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Thoracic organ transplantation, including lung, heart, and heart-lung transplants
are highly regarded as gold standard treatments for patients suffering from heart
failure or chronic end stage lung conditions. The relatively high prevalence of
conditions necessitating thoracic organ transplants combined with the lack of
available organs has resulted in many either dying or becoming too ill to receive
a transplant while on the waiting list. There is a dire need to increase both the
number of organs available and the utilization of such organs. Improved
preservation techniques beyond static storage have shown great potential to
lengthen the current period of viability of thoracic organs while outside the
body, promising better utilization rates, increased donation distance, and
improved matching of donors to recipients. Ex-situ organ perfusion (ESOP) can
also make some novel therapeutic strategies viable, and the combination of the
ESOP platform with such reconditioning therapies endeavors to better improve
functional preservation of organs in addition to making more organs viable for
transplantation. Given the abundance of clinical and pre-clinical studies
surrounding reconditioning of thoracic organs in combination with ESOP, we
summarize in this review important concepts and research regarding thoracic
organ machine perfusion in combination with reconditioning therapies.
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1. A brief history of thoracic organ
transplantation and current challenges

It wasn’t until the sixties that heart and lung transplantations took

a leap forward into the clinical setting, after decades of animal

research. In 1963, Hardy and Webb undertook the first lung

transplant, whereby a man suffering from left lung bronchial

carcinoma received a replacement. In one of the most publicized

medical events of the 20th century, Christiaan Barnard performed

the world’s first human to human heart transplant in 1967 (1–4).

One year later in 1968, D.A. Cooley performed the first heart-lung

transplant (1, 5, 6). Though the recipients of such transplants

quickly experienced complications, these monumental events

brought to life the past decades of experimentation and

demonstrated the potential of transplantation as a therapeutic

option. The immune system presented itself as a barrier to the

success of these patients. It wasn’t until chemical

immunosuppression, as opposed to sublethal irradiation, emerged as

an approach that would vastly increase the one-year survival of

transplant patients. This technique began with the use of drugs like

6-mercaptopurine and azathioprine plus steroids before cyclosporine

was approved for clinical practice in 1984 (1, 4, 7, 8). Currently, the

International Thoracic Organ Transplant Registry reports that

upwards of 115,000 heart transplants occurred worldwide between

1990 and 2015, and that median survival from most recent data

was almost 15 years following transplant (9). Similarly, lung

transplants have seen a steady increase from roughly 11,000

transplants done between 1992 and 2000 to roughly 34,000 being

done from 2010 to 2018 (10). This data emphasizes how far

thoracic transplantation has come in terms of safety, efficacy, and

acceptance amongst health centers—in fact, heart or lung

transplantation is now considered a “gold standard” of treating late

stage heart failure or terminal respiratory disease respectively (5,

11–13). Nonetheless, a current challenge of thoracic organ

transplantation (and essentially all other transplantable organs), is

reconciling organ demand with the availability of organs (7, 14).

This can be done in a variety of ways: by increasing the utilization

rate of organs procured from standard sources, liberalizing

traditional donation criteria, lengthening the period of viability post

procurement, and reconditioning organs that would otherwise be

discarded. Machine perfusion is a promising technology which

seeks to provide a platform for the dire demand for organs to be

better addressed by solving the limitations of current post-

procurement organ storage standards. This review endeavors to

summarize concepts in machine perfusion for the heart and lung,

with a focus on reconditioning therapies delivered via the platform.
2. High organ demand: factors limiting
the supply of quality organs for
transplant

One such limiting factor is that donor sources of organs

meeting traditional donor criteria are becoming smaller over time

as society and medicine evolve. In the early days of
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transplantation, organs for transplant were procured from

donation after circulatory death (DCD) donors, though donation

after brain death (DBD) quickly overshadowed DCD donation

(4, 13, 15). It has been long appreciated that decreased ischemic

times lead to a lower risk of primary graft dysfunction post

transplant, being demonstrated in recent clinical studies (16–18).

For this reason, as well as management practices which stabilize

inflammatory and hormonal processes before procurement,

organs from DBD donors are regarded as optimal (19, 20).

However, improvements in road and vehicle safety, as well as

improved management of conditions that result in brain death

continue to decrease availability of donors from this source (11,

20). Furthermore, improvements in medicine have also impacted

the DBD pool: the primary cause of brain death has shifted from

traumatic brain injury to brain hypoxia. Median age, and

incidence of co-morbidities have also increased, signalling a

decrease in numbers but also quality of organs from this source

(4, 11, 15). The growing push to widen the donor pool as well as

a growing sentiment that traditional donation criteria restrict

organ supply has prompted a liberalization of traditional donor

criteria, introducing the “marginal” or “extended criteria” donor

(ECD) (14, 21). The International Society for Heart and Lung

Transplant (ISHLT) reported that between 2005 and 2018, an

additional 20,000 lung transplants were undertaken due to this

widening of traditional criteria (22). A study of marginal heart

donation found similarly that marginal donations could yield a

37% increase in transplant volume with similar risk-adjusted

mortality to standard donation (23).

Along the same line, DCD donation has been met with

renewed interest. Despite the increased ischemic burden due to

the mandatory “standoff period”, it has been reported that an

additional 149 suitable heart donors could have been utilized

over 2011–2013 at an institution in the UK if DCD hearts were

considered, an unrealized 30% per year increase in cardiac

transplants at that centre (24). Furthermore, the same group

showed that DCD hearts were non-inferior to DBD hearts based

on 30-day survival (25). Similar findings have been reached with

regards to DCD lung transplants. In a study of DCD lung

transplants, one year survival for 67 DCD lung transplants was

97% vs. 90% for 503 DBD transplants (26). Even if DCD heart

and lung donations may perhaps only yield a short-term solution

to patients on the waiting list, they represent a promising extra

source of donor organs. Transplant centers within North

America have already begun to make use of this extra donor

source: within Canada as of 2021, 26% of locally retrieved organs

were DCD status (27).

