cultured in a neural induction

medium (N2 and heparin) from day 2 to day 16, followed by a

retinal induction medium (B27) thereafter. Floating aggregates

were plated to form neural rosettes, which were lifted to form

neurospheres and, over time, proceeded towards photoreceptors

via a neural retinal intermediate stage. Despite the absence of
Frontiers in Transplantation 05
specific factors, some cells expressed PAX6 and RAX at day 10,

CHX10 by day 40, followed by cells expressing CRX, RCVRN

and OPSIN by day 80 (100).

These early studies demonstrated the potential for generating

retinal tissue from hPSCs by directed (guided) or unguided

methods and laid the foundations for new methods to generate

retinal cells and photoreceptors.
1.5. Retinal organoid differentiation

The Sasai group advanced retinal differentiation through the

generation of 3D self-folding optic cups from mouse (101)

and humanESCs (102), leading to the field of retinal organoid research.

Retinal organoids are 3D multi-layered structures derived from

hPSCs that can faithfully recapitulate key elements of retinal

development, disease and function in the dish (103). Mature

retinal organoids contain photoreceptors, bipolar, horizontal,

amacrine, retinal muller and ganglion cells and exhibit aspects of

native connectivity, apical and basal polarity, cellular architecture,

and metabolic interactions (104) and, in some cases, are light

responsive (105).

Retinal organoids have since emerged as valuable tools for the

investigation of retinal development (106) and diseases in vitro

(107), therapeutic drug screening (108), exploration of gene

therapies (109), and evaluation of neuroprotective agents (110).

Furthermore, retinal organoid technologies have reached human

trials to treat RP (111).

Over the past decade, many research groups have adapted and

explored new protocols for retinal organoid generation. Here, we

discuss the common features of retinal organoid protocols and

highlight fundamental research that has improved organoid

development’s robustness and quality and increased

photoreceptor yields and quality.

Retinal organoid protocols generally share features of neural

induction, isolation or selection of developing neural retinal

tissue, followed by culture to support retinal development. Neural

induction can be performed using three-dimensional (3D) (112)

or two-dimensional methods (2D) (113) (Figure 3A) and may be

directed (guided) using specific signalling factors or unguided

(spontaneous) (100, 114, 115), which is consistent with the

default model of development (116). While unguided protocols

may be sufficient for some cell lines, inherent differences

between lines, such as epigenetics (117, 118), may affect retinal

differentiation (99, 119, 120).

Guided protocols provide a form of controlled neural induction

that may override the intrinsic bias of hPSC lines (121). Guided

neural induction typically involves inhibiting the TGFβ, BMP

(122–126) and WNT signalling pathways to enhance anterior

neural differentiation (123, 127–129) (Figure 3B). Recently,

nicotinamide was shown to enhance neural induction through

BMP inhibition (130) and possibly also through inhibition of the

WNT pathway (131).

Retinal differentiation may be enhanced by promoting neural

retinal differentiation and development and inhibiting RPE

differentiation. A common approach is stimulation of the FGF
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FIGURE 3

(A) Major variations in the physical formats for retinal organoid and photoreceptor differentiation, showing combinations of 3D, 2D/3D, 3D/2D/3D and 2D
culture systems. These approaches form the basis of derived and adapted protocols for the generation of retinal organoids and enhanced photoreceptor
differentiation. (B) A heat map of the most utilized pathways during guided neural induction and early-to-mid retinal differentiation. Pathway activation or
inhibition is commonly achieved using small molecules and exogenous cytokines. Adaptations of protocols are commonly explored by using additional
specific molecules to enhance or promote target cell types, including photoreceptors.
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pathway using FGF2 (132–133) or FGF9 (94, 134, 135). Other

approaches include the direct inhibition of WNT signalling with

small molecules or factors (102, 125, 134, 136).

Supplementation of retinal organoid cultures with IGF-1

promotes optic vesicle and optic cup formation, retinal

lamination and the appearance of photoreceptors (112, 137).

Various protocols employ BMP4 soon after neural induction to

enhance retinal differentiation (138–140). However, the effects of

IGF-1 and BMP4 on retinal organoid differentiation may be

protocol and cell line specific (141). Despite these observations,

retinal induction with BMP4 is reproducible across multiple

hPSC lines (73, 139, 142, 143).