A second source of limitation on organ supply is the succession

of pathophysiological insults experienced by such organs which are

associated with donor morbidities, as well as procurement and

storage of the organs. These insults inevitably limit the period

with which the organs can stay viable before they are donated

and threaten primary graft dysfunction, which can necessitate a

replacement for the newly received graft (28). A short viability

time following procurement limits utilization rates, makes highly

matched donation difficult, and restricts donation to local donors

(11). The experienced onslaught begins before the organ is even
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procured. Both DBD, and to a greater degree DCD donation, are

associated with the induction of a catecholamine storm. This has

been associated with acute structural damage to the thoracic

donor organs (13, 29, 30), demonstrated by the induction of

apoptotic and necrotic damage to the myocardium, and

compromise of the endothelium (31, 32). During procurement, all

organs undergo a period of global ischemia followed by ischemia-

reperfusion injury (IRI) upon donation. The cellular

pathophysiology and result of IRI has been well reviewed (13, 28,

33–35). In brief, a lack of oxygen supply to the procured organ

necessitates anaerobic metabolism, quickly depleting the cells of

ATP needed to maintain ionic homeostasis (13, 28). As primary

transport begins to fail, the controlled movement of protons,

sodium, and calcium becomes dysregulated, and this eventually

results in calcium overload in the cytosol. Subsequently, DNA and

protein-damaging reactive oxygen species (ROS) are generated,

and calcium dependent signalling is induced, triggering highly

inflammatory necrosis and apoptosis (33–37). High osmolarity

within the cells can also lead to the formation of edema, which

further impairs function (25, 38). Reperfusion, while the only

antidote for ischemia mediated pathology, only serves to briefly

exacerbate its effects: the washout of formed proton gradients

across the cell membrane during ischemia leads to further

increased calcium intake. Reintroduction of oxygen to the cells,

which have now built-up anaerobic metabolites and depleted their

antioxidants, generates more deleterious ROS (13, 33–35).

Should the supply of organs be maintained or even increased,

the field will need to devise methods to best accommodate the

ever-evolving donor pool and the accompanying pathologies

which threaten organ viability. Machine perfusion, which began

as research tool for physiology, has been adapted as an answer

for the limitations that threaten the supply of donor organs.
3. Approaches to thoracic organ
preservation

3.1. Static cold storage of thoracic organs

The ability to preserve organs for an extended period following

procurement without loss of function represents the holy grail of

organ preservation and has been the subject of many

investigations in recent years. Static cold storage (SCS), a

mainstay of organ transplantation, stores organs in a non-

functioning manner at 4°C. The provision of hypothermia to the

ischemic organ is done to 1) slow rates of metabolism which fuel

processes that degrade vital cellular proteins, and 2) to slow the

lysis of lysosomes containing autolytic enzymes (35). Though

SCS requires minimal effort and is inexpensive, hearts may only

be preserved for a maximum of 6 h before the risk of primary

graft dysfunction becomes intolerable. This is despite the delivery

of a cardioplegic solution that reduces oxygen consumption (11,

15, 39, 40). Similarly, lungs which have been stored in this

manner are used given that the preservation period is no more

than 8 h, though retrospective study has showed no significant

difference in outcomes when preserved by SCS for 12 h (41). The
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slowed onset of anaerobic metabolism via lessened metabolic

requirements of the lungs and lingering oxygen within the alveoli

can perhaps explain the lengthened period of viability in

comparison to the heart during SCS. Given the cold ischaemic

stress that thoracic organs are subject to during SCS, the method

is not suitable for extended criteria nor DCD donations; their

inability to tolerate further damage during cold storage and an

inability to evaluate the functionality of the organ during storage

present further limitations to this method (13, 37).

While SCS is currently the standard of care, machine perfusion

(MP) has been developed to improve on many of its drawbacks,

with considerable success. This is demonstrated by the number

of clinical protocols which now exist for ex-situ lung perfusion,

namely the Toronto, Lund, and Organ Care System (OCS)

protocols (42–44). The OCS also currently represents the only

clinically available method for ex-situ heart perfusion (45).

Preliminary studies by Wicomb et al. and Hassanein et al. in the

80’s and late 90s respectively signaled a growing appreciation

that preservation of the donor heart entailed keeping the organ

supplied with continuous nutritional and ionic support (46–48).

These initial studies, contrasting in their approach, exemplify the

two main frontiers of heart machine perfusion: hypothermic

machine perfusion (HMP), whereby the heart is kept at low

temperatures in a non-working mode (Langendorff perfusion); or

normothermic machine perfusion (NMP), whereby perfusion is

undertaken at room temperature to 37°C in either non-working

or working modes. As with clinical protocols developed for the

lungs, there is a variety of experimental and clinical approaches

that are accompanied by a plethora of formulations of the

perfusion circuit and perfusate composition and come with their

own advantages and disadvantages. For ESHP, HMP was first

investigated as an upgrade to static cold storage, with NMP being

explored later in the history of the field of heart MP.

Contrastingly, all ESLP protocols proceed at normothermia, with

cryopreservation techniques being regarded as a future direction

(37). Though not exhaustive, the benefits and disadvantages of

each of these approaches is discussed in more detail in

subsequent sections.
3.2. Normothermic machine perfusion
(NMP) of the thoracic organs

In comparison to HMP, NMP keeps the heart in a semi-

physiologic state at ∼37°C. The provision of a working mode has

been achieved by our group, enabling functional parameters to

be measured in real time by varying pump flow (49). However,

clinical ESHP protocol such as the OCS protocol perfuse the

heart in a non-working, unloaded state which precludes

functional assessment (45). Normothermia is also the premise of

the Toronto, Lund, and OCS clinical lung perfusion protocols,

which were developed to enable further preservation and

functional assessment of donor lungs (44). Hassanein and

colleagues were among the first groups to publish on ex-situ

heart perfusion at normothermia using a blood-based perfusate,

finding that in comparison to SCS, hearts perfused at
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normothermia benefitted from preserved contractile, metabolic,

and vasomotor function, with decreased edema formation over

12 h (48). Likewise, perfusion of the lungs at normothermia with

an optimally osmotic perfusate can prevent pulmonary edema,

preserve PaO2/FiO2 ratios, and histologic structure in

comparison to SCS (42). Theoretically, NMP enables better

preservation of donor organs than SCS, or HMP as applicable to

ESHP, by subverting the period of cold ischemia which

perpetuates time dependent reperfusion injury and resultant

metabolic dysfunction at low temperatures. This allows better

preservation of organs, especially those from extended criteria or

DCD donors (50).