Amongst the myriad of retinal organoid protocols, a

unique approach to neural retinal development by Kuwahara et al.
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(138) used the directed differentiation of hPSCs to RPE cells

followed by induction reversal to the form highly organized

organoids with a stratified neural retina that were rich in

photoreceptors (138). This protocol has been further optimized by

preconditioning hPSCs through SHH activation and

TGFβ inhibition in stem cell maintenance medium for 24 h (142).
1.6. Photoreceptors from retinal organoids

Strategies for promoting photoreceptor differentiation in

retinal organoids vary from improving overall organoid quality,

increasing photoreceptor yields, biasing photoreceptor sub-types

and improving final photoreceptor maturity and function.
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Notch inhibition causes retinal progenitors to exit the cell cycle,

which triggers the early appearance of photoreceptors and increases

yields (127, 129, 133). While most studies have used DAPT to inhibit

Notch signalling, one study demonstrated that Notch inhibition for

three days using PF-03084014, but not DAPT, at different time

points (day 45 or day 60 and day 90) promoted differentiation of

cones and rods, respectively (144). However, neither cone nor rod

photoreceptors did not express mature markers, even after

prolonged culture. However, Zerti et al. (145) found that exposure

of retinal organoids to DAPT from days 28–42 and retinoic acid

(RA) from day 30 to day 120 significantly increased M/l cone

differentiation at the expense of rods (145).

Although RA is commonly used to enhance photoreceptor

development (114, 127, 146, 147), the timing and concentration

of RA can affect the timing of photoreceptors, subtype bias, and

maturation (145, 148, 149). Moreover, the type of retinoid can

also affect photoreceptor differentiation. Zerti et al. (145) found

that RA enhanced expression of mature rod and cone markers,

while 9-cis-retinal and 11-cis-retinal reduced expression below

control values. Conversely, the Swaroop lab found 9-cis-retinal

accelerated rod differentiation (150, 151).

COCO simultaneously inhibits the TGFβ, BMP and WNT

(152) signalling pathways and enhances cone photoreceptor

differentiation. In an adapted protocol, Pan et al. (125) showed

that COCO significantly increased photoreceptor precursors by

day 45 but not final photoreceptor yields. However, COCO

increased the ratio of cones vs. rods by day 90 (125).

Other studies have used thyroid hormone to bias photoreceptor

sub-types. Thyroid hormone determines the development of rod vs.

cone subtypes when used in a temporal and concentration-dependent

manner and causes a shift away from S-Opsin cones towards M/l-

Opsin cones (128, 153, 154). Finally, somatostatin signalling was

recently found to promote rod differentiation and maturation (155).

In addition to culture media and signalling molecules, physical

conditions can enhance photoreceptor development in organoids.

For example, Völkner et al. (156) utilized a combination of

hypoxic culture and tri-sectioning, which led to the development

of stratified retinal organoids (ROs) expressing markers related to

phototransduction and synaptic vesicle proteins, along with

functional responses to light (156). Furthermore, improved RO

development can be achieved by cultivating them on plate

shakers or in spinner flasks (157) and using rotating vessels

(158). These approaches facilitate the efficient exchange of

oxygen and nutrients, enhancing retinal development.

Overall, the discovery of retinal organoids has led to various

methods to create retinal tissues containing photoreceptors of

different stages of development, with increasing control over rod

and cone differentiation and higher yields that will hasten their

clinical translation.
1.7. Directed differentiation of
photoreceptors

Whereas retinal organoids are intended to recapitulate

complexity of the developing retina, directed differentiation
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protocols aim to generate photoreceptor precursors with high

efficiency and may be useful for large-scale production.

Following classical dual SMAD and WNT inhibition using

COCO in 3D/2D culture, Zhou et al. (88) generated photoreceptor

precursors for 21 days at high efficiency. Neural induction was

performed using EBs by using COCO, FGF2 and IGF-1, which

were plated onto Matrigel and cultured for a further four weeks,

resulting in approximately 90% CRX+ and 40% S-Opsin+ cells by

day 21. The addition of thyroid hormone shifted cone identity

from S-Opsin to M/l-Opsin cones (88). The remarkable ability

of COCO to direct cone differentiation has since been tested in

rat retinal progenitor cells (159) and human retinal organoids

(125, 126).

Tay et al. (160) explored the effect of culture substrate on

photoreceptor differentiation efficiencies (160). hESC

monolayers were seeded onto LN521, LN323 + LN521 (2:1

ratio) or LN523 + LN521 (2:1 ratio) and cultured in neural

induction medium (N2, B27, SB431542, and CKI-7) until day

9, followed by photoreceptor differentiation medium

containing (N2, B27, BDNF, CNTF, RA, and DAPT) until day

32. By day 32, approximately 35% of cells on LN523 + LN521

co-expressed CRX and RCVRN, compared to -10% on

LN323 + LN521 and >1% on LN521 alone. This is consistent

with the presence of laminin γ3 in the interphotoreceptor

matrix (161–163).

Direct conversion by transcription factor overexpression

presents new ways to generate target cell types from hPSCs

(164). This strategy generated photoreceptors from hPSCs by

inducible expression of CRX and NEUROD1 under 2D and

3D (165). By day 28, RCVRN was expressed in approximately

34% and 44% of cells in 2D and 3D cultures, respectively.

Moreover, RHO and CAR were elevated in 3D compared

to 2D culture. While the future clinical application of

genetically modified cells remains uncertain, this may be

overcome by the direct conversion of hPSCs to

photoreceptors using non-integrative techniques, such as

mRNA transfection (166).
1.8. Co-culture methods

The optic cup stage of retinogenesis involves interactions

between the nascent neural retinal layer and the RPE

that promote their mutual development and maturation in

vivo (167, 168). Co-culture systems partially recapitulate this

by bringing retinal tissue or photoreceptors into proximity

with the RPE, facilitating dynamic signalling between cells

in vitro.

The RPE is a central source of factors involved in the

development, maturation, function and maintenance of

photoreceptors, including IGF-1, FGF, CNTF, TGFα, CNTF,

PEDF, BDNF and HB-EGF (169). While RPE-conditioned

medium can enhance retinal cell differentiation and survival

(170–173), co-culture systems restore cell-to-cell contact to

potentially enhance differentiation and maturation of retinal cells

and the RPE (174–177).
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Various combinations of RPE cells, retinal explant sheets,

neurospheres, isolated cells, stem cell-derived retinal cells, retinal

organoids and retinal cell lines are used in co-culture systems

(178). Additionally, co-culture systems may combine cells from

different species (179).

Basic co-culture systems typically use RPE monolayers on

dishes or transwell systems layered with dissociated retinal cells,

resulting in higher maturation than mono-culture controls (180).

Studies using hPSC-derived RPE/neuroretinal co-cultures

demonstrate enhanced photoreceptor differentiation. hESC-

derived 3D neuroretinal progenitors cultured on primary rabbit

RPE monolayers led to contact-dependent photoreceptor

maturation (181). A proximity effect of RPE and retinal co-

culture was shown using RPE cells and retinal progenitors

derived from hESCs, resulting in photoreceptor differentiation

near the RPE and upregulation of ganglion cell markers on the

opposite side, as seen during retinal development (134).

Similarly, hIPSC-derived retinal progenitor cells seeded on a

scaffold (GCH-521: gelatin, chondroitin sulphate, hyaluronic acid

and laminin 521) in contact with mature human fetal RPE

monolayers developed a laminar structure with immature

photoreceptors and immature inner nuclear layer, as well as

increased RPE maturation (182). Subsequent research by the

same group revealed that this co-culture system led to the

deposition of drusen-like mounds by the RPE, offering a model

of early AMD (183).

The co-culture of retinal organoids on RPE cells enables

interaction between committed photoreceptor precursors rather

than the nascent neural retina and can accelerate the

upregulation of mature photoreceptor markers (184). Achberger

et al. (178) co-cultured retinal organoids and RPE cells using a

microfluidic device, generating mature photoreceptors and

recapitulating native interactions, including outer-segment

phagocytosis (178).

Thus, co-culture systems demonstrate the potential for RPE

cells to improve retinal development and enhance photoreceptor

differentiation by reconstructing the native configuration of the

developing retina in vitro and may also improve therapeutic

efficacy when co-transplanted (135, 185, 186).
2. Challenges for the clinical use of
hPSC-derived photoreceptors

Photoreceptor therapies face several hurdles before reaching

the clinic. One of the most important is the accurate

determination and optimisation of structural integration into

the retina. Even without integration, therapeutic benefit can

occur through indirect mechanisms such as the release of

supportive factors. Since results from preclinical studies

support the clinical translation, the degree, contribution and

duration of such mechanisms to therapeutic outcomes should

be understood so they can potentially be overcome or

exploited (187).
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2.1. Cell tracking

Early studies labelled donor cell nuclei with triturated

thymidine (57) or genetically modified β-galactosidase reporters

(56). However, thymidine labelling does not provide structural

information and can create false positives through host

photoreceptor uptake of labelled DNA from dead donor cells

(188), while β-galactosidase/Lac Z + can be taken up by host

cells. It was, however, recognized that dual cytoplasmic and

nuclear labelling might be required to interpret transplantation

outcomes accurately.