Beyond the ischemic insults that accompany procurement,

NMP enables a suite of benefits that may be harder to realize on

a HMP platform. NMP is more compatible with blood based

perfusates in comparison to HMP. This compatibility is due to

the fact that in hypothermic settings, blood must be diluted to

prevent coagulopathies resulting from increased viscosity at low

temperatures. Furthermore, the dissociation of oxygen from

hemoglobin is attenuated at low temperatures, becoming

indissociable at 12°C (11, 51). Blood is thought to offer a more

physiologic delivery of oxygen via red blood cells (RBCs) and

has the additional nutritional and oncotic benefits of plasma

components in comparison to synthetic solutions used in the

setting of HMP (11, 52). The Lund and OCS protocols for ESLP

take advantage of this, with RBCs being a component of their

perfusate at 10%–25% hematocrit (37). Near physiological

metabolism at higher temperatures enables the prospect of

dynamic, responsive management via pharmacological agents

and hormonal support, an especially pertinent benefit for

suboptimal donor organs (11, 53). Normothermia, while

complimentary to responsive management, also lends itself to

reconditioning approaches working as intended, given that gene

expression profiles and the functioning of enzymes or proteins

can be altered at cold temperatures. Increased temperatures also

make it a better platform for delivery of novel gene therapies,

whereby efficient viral delivery of the target gene is temperature

dependent (54). Discussed later in this review, multiple groups

have demonstrated that an ex-situ heart perfusion setup at

normothermia is able to facilitate thorough transgene delivery

and expression throughout the heart using a luciferase expression

system utilizing a cytomegalovirus (CMV) promoter (54, 55).

This reconditioning modality has been explored to a greater

extent on the ESLP platform, with studies experimenting with

IL-10 transgene (56–58).

3.2.1. The clinical evidence for normothermic ex-
situ heart perfusion

NMP has been generally regarded as the most optimal

temperature for which out of body preservation can be affected,

with a suite of theoretical benefits compared to other perfusion

temperatures. Practically speaking, the provision of machine

perfusion to the clinical sphere has also transformed transplant

capabilities, with an abundance of clinical trial results published

to demonstrate its practicality in effecting greater organ

utilization. The only currently clinically available normothermic
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ESHP apparatus, the Transmedics Organ Care SystemTM, has

gone through an abundance of clinical study: non-randomized

PROCEED I and PROTECT I trials were conducted in the USA

and Europe respectively comparing NMP using the OCS

platform with traditional SCS, after which the PROCEED II

prospective, multi-center, randomized trial established non-

inferiority of the OCS heart platform with SCS (45, 59). Findings

reported from the PROCEED II trial found that in comparison

to hearts stored using SCS, there was no significant difference in

adverse cardiac related events or 30-day graft survival, though

there was a significantly increased out of body preservation time

(5.4 h on OCS vs. 3.2 h of SCS) (45, 60). While the designation

of study endpoints in this trial precludes insight of the

myocardial protection effected by NMP, it at least demonstrates

its efficacy as a vehicle to effect greater transport distance of

procured hearts while decreasing the period of cold ischemia,

therefore benefitting organ utilization. It was originally thought

that lactate >5 mmol/l by the end of the run could provide

sensitive and specific prediction of outcomes following perfusion

(61), however it was pointed out that a low lactate level does not

necessarily preclude a high risk heart, as demonstrated by a case

study by Stamp and colleagues (62, 63). Experimental study by

our own group has suggested a very strong correlation of

functional parameters with myocardial performance during

NMP, however this would require the OCS to support the

excised heart in a loaded, working mode, which is a current

limitation (11). Regardless, more optimal predictors for graft

performance during clinical machine perfusion are warranted.

The OCS Heart EXPAND trial, which was a single arm study to

assess the use of OCS within ECD heart transplantation also

demonstrated the ability of the OCS to widen the heart donor

pool (64). They reported that an additional 75/93 (81%) ECD

hearts were successfully transplanted, with a mean OCS

perfusion time of 6.35 h and 30-day and 6-month survival rates

at 94.7% and 88% respectively (64). This is very favourable to the

prospect of widening the donor pool, given that most ECD

hearts would not be able to tolerate six hours of SCS. Further to

widening the donor pool, additional study has been conducted

for DCD heart transplantation as well: a randomized controlled

trial comparing DCD transplantation using OCS preservation

with DBD hearts preserved with SCS showed a high utilization

rate (89%), with survival rates for DCD transplantees and grafts

trending higher than control up to 1 year (65). This echoes

earlier studies carried out utilizing normothermic regional

perfusion by Messer and colleagues, which showed that DCD

heart transplants did not significantly differ in terms of survival

at 1 year, length of hospital stay, or adverse events related to the

allograft (66). Therefore, there exists strong evidence to suggest

that NMP is a powerful technique to not only increase the

distance between potential donor-recipient pairs, but also to

unlock extra supply of hearts via ECD or DCD transplants while

retaining comparable patient/graft survival outcomes.

These are not the only benefits to be realized, as the OCS

platform has also proven beneficial to complex congenital

patients and left ventricular assist device (LVAD) recipients.

Patients with multiple VAD implantations or congenital patients
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with complex cardiac anatomy pose a challenge for surgeons to

navigate delicate mediastinal dissection quickly to explant the

recipient’s original heart, therefore increasing the amount of time

the donor organ must wait on ice before implantation. However,

with the OCS providing continuous metabolic support,

performing surgeons can take their time to perform careful

dissection without worrying about deleterious time-related cold

ischemia pathology (67–69).

3.2.2. The clinical evidence for normothermic ex-
vivo lung perfusion

As was demonstrated with the OCS Heart platform, similar

conclusions have been arrived at for NMP of the human lung,

with techniques like the Toronto protocol enabling reliable

preservation for up to 12 h, over the 8 h maximum afforded by

SCS (42). The INSPIRE trial demonstrated similarly that EVLP

of the human lungs is non-inferior and even results in a

seemingly lower amount of primary graft dysfunction (PGD)

grade III after 72 h (70). The NOVEL trial demonstrated that

EVLP can enable safe evaluation of donors, enabling 216 donors

to be evaluated. Over half of these were transplanted, with non-

inferior 1 year survival and indifferent levels of PGD grade III

(71). Along with the single arm EXPAND (72) trial, which

demonstrated the ability of EVLP to support ECD and DCD

donors with a sizeable proportion foregoing PGD grade III, these

trials demonstrate EVLP’s ability to safely assess questionable

allografts before transplantation, which represents a significant

advantage over cold-storage for ECD or DCD grafts.