The advent of fluorescent reporters gave rise to new methods

for cell tracing and allowed for cell sorting prior to

transplantation. Swaroop and MacLaren developed the NRL-GFP

model in 2006 for rod transplantation studies (60, 189). Many

groups have created photoreceptor reporter lines or used viral

delivery to identify and isolate photoreceptors by FACS and

follow cell survival and integration in transplanted animals.

Reporter lines have also enabled visualization of photoreceptors

during in vitro differentiation, commonly using CRX, RCVRN,

Opsin (102, 190–197),. Alternatively, cell cultures can be

transduced with viral reporters to label and isolate specific cells

and track them post-transplantation (191, 198–201).

Several groups have transplanted fluorescently labelled

photoreceptors into animal models and reported integration

based on its co-localisation with synaptic markers or presence in

the ONL (99, 153, 194, 198, 200, 202–208). While photoreceptor

integration rates are typically below 1%, some studies have also

shown significant improvements retinal electrophysiology and

animal behaviour (61, 73, 200, 203, 207, 209–211), suggesting the

possibility of therapeutic benefit.
2.2. Cytoplasmic transfer

Prior evidence for photoreceptor integration was called into

question in 2016 and 2017 after a series of studies showed that

male GFP+ photoreceptors transplanted into female DsRed mice

resulted in a high proportion of cells that were GFP+/DsRed+,

suggesting that donor and host photoreceptors shared

cytoplasmic contents (190, 212–214). Further analysis showed

that cytoplasmic exchange was bidirectional between host and

donor cells and mediated through direct contact. However, cell

fusion was ruled out by the absence of binuclear cells or fused

membranes. The uptake of GFP from the extracellular space was

also ruled out by the injection of GFP into the subretinal space

(212). Subsequent studies confirmed that material exchange

between photoreceptors occurred in vitro and in vivo post-

transplantation via photoreceptor nanotubes rather than EV

release (215, 216). Exchanged material between donor and host

photoreceptors included miRNA, mRNA, proteins and

mitochondria.

The Pearson group demonstrated that rates of donor cell

integration and cytoplasmic transfer were affected by donor age
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and the host background using GFP+ mouse cone precursors from

male mice or mESC-derived retinal organoids (217). Male GFP+

cone precursors were transplanted into adult wild-type (WT) and

retinal degenerative backgrounds expressing dsRed. Consistent

with previous studies, they showed that the developmental stage

of donor cells affected integration into wild-type retinas.

Specifically, GFP+ cone precursors harvested at E15 integrated

less effectively than their counterparts from P1, P8 and mESC-

derived ROs. The apparent integration rates of photoreceptors

varied significantly across genetic backgrounds, with very few

GFP+ cells found in the WT retina and almost 10-fold higher

numbers in the NRL-/- retina, compared with other models,

suggesting a role of the host’s outer limiting membrane (OLM)

on transplantation outcomes. Using FACS and fluorescent in situ

hybridization (FISH), they found that up to 99% of GFP+ cells

in the WT retinas were of host origin, compared to

approximately 75% in NRL-/- retinas. Taken together, these

experiments showed that rates of integration and cytoplasmic

exchange can co-occur and are directly affected by the

developmental age of donor cells and the host retinal

environment, particularly the integrity of the OLM. Finally,

cytoplasmic exchange between photoreceptors via nanotubes has

been shown to occur naturally in the adult mouse retina and

may be a natural homeostatic process (215, 218).

Cytoplasmic exchange via nanotubes between transplanted

human and host animals remains underexplored. However,

tunneling nanotubes have been known to mediate transfer

between various human cells in vitro (219). Moreover, such

exchanges have also been observed between transplanted hPSC-

derived MSCs into mouse cells (220). Thus, it is possible that

nanotube-mediated cytoplasmic exchange may also occur in pre-

clinical studies of hPSC-photoreceptor transplantation.