Incorporation of EVLP into practice has already significantly

impacted the quantity of lung transplants performed at some

institutions: for example, Divithotawela et al. reports a high

conversion rate of EVLP treated donors, and a steady increase in

lung transplants being performed at their program in Toronto

despite a steady number of available donors. In their program

from 2008 to 2017, 230/936 (24.6%) lung transplants were

performed after EVLP with comparable long term outcomes,

despite the EVLP group being more fraught with predictors of

transplant failure (73). This is reinforced by a meta-analysis of

20 published articles including roughly 2,500 lung transplants

done via EVLP which concluded that EVLP increased the

utilization of marginal donors, reduced total ischemia time, and

extended preservation time (74).

3.2.3. The cost effectiveness of NMP and the
impact of machine perfusion on the future of
institution level transplantation process

Two significant downsides of NMP in comparison to SCS is

that NMP is expensive, and technically challenging: per heart

transplant, it has been cited that the OCS heart apparatus costs

anywhere from $38,000-$55,000 USD for single use components,

with a console costing about $275,000 USD (75). Another study

reports a staggering cost of around $80,000 USD per use, not

including the cost of at least five staff members required to work

with the device (68). These numbers are similar in magnitude to

estimated costs per transplant utilizing EVLP, which suggest that

the net cost (including disposable supplies) would be in the
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neighborhood of $20,000–60,000 USD (76). While there exists

very little study on the cost-effectiveness of ESHP, studies of

EVLP have deemed the method cost effective at the institutional

level, facilitating faster progression to transplantation without a

significant increase in cost (76, 77). It is important to note that

these studies focus mainly on device/equipment costs, but do not

account for the high labour costs which are necessitated by the

technical challenges and expertise needed to effectively run these

machines. Demonstrating not only the preservation efficacy, but

also the economic viability of machine perfusion, is an important

step towards widespread clinical implementation.

The prospect of EVLP, and more widely, machine perfusion,

has been proposed to enable a reorganization in the way that

transplants are done currently. Akin to the development of

centralized blood banks whereby quality control and processing

are done before distribution to recipients of transfusions, in the

future, organs could be procured and stored at centralized organ

repair centers. The expertise, diagnostics, and reconditioning

needed to effect reconditioning via machine perfusion would be

conducted at a centralized location before distributing the donor

organs back to hospitals that would transplant the organs into

recipients (78). Thus, the significant amount of inefficiency that

has developed alongside the field of transplantation would be

replaced with a more centralized, orderly, and optimized process

for organ transplants (78).
3.3. Subnormothermic machine perfusion
of the thoracic organs

Subnormothermic machine perfusion (SMP) acts as a middle

ground between NMP and HMP, taking place at ∼20–34°C (79).

Thus, the method takes advantage of decreased metabolic

kinetics to effect tissue preservation, yet in contrast to HMP

allows for optimal blood based perfusates since temperature is

high enough to avoid impaired oxygen dissociation and potential

coagulation (11, 52). Though SMP may superiorly facilitate the

use of blood-based perfusates in comparison to HMP,

temperatures below that of NMP would allow for greater

oxygenation of a crystalloid perfusate, given that gases are more

readily dissolved in colder fluid. This is evidenced in one study

comparing subnormothermic EVLP with normothermic EVLP,

whereby lungs were perfused at 28°C were reported to benefit

from superior oxygenation (80). Thus, this may represent an

opportunity for acellular crystalloid perfusates to be used to

greater effect, subverting the immunogenic, thrombotic, and

hemolytic disadvantages of blood based perfusates (52).

Furthermore, perfusion at a temperature that is closer to

physiology enables more relevant assessments of function,

particularly for the liver or kidneys, which compose the majority

of studies utilizing SMP (79). Machine perfusion at

subnormothermic temperatures is an area of research that is

lacking in the context of the thoracic organs, however some

studies have found promising results for lungs: Arni et al. reports

that in comparison to normothermic EVLP, lungs benefitted

from significantly lowered pro-inflammatory cytokines and
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chemokines (80). Furthermore, the same group reported in a

comparison of different perfusion temperatures that 25°C

perfusion resulted in decreased histological injury compared to

SCS and TNFα signalling, though no difference in PaO2/FiO2

ratios was seen between groups (81). These studies are limited in

that perfusion was limited to 4 h, therefore subnormothermic

EVLP’s ability to effect longer term preservation in relation to

HMP or NMP approaches is still unknown. Further study,

namely during longer time periods up to 12 h, is required to

fully elucidate the benefit of SMP in relation to HMP or NMP

and identify a potential clinical niche for its application in ex-

situ heart or lung perfusion.
3.4. Hypothermic machine perfusion of the
donor heart

Of the thoracic organs, hypothermic machine perfusion (HMP)

has traditionally been used for heart preservation. Generally, HMP

keeps the ex-situ heart in a non-beating state, similar to SCS,

typically at temperatures between 4 and 8°C. HMP quickly

gained appreciation by investigators as an improvement over

SCS, given that the heart could be maintained with more

physiologic delivery of nutritional requirements and washout of

metabolic wastes while still providing myocardial cooling (82).

Wicomb et al. demonstrated the potential for HMP to preserve

donor hearts in the early 1980s. The group showed that pig

hearts retained a level of cardiac output and stroke volume

comparable to those of freshly excised hearts, being significantly

preserved compared to hearts kept on classic SCS after 24 h of

preservation time (47). It was also noted in a canine model that

oxidative stress as measured by 8-oxoG (a marker of ROS

mediated DNA damage) was lessened during HMP (83). Further

investigation showed that in comparison to SCS, HMP was

shown to better preserve endothelial structure as marked by

reduced levels of endothelin-1 (ET-1, a marker of endothelial

damage), as well as a lack of microscopic ultrastructural damage

observed after 4 h of perfusion (82, 84). Better ultrastructural

characteristics were also shown in a comparison of hypothermic

perfusion methods (85). Perfusion of porcine hearts for 4 h

resulted in lower lactate levels, reduced AMP/ATP ratios, and

higher phosphocreatine/creatine ratio in addition to preserved

functional parameters, showing that HMP provides superior

metabolic outcomes to SCS (86).

Despite a plethora of evidence of superiority over SCS, the

uptake of HMP into clinical use was limited for a few reasons.

Formation of edema due to perfusion is a concern of this

technique, given the fact that many studies have reported this

(47, 83, 85, 87). The formation of edema can compromise

myocardial perfusion by increasing coronary vascular resistance,

exposing cardiomyocytes to varying levels of oxygenation (83).

Edema has also been associated with worsened diastolic function

(12). The episode of cold ischemia imposed by HMP may be

unacceptable for some extended criteria or DCD donor organs,

which are increasingly being utilized to meet organ demand

(12, 13). Another concern is that HMP, as with NMP, is a much
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more expensive and technically challenging method with regard

to the mechanics of the circuit and perfusate. This was

exemplified in some studies of HMP. Fitton et al. reported that

only 60% of hearts being perfused by HMP were able to be

successfully weaned from bypass (83). In a study by Wicomb

et al., 6/10 hearts utilizing modified Krebs solution were

functionally nonviable due to a complication with the perfusate,

whereby the cause would be almost impossible to verify

concretely due to the multiplicity of ingredients in the perfusate

(46). Thus, the risk of edema and the introduction of a host of

variables through HMP represented a great risk to reliability not

mirrored by SCS, perhaps adding resistance to clinical uptake. A

final disadvantage of HMP is a lack of continuous functional

evaluation. Though some apparatuses may allow hearts to be

transitioned into working mode for functional evaluation, most

rely on periodic assessment by an intraventricular catheter,

preventing real-time evaluation of the myocardial function. This

is important given the fragile nature of extended criteria and

DCD organs being increasingly utilized to widen the donor pool,

which require close monitoring and management.
3.5. Combining various machine perfusion
temperatures: cyclical preservation
strategies

Whether machine perfusion is conducted at normothermia,

sub-normothermia, or hypothermia, these temperature settings

need not be mutually exclusive. A study by Aadil et al. utilized a

cyclic strategy whereby three periods of 10°C storage were

interspersed with periods of 4 h normothermic EVLP at 37°C

(88). This method was inspired based off of a prior two studies,

one study which showed no significant affect of the lungs was

had by a second period of cold storage following EVLP, and a

second whereby storage at 10°C effected greater mitochondrial

protection perhaps via the conservation of protective metabolites

(89, 90). They show that this cyclic strategy allows for a

preservation of metabolic precursors within the lung tissue, and a

decreased expression of pro-cell death gene expression, which

potentially contributed to preserved PaO2/FiO2 over the course

of preservation (88). The success of this preservation strategy

seems to lie in the “recharge” mechanism, whereby processes that

would disrupt mitochondrial integrity during periods of cold

storage are broken up by periods of EVLP, during which

metabolism is able to proceed. This may replace metabolic

precursors and protective metabolites that are depleted during

cold storage, which in turn averts cellular stress, leading to

reduced cellular inflammation and pro-apoptotic signalling

(88, 90). Further study is required to characterize this

mechanism in more detail; however, the approach unveils an

imaginative strategy to combine the benefits of different

perfusion temperatures while co-opting protective metabolic

processes to effect lengthy preservation. This approach could

additionally be translated and optimized for machine perfusion

of other organs, and different variations of temperature cycles

could be studied to further optimize the method.
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4. A new window for intervention:
reconditioning therapies for the heart
and lung during ex-situ preservation

Ex-situ perfusion of the donor heart or lung represents a period

whereby the lone organ is separated from the rest of the body

tissues, allowing for function improving therapies to be

administered in isolation. Given that extended criteria and DCD

organs are being utilized to a greater extent in an effort to widen

the donor pool, reconditioning therapies will be integral to

improving outcomes in patients who receive these grafts (91, 92).

Furthermore, though perfusion protocols have proven suitable for

ECD and DCD donors, they will not be adequate to fully utilize

the totality of available organs for transplant. Reconditioning

therapy encompasses a wide variety of approaches to preserve or

reinstate the quality of donor organs once procured from the

donor. For example, even the provision of a machine perfusion

apparatus to continuously provide metabolic support could be

considered a reconditioning therapy itself. However, for the

purposes of this review, we will consider studies that utilize

machine perfusion as a platform for the addition of a medicinal

substrate to provide a benefit to the perfused organ (summarized

in Figure 1). Typically, reconditioning therapies within this

working definition fall under one of three approaches, though

the lines may be blurry depending on the study: (1)

pharmacological interventions, (2) mesenchymal stem cell-based

therapy, and (3) genetic and immunomodulatory manipulations.

More recent studies have also focused on the potential of

xenogenic cross-circulation to better preserve or even recondition

donor thoracic organs, with promising results.
4.1. Pharmacological therapies for machine
perfusion of donor heart or lungs

Pharmacological therapies can target a myriad of deleterious

processes or pathophysiologies relating to the transplantation

process. As long as there exists a validated compound for use,

machine perfusion can act as a platform for its delivery to the

organ in isolation. A variety of pharmacological reconditioning

therapies have been used for the lungs during machine perfusion,
FIGURE 1

Summary of reconstitution therapy approaches used in combination
with machine perfusion for either the heart or lung.
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including fibrinolytic treatments, high dose antibiotic therapies,

adenosine receptor agonists and antagonists, and B-adrenergic

agonists, etc. (93). Fibrinolytic treatments work to recondition

the lungs on the premise that cardiac arrest produces clots which

find their way to the microvasculature of the organ, preventing

adequate perfusion (94, 95). One such study hypothesized that

the addition of urokinase, an activator of clot-dissolving plasmin,

would lead to improved graft function. Indeed, this worked as

intended, as function was improved and histologic samples of the

lung parenchyma post-perfusion showed a lack of erythrocyte

accumulation compared to untreated controls (95). Antibiotic

therapies have also been investigated on the ESLP platform, as

they are enhanced by machine perfusion. This is due to high

doses of broad-spectrum antibiotics not being tolerated by the

rest of the body. During isolated machine perfusion of the lungs,

high dose antibiotics can be administered in isolation to lungs

with a high bacterial load, preventing complications that would

arise in off-target tissues (37). Another factor which has been

targeted pharmacologically are adenosine receptors. Adenosine,

detected by the A2A and A2B G-coupled receptors that are

present on a multitude of cells within the lung, is known to

mediate polymorphonuclear cell activation and trafficking to the

lung during states of ischemia-reperfusion injury (93, 96). By

modulating signaling through these receptors using agonists and

antagonists to versions of the adenosine receptor, damaging

inflammation can be attenuated. Another type of compound

studied are B-adrenergic agonists, which act to reduce pulmonary

edema. The mechanism of action depends on the agonist used;

salbutamol, for example, is thought to reduce glucose within the

perfusate which has been correlated to levels of pulmonary

edema (93, 97) (Figures 2, 3).