The apparent setback of cytoplasmic exchange may also be an

opportunity to develop new therapies, including mitochondrial

delivery via cell transplantation (221, 222). By mapping the

endogenous networks of mitochondrial transfer within the retina,

stem cell-derived products could be utilized as mitochondrial

delivery vectors to specific retinal cell types. Of particular interest

will be rare diseases caused by mutations in the mitochondrial

genome (mtDNA) (223). Another application is the delivery of

engineered mitochondria (224, 225) to increase the survival of

RPE, photoreceptors and other retinal cells with compromised

capacity for redox homeostasis (226, 227).
2.3. Photoreceptor isolation

Photoreceptor isolation from heterogeneous cultures is

challenging, especially for clinical applications. Currently, two

main approaches are used for photoreceptor isolation: fluorescent

reporter-based fluorescence-activated cell sorting (FACS) or

antibody labelling followed by FACS or magnetic-activated cell

sorting (MACS) (228, 229).

Fluorescent reporters, under photoreceptor-specific gene

regulation, enable isolation from heterogeneous cultures, facilitating

quantification of differentiation outcomes, characterization, animal
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transplantation, real-time survival monitoring, and retinal

integration studies (102, 153, 192, 196, 197, 200, 202). However,

their clinical use is limited due to potential risks from genetic

manipulation and fluorophores’ cytotoxic and immunogenic effects

(230). Hence, it is crucial to isolate photoreceptors based on native

characteristics, like surface markers.

The surface marker CD73 was initially considered a promising

target for photoreceptor isolation (231). CD73+ selection of day

120 ROs resulted in approximately two-fold enrichment of CRX

+/RCVRN+ photoreceptor precursors, capable of producing

cones and rods in vitro and in vivo (229). However, different

studies’ attempts to isolate photoreceptors from ROs

demonstrated vastly different results.

Lakowski et al. (232) found few CD73+ cells in day 100 ROs

and human fetal retinas. Instead, CD73 was highly prominent in

day 200 ROs and human adult retinas. Unexpectedly, CD73+

sorting of day 200 ROs resulted in an approximately six-fold

depletion of CRX+/RCVRN+ photoreceptor precursors from the

total RO cell pool, suggesting that CD73 is a poor marker of

early photoreceptor differentiation dynamic changes in the co-

expression of CD73, CRX and RCVRN during early development

and poor cell type specificity (232). A similar study sorted day

150 ROs using RCVRN-eGFP reporter and found almost no

detectable transcript for NT5E (gene coding for CD73) and poor

CD73 co-localization with eGFP+ cells by immunofluorescence.

Rather, eGFP expression was colocalized with rod and cone

photoreceptor markers and CD133 (196).

In a concerted effort to establish a robust and reliable

photoreceptor marker panel, Welby et al. (192) conducted a high

throughput study of 242 markers on developing human foetal

retinas transduced with a cone-GFP reporter. The screen

identified several candidate markers but none that were unique

to cones. Candidate markers were tested against cone-GFP

transduced ROs (∼day 120), resulting in a sorting strategy

(SSEA1-/CD26+/CD133+/CD147+) with approximately seven-

fold enrichment. However, only 30% ± 15% of the isolated cells

expressed cone markers (192).

These studies underscore the complexity of photoreceptor

isolation using antibody-based methods, especially for clinical

applications. In addition to exploring high-yielding marker

panels, novel purification methods like label-free isolation

techniques may also prove useful (233–235).
2.4. Further considerations for
transplantation

The outer limiting membrane is a physical barrier to

photoreceptor integration—studies using models of photoreceptors

integrated at far higher efficiencies when coupled with OLM

disruption. Pearson et al. (212) showed that approximately 23% of

photoreceptors integrated into such models, compared with

models with an intact OLM. This is consistent with previous

research showing enhanced integration through transient chemical

disruption of the OLM (236) or through genetic disruption (237).

However, the severity of OLM disruption is also linked to disease
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progression, which may hinder integration due to retinal

remodelling, glial scarring, and inflammation (239, 240). In the

context of cell therapy, this would imply an optimal therapeutic

window, or pre-treatment of the retina to limit retinal remodelling

and gliosis.

Strategies for clinical therapies must reflect disease progression

and the state of patient retinas. For instance, the transplantation of

hPSC-RPE cells may be sufficient for AMD patients with viable

cones; however, advanced stages of AMD will likely require co-

transplantation of both hPSC-derived RPE cells and cones prior to

retinal remodelling (238). On the other hand, low photoreceptor

integration rates and widespread degeneration limit the potential

of recovery of full-field vision rescue in RP patients. However, an

appropriate strategy might be to transplant rods around the

macula to protect cones and save central vision. This approach

would not necessarily depend on the integration and maturation

of rod cells for light detection but would instead rely on the

neurotropic effect of rod-derived cone viability factor (RdCVF) to

enhance the survival of cones via increased glucose uptake (10).