Pharmacological interventions for reconditioning the heart using a

machine perfusion apparatus have largely focused on the attenuation

of reactive oxygen species generation and targeting processes involved

in concerted cell death (98–100), however more modern approaches

have sought to dampen the immune response as has been a focus
FIGURE 2

Summary of studies utilizing pharmacological based reconstitution
therapies for the heart and lung organized based on approach. Each
reference is listed with information regarding the organ studied ([L] =
lungs, [H] = heart), the specific agent in bold, and a summary of the
key findings.
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FIGURE 3

Continued summary of studies utilizing pharmacological based
reconstitution therapies for the heart and lung organized based on
approach. Each reference is listed with information regarding the
organ studied ([L] = lungs, [H] = heart), the specific agent in bold, and
a summary of the key findings.
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of therapies on the ESLP platform. The idea of pre-conditioning donor

hearts has been well explored, as pre-conditioning agents can easily be

administered before ischemia through the cardioplegia solution. The

lungs on the other hand, necessitate no such vehicle, making pre-

conditioning studies rare. This constitutes a potential area of

research that could be more widely explored in future in the field of

lung preservation. One such study in ESHP used erythropoietin,

glyceryl trinitrate, and zoniporide supplements (newly known to

activate ischemia postconditioning pathways in a model of large

animal DCD donors) in the cardioplegia, finding that the tolerable

warm ischemic time could be increased (101). Likewise, another

cardioprotective strategy utilized an adenosine-lidocaine cardioplegia,

finding that this strategy yielded a significantly increased proportion

of stable post-transplantees after NMP in a swine model (53). Other

approaches to post-conditioning have included steroids

(methylprednisolone) in the perfusate (102), melatonin (an inhibitor

of oxidative stress and inflammatory processes) (103, 104), and

novel approaches, such as mitochondrial transplant (105). Given

that they have found a decrease in caspase-3-like activity,

replacement of mitochondria which have lost their integrity during

ischemia-reperfusion perhaps prevents the induction of intrinsic

signaling for apoptosis and necrosis, ameliorating the detrimental

cell loss that threatens functional decline (100). Interestingly, the

introduction of autologous mitochondria throughout the DCD heart

seemed to not elicit an inflammatory response, and significantly

reduced the size of infarcted tissue (105) (Figures 2, 3).
4.2. Mesenchymal stem cell therapies
for machine perfusion of the donor heart or
lungs

Mesenchymal stem cells (MSCs) are a type of pluripotent cell

which can be found in the bone marrow, adipose tissue, or
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muscle. It can also be derived from the connective tissue of

organs like the liver or heart. They need not be associated with

the physical microenvironment of the bone marrow and thus can

be cultured ex-vivo with the right supplements (106, 107). MSCs

have gained the attention of the machine perfusion community

as therapeutic candidates due to their demonstrated

immunomodulatory and regenerative effects, and their ability to

combat IRI in transplanted organs (91, 92, 108). It was initially

thought that stem cell administration yielded engraftment and

subsequent differentiation into new cells, however MSCs have

been found to primarily elicit their effects in paracrine fashion

(91, 109). Secreted extracellular and micro-vesicles (EVs and

MVs respectively) contain a suite of growth factors, signaling

proteins, and even genetic material (miRNA) which have

profound effects on nearby cells (91, 109–111). Investigations of

the immunomodulatory effects of MSCs have demonstrated their

ability to reduce expression of inflammatory chemokines and

cytokines perhaps via the suppression of NfKB. Furthermore,

MSCs have pleiotropic effects on immune cells, acting to coerce

anti-inflammatory activities in macrophages, dendritic cells, and

regulatory T-cells (T-regs) while also inhibiting inflammatory

signaling through toll-like receptors (TLRs) (91). Micro-RNA

(miRNA) from MSC EVs have also been shown to prevent

mitochondrial fission, preventing caspase mediated apoptosis and

metabolic dysregulation perhaps by inciting anti-oxidant defense

(112, 113). Finally, the secretions of growth factors and survival

signals further dampen apoptosis and induce regenerating

angiogenesis, crucial for the repair of tissue damaged by IRI (92)

(Figure 4).

Some caveats to the increasing evidence of MSCs’ benefits to

machine perfused organs is that administered MSCs suffer from

a limited lifespan. It has been found that 10% of administered

MSCs could be detected after 6 h in an organ-less perfusion

setup (114). With an organ present, blockade in the

microvasculature of the organ to be donated can occur due to

the innate coagulant properties of MSCs (115). A larger dose,

which would be needed to overcome the short lifespan of the

MSCs for longer perfusions or to provide greater ameliorative

effects, can exacerbate this blockage effect (116, 117). Stem cells

are also subject to many variables of which the resultant

heterogeneity can pose issues for their reliability as a therapeutic;

for example, an MSC population can differ depending on donor

sources, the tissues they are harvested from, culturing methods,

imposed storage periods, perfusate composition, etc. (118). This

currently poses a burden for the generalizability of research

results utilizing stem cells and would need optimization should it

be translated to clinical transplantation. Another concern raised

by investigators of stem cells as a reconditioning therapy during

lung perfusion is that the introduction of stem cells can result in

tumor formation (119). This has prompted some investigations

into the use of MSC-MVs, which may perhaps provide the

known paracrine benefits of stem cells without the risk of tumor

formation in the donor organ (109, 119). Studies should

continue to define the mechanisms through which stem cells

benefit perfused organs, such that the secretome of MSCs can be

delivered to the perfusate rather than the cells themselves. This
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would eliminate the issues of lifespan and the potential for

embolism within the microvasculature. For a more detailed

discussion of the research and applicability of MSCs for machine

perfusion of other organs, the reader is directed to the recent

reviews of Li et al. and Bogensperger et al. (91, 92).
FIGURE 4

Summary of studies utilizing stem cell-based reconstitution therapies
for the heart and lung organized by cell type. Each reference is listed
with information regarding the organ studied ([L] = lungs, [H] = heart),
and a summary of the key findings.

FIGURE 5

Summary of studies utilizing genetic manipulation-based reconstitution
therapies for the heart and lung. Each reference is listed with
information regarding the organ studied ([L] = lungs, [H] = heart), the
specific manipulations in bold, and a summary of the key findings.
4.3. Gene therapy, gene modulation, and
immunomodulatory techniques

In contrast to the pleiotropic effects that the administration of

stem cells has on organs during machine perfusion, gene therapies

and gene modulation strategies offer the potential to target a gene

or pathophysiologic process with a high degree of specificity. Gene

modulation techniques can offer a high range of flexibility, given

that specific treatments can be designed to either introduce or

overexpress beneficial genes, or silence genes that perpetuate

pathophysiology related to transplantation. Most studies using this

approach utilize genetic manipulations as a tool to modulate the

immune system. One such example utilized CpG ODN 2395, an

oligomer of phosphorothioate-linked cytosine and guanine

nucleotides. These oligomers work to ameliorate myocardial

inflammation by acting as agonistic ligands for toll-like receptor 9

(TLR-9), immune receptors responsible for detecting damage

associated molecular patterns (DAMPs) which are released during

ischemia related cell damage (120, 121). By pre-treating donors with

CpG ODN, cross-tolerance of resident immune cells to agonistic

DAMPs is induced, attenuating myocardial inflammation during

ischemia. Indeed, they found that pre-treatment was beneficial,

almost doubling the amount of physiologically acceptable DCD

hearts in their model (121). However, this strategy of pre-treating

however may be limited by the ethics of organ donation. Another

example of such immunomodulation is the introduction of IL-10, a

beneficial cytokine that has a range of functions from being an anti-

fibrotic to immunoregulatory factor, via a viral vector to donor

lungs. It is thought that increased levels of IL-10 act to prevent

deleterious inflammatory and fibrotic injury resulting from ischemia

(56–58) (Figure 5).

For ESHP, apoptotic and inflammatory genes were targeted for

silencing. A study found that downregulating complement 3,

caspase 3 and 8, and inflammatory factor kB-p65 had a beneficial

effect on apoptotic, inflammatory, and functional outcomes (122).

This demonstrates that though highly specific, gene modulation

techniques can be used additively to silence many genes involved in

pathophysiologic processes simultaneously. This approach was also

used to target the expression of MHC on lung endothelial cells, the

premise being that silencing MHC expression on endothelial cells

would make the graft “invisible” to the new host’s immune system,

ideally reducing immunogenicity and allowing recipients to forego a

life-long regimen of immunosuppressants (123). This approach is

known as “immunocloaking”. Indeed, it has been demonstrated:

one group introduced silencing gene products of swine MHC

components beta-2 microglobulin (B2m) and swine-leukocyte-

antigen DRa, causing significant downregulation within endothelial

cells. Despite the successful silencing, inflammatory cytokines

seemed to be increased nonetheless, representing some challenges to
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be worked out as a preliminary approach (123). In a landmark

paper recently published by Wang et al. a similar effect has been

achieved by glycolytic enzymes. The enzymes were used to

effectively remove immunogenic ABO blood group antigens to

transform A-type lungs into group O lungs. Despite identical lung

function post-treatment, inflammatory cytokines TNF-α and IFN-γ

were reduced, and the lungs displayed decreased amounts of bound

anti-A antibody suggesting decreased antibody-mediated rejection.

Further study is warranted to deduce whether replacement of the
frontiersin.org

https://doi.org/10.3389/frtra.2023.1060992
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


Wagner et al. 10.3389/frtra.2023.1060992
cleaved antigen over time poses an issue for long term transplantation

success (124). However, it seems a promising way to re-allocate lungs

such that the differential waitlist periods for different ABO types can

be normalized.

While gene modulation techniques, which insofar have focused

on immunomodulation, are an active area of research and

development, many barriers must be overcome before they may be

a practical option for reconditioning. While additive flexibility may

pose a therapeutic benefit, it can also impose a biomanufacturing

burden should the method be adopted as a mainstay treatment

modality. Wei et al. points out that while small amounts of gene

product are needed for testing in small animals, humans would

require substantially larger amounts of gene product for efficacious

suppression or transduction. For efficacious gene transduction,

studies in large animals have required up to 50 billion particles

(54). To get an idea of the cost of such gene therapies, a one-time

gene therapy for spinal muscular atrophy in children, not adults,

was reported to cost $2.125 million (125). However, as techniques

in biomanufacturing improve and the benefits of economies of scale

are capitalized on, this immense cost should decrease over time.

Current studies have been pre-treating the whole animal before

perfusion; should administration occur through the machine

perfusion platform, isolation on the apparatus would significantly

decrease the effective amount of tissue to be transfected. At the

point of this review, data for transgene expression on the machine

perfusion platform has only been made available for relatively short

periods following transplantation. It has been shown that IL-10

transgene remained expressed up to 7 days following

transplantation, though investigation needs to be undertaken to

understand the impact of prolonged gene expression on outcomes

(58). Since cells have intrinsic defense mechanisms for repudiating

foreign genes such as DNAses and DNA methylation, this imposes

a barrier to long term gene modulation (55). Should repeat

administrations of the gene product need to be performed in the

future, induced humoral and cellular immunity to the vehicle will

abrogate the efficiency of gene transduction (55). Not to mention,

the organ would also no longer be isolated on a machine perfusion

apparatus, rendering subsequent attempts to apply the transgene

subject to the inefficiency and lack of specificity afforded by

intravenous delivery.
5. Xenogenic cross-circulation
as an emerging preservation and
reconditioning approach during
ex-situ thoracic organ perfusion

It is well appreciated that donor organs being preserved ex-situ

suffer from steady functional decline, contrasted by the observation

that donor organs, once attached to the circulatory system of a

recipient, last for weeks. The marriage of the perfusatory

apparatus and the circulatory system of a live animal during

cross circulation has gained much attention for its ability to

recondition donor lungs, and has also been investigated in the

heart (126–129). In a landmark study by Hozain et al. human

lungs unsuitable for transplant were reconditioned over 24 h of
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xenogenic cross-circulation, with PaO2/FiO2 ratios increasing a

mean of 135 mmHg to a mean of roughly 320 mmHg, marking a

significant increase in functional recruitment and thus

transplantability (128). They report significantly reduced

inflammatory cytokines within the BAL, decreased tissue

infiltrate of neutrophils, decreased apoptosis score on histology,

and a significant reduction in serum P-selectin (a marker for

endothelial damage). Similarly, hearts subjected to continuous

xenogenic cross-circulation benefitted from increased ex-situ

viability time, reported to be up to 3 days, associated with

significantly decreased edema formation (127). Despite these

fascinating results, either group reports no discrete mechanism

for the observed functional improvements.