Proof of concept for this approach has been demonstrated in a

porcine model of retinitis pigmentosa, where photoreceptor

precursors from pig embryos and hPSCs prevented the loss of

cones up to 1,000 μm from the site of injection and reactivated

dormant cones when performed prior to cone inner segment

disassembly (239). Thus, therapeutic strategies should be designed

in a disease specific manner to achieve the best outcome possible.

The immune privilege of the eye is not absolute in health and is

often compromised in the diseased state. Therefore, one major

hurdle in the utilization of hPSCs for cell therapies is a

requirement for human leukocyte antigen (HLA) matching

between the donor cells and the recipient, as mismatched HLA

can lead to immune rejection and decreased therapeutic efficacy

(240). Using autologous hIPSC lines offer a perfect HLA match

for the patient, however, the current technological limitations,

including the time and effort required to generate and validate

patient-specific hIPSC clones and the need for genetic

modification of disease alleles before differentiation, make this

approach impractical (84, 243).

A truly universal donor stem cell line would allow off-the-shelf

therapies to be available to the entire population. At present, gene

editing is used to suppress surface expression of HLA-I and HLA-II

proteins, while simultaneously preventing attack by Natural Killer

(NK) cells (244). This is primarily achieved in hPSCs by deleting

the genes encoding for Beta-2 Microglobulin (B2M, encoding the

subunit required for surface expression HLA-class I proteins)

and CTIIA, which encodes a transcription factor necessary for

HLA-class II proteins (245). Complimentary or combinatorial

approaches have also been used to prevent NK attack, reduce

immune co-stimulation or enhance tolerance by overexpression

of other molecules like CD47, HLA-E, HLA-G, PD-L1, CTLA4-

Ig (246–248).

Alternatively, HLA homozygote superdonor stem cell banks can

be generated to match the HLA-A, HLA-B, and HLA-DR loci of

populations for transplant compatibility (249). The degree of

population compatibility depends on the genetic diversity within a

given population. For instance, it is estimated that 30–55 HLA
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homozygous lines cover 80% of the Japanese population (250),

while 150 lines would be needed for 93% compatibility in the UK

(251) and 80 lines for 50% compatibility in California (252).

Each approach towards immunocompatible cells is imperfect

and comes with its own compromises. For instance, patient

specific hIPSC lines are a perfect HLA match to the donor but

are expensive and time consuming to create product cells from

the initial biopsy. HLA homozygous lines achieve compatibility

with limited subsets of any given population without immune

evasion or suppression, and thus may may present viral or

cancer antigens in a normally. Finally, universal HLA-edited lines

may be compatible with the entire population, although there are

some safety concerns about compromised antigen presentation

and mimicry of cancer survival strategies.
3. Conclusions

Advancing cell-based therapies to address retinal degenerative

diseases necessitates interdisciplinary progress. Over the past five

decades, significant advancements in areas such as

transplantation, immunology, molecular, cell biology, and

materials science have increased the possibility of cell therapies

to treat retinal degeneration—and perhaps restore vision—within

our lifetimes. This is particularly evident in the rapid progress in

cell production and supportive technologies like GMP facilities

and the establishment of hPSC banks.

However, recent insights into cytoplasmic exchange between

donor and host photoreceptors reveal that genuine integration

rates are notably lower than initially estimated, thereby elevating

the evidential threshold for researchers. Such findings underscore

the need to revisit critical facets of photoreceptor transplantation,

including the optimal differentiation state and delivery modality,

be it through injections of singular cells, retinal sheets, or

concurrent delivery of RPE with retinal cells. Given the

inconsistencies in transplantation outcomes across animal models,

novel models may be needed to assess and predict photoreceptor

integration in the context of human retinal pathology.

Complementary therapeutic strategies, such as neuroprotection,

EV therapies, gene interventions, immune modulation, and

optogenetics may reduce the need for cell replacement, delay

regeneration or extend the optimal window for cell

transplantation. Such approaches may be complementary or

necessary to pre-treat the retina before cell transplantation for

optimized therapeutic outcomes. Such strategies might be

indispensable for pre-treatment before cell transplantation to

maximize therapeutic efficacy. Inevitably, human clinical trials will

play a pivotal role in establishing human specific approaches and

widespread adoption of photoreceptor transplantation therapies.
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