There are two hypotheses for the mediated functional benefit to

the donor organ in this setting: one, cross-circulation of the plasma

allows for function-deteriorating molecules to be filtered out as a

consequence of the live animal’s hepatorenal system; and two,

molecules supplied to the plasma by the introduced body system

(eg. nutrients, hormones etc.) maintain vasomotor tone and

endothelial integrity such that function of the donor organ is

better maintained throughout perfusion (126, 127). Given that

physiologic maintenance of organ function in-vivo is the

consequence of homeostatic mechanisms facilitated by organ-

organ interactions, it is a small leap to assume that each of these

hypotheses likely contributes to the observed benefit during ESOP.

Research is ongoing to decipher the molecules being either

subtracted from or added to the perfusate. Hemofiltration shows

much promise as an approach to investigate the subtractive

hypothesis, as important substrates can be monitored over time

within the perfusate and hemofiltrate and associated with

functional benefits, without confounding additions by unknown

sources, as would be the case with cross-circulation. For ESHP,

Johnson et al. reports that in comparison to controls, hearts

subjected to continuous hemofiltration during ESHP showed

decreased edema, reduced histological damage scoring, and a lack

of increase in coronary resistance. It may be that hemofiltration

removed edema-inducing factors which decreased coronary

occlusion, therefore mitigating anaerobic respiration and

myocardial damage over the course of the run (130). The

prospect of hemofiltration in combatting induced edema has also

been studied in the context of the lungs, where hyper

concentration of the perfusate by continuous hemofiltration

without fluid replacement was able to mediate up to a third

reduction in gained lung fluid, though did not affect P/F ratios

(131). Another hypothesis, alluded to by Nilsson and colleagues,

is that hemofiltration may be able to remove free hemoglobin

released by hemolysis during perfusion (131). They point out

that free hemoglobin is able to scavenge nitric oxide, inhibiting

its ability to induce vasodilation; thus, a removal of free

hemoglobin by the hemofilter may explain the lack of increase in

coronary resistance observed during continuous hemofiltration of

donor hearts ex-situ (132, 133). It is also known that free

hemoglobin is a cellular toxin, mediating oxidative stress,

endothelial cell injury, and inflammation in settings of high

hemolysis (134). This sentiment is echoed in cross-circulation of

donor hearts, whereby blood based cross-circulation was reported
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to yield higher injury scores on histology than plasma only cross-

circulation despite little other reported differences (126).

Indeed, the washout of cytokines, and perhaps DAMPs, by either

hemofiltration or xenogenic cross-circulation also appears to be a

valid hypothesis for observed functional benefits. This explanation

seems particularly applicable in the study by Hozain et al. given that

the steady decrease of inflammatory cytokines as measured in

broncheoalveolar lavage (BAL) along with reduced leukocyte infiltrate

could be most associated with the functional benefit to the lung

during cross circulation (128). This is reinforced by other studies,

whereby cytokine adsorbers utilized to sequester the inflammatory

mileu were associated with improved lung function, edema formation,

and reduced incidence of PGD following EVLP (135, 136). It is also

known that DAMPs, also released during IRI, steadily increase over

the course of EVLP, and are associated with increased TNF-α

secretion as a downstream result of DAMP induced signalling (81,

137). It has also shown that M30 and high mobility group box-1

protein (HMGB-1) are significantly increased during EVLP in a

group of lungs with PGD grade III (138). Perhaps the deleterious

effects of these circulating inflammatory mediators can be averted by

their removal during continuous hemofiltration, resulting in better

control of inflammatory processes during ex-situ preservation. A

more detailed biochemical characterization of the metabolic,

inflammatory, and oxidative profile of cross-circulated and

hemofiltered thoracic organs is warranted to identify potential

mediators of these functional changes. Such identified mediators of

functional deterioration during ex-situ perfusion would become

obvious targets to effect longer and higher quality preservation of all

donor organs, perhaps even beyond the lungs or heart.
6. Summary and the future of ex-situ
thoracic organ perfusion

As it stands, the field of transplantation is highly opportunistic,

catering to the availability of donor organs and the significant

restrictions accompanying organ donors that permit

transplantations with good outcome. Ex-situ thoracic organ

perfusion has been demonstrated to not only constitute a

significant advantage over conventional storage methods during

transplant, but also holds great potential to revolutionize the way

that transplants are approached both institutionally and

biomedically. As a way to expand the donor pool, ex-situ organ

perfusion setups are increasingly being utilized as therapeutic

platforms to increase donor organ function by combatting

transplant related pathology, effecting better outcomes and

improved preservation. In the future, pathophysiology mediated

during the transplant process will be able to be completely

reversed by therapeutic options, permitting organs to be not only

reconditioned from inviable to transplantable, but even beyond,
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perhaps acting as a standalone treatment modality. In the

perhaps not so distant future, operating surgeons could isolate

failing organs and utilize a machine perfusion apparatus as a

platform to introduce concentrated therapeutic interventions to

the standalone organ before retransplanting. Such therapeutic

modalities will be critical in the progression of the field towards

the holy grail of indefinite storage. As evidenced by the litany of

studies available testing experimental reconditioning approaches,

much work has been done; however, more work is needed to

understand the biochemical pathology that mediates steady

functional decline of organs on the apparatus, and how

therapeutic interventions can be applied to combat such

pathology. Therefore, the restrictive criteria with which donors

must adhere to in order to donate their organs will be further

liberalized, as deficits in quality can be compensated through

machine perfusion therapy. Combatting the steady functional

decline through established therapeutic interventions will allow

the field to progress towards the holy grail of organ banking. By

way of these investigations, ex-situ organ perfusion symbolizes

the prospect of making transplantation entirely elective, a stark

contrast to the field of transplantation’s current limitations.
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