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Progress in islet
xenotransplantation:
Immunologic barriers, advances
in gene editing, and tolerance
induction strategies for
xenogeneic islets in
pig-to-primate transplantation

Daniel L. Eisenson, Yu Hisadome, Michelle R. Santillan and

Kazuhiko Yamada*

Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States

Islet transplantation has emerged as a curative therapy for diabetes in select

patients but remains rare due to shortage of suitable donor pancreases. Islet

transplantation using porcine islets has long been proposed as a solution to

this organ shortage. There have already been several small clinical trials using

porcine islets in humans, but results have been mixed and further trials limited

by calls for more rigorous pre-clinical data. Recent progress in heart and

kidney xenograft transplant, including three studies of pig-to-human xenograft

transplant, have recaptured popular imagination and renewed interest in

clinical islet xenotransplantation. This review outlines immunologic barriers to

islet transplantation, summarizes current strategies to overcome these barriers

with a particular focus on approaches to induce tolerance, and describes

an innovative strategy for treatment of diabetic nephropathy with composite

islet-kidney transplantation.

KEYWORDS

xenotransplantation, transplantation tolerance, islet transplantation, porcine islet

xenotransplantation, composite islet-kidney

Introduction

Nearly one in ten Americans suffers from diabetes mellitus. Unfortunately, incidence

is increasing in the United States and across the globe (1, 2). Diabetes is a leading

cause of both cardiovascular disease and end stage renal disease (ESRD) (3, 4), and

carries particularly high short-termmortality in patients with hypoglycemic unawareness

(5). Human islet transplantation has emerged as one effective treatment for diabetic

patients with hypoglycemic unawareness (6), but this procedure is rare due, in part, to

a shortage of deceased donor pancreases (7). Xenotransplantation using islets obtained

from pigs may overcome this organ shortage and allow for broader application of

islet transplantation.
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There have already been several small clinical studies using

porcine islets in humans (8–10), but results have beenmixed and

further trials limited bymore recent consensus guidelines calling

for more rigorous pre-clinical data (11). However, recent studies

in pig-to-human heart and kidney xenograft transplantation

have reignited public enthusiasm for xenotransplantation and

may reopen debate about when to initiate clinical trials in

islet xenograft transplantation (12–14). This review describes

the current status of xeno islet transplantation, outlining

immunologic barriers to islet transplantation, current strategies

to overcome these barriers including genetic modification and

novel immunosuppression, and innovative strategies to induce

tolerance in xenotransplantation.

Immunologic barriers to islet
xenotransplantation

Pig islets, like other porcine xenografts, precipitate

vigorous immune responses in humans involving both innate

and adaptive immune components (15). Innate barriers in

pig-to-human transplantation include preformed natural

antibodies to carbohydrate antigens on porcine endothelial

cells, complement and coagulation system dysregulation due to

species incompatibilities, and activation of macrophages and

natural killer cells (16). In auto- and allotransplantation models

of islet transplantation, islets injected into the portal vein trigger

an immediate inflammatory response, known as instant blood-

mediated inflammatory reaction (IBMIR) (17, 18). While the

exact mechanism is unknown, IBMIR is believed to be triggered

by tissue factor expressed on islets, which leads to activation

of innate immune components including complement and

coagulation systems and subsequent loss of islets (19, 20). In

islet xenotransplantation, preformed antibody-binding and

complement/coagulation dysregulation contribute to more

robust IBMIR with greater islet losses (21, 22) as high as 70% in

some studies (23).

The adaptive immune system represents another major

barrier to the long-term viability of xenografts. Although it was

initially believed that species incompatibilities between human

leukocyte antigen (HLA) and swine leukocyte antigen (SLA)

Abbreviations: β4GALNT2, β-1,4-N-acetyl-galactosaminyltransferase;

CMAH, cytidine-monophosphate-N-acetyl-neuraminic acid

hydroxylase; GalTKO, α-1,3 Galactosyl transferase gene knockout;

hCD55, human CD55; hCD59, human CD59; hCD47, human CD47;

HLA, human leukocyte antigen; IBBMTx, intra-bone bone marrow

transplantation; IBMIR, instant blood-mediated inflammatory reaction;

IK, islet-kidney; HSCTx, hematopoietic stem cell transplantation; LFA-1,

lymphocyte function-associated antigen 1; mAb, monoclonal antibody;

Nab, natural antibody; NHP, non-human primate; NK, natural killer;

NYU, New York University; PTFE, PolyTetraFluoroEthylene; SLA, swine

leukocyte antigen; Treg, regulatory T cells.

proteins would inhibit effective T cell activation as was seen

in pig-to-mouse transplant models, in vitro and in vivo studies

have since demonstrated that T cells are directly activated by

SLA-TCR binding (24) and costimulatory interactions are not

limited by the same pig-to-mouse species incompatibilities (25).

T and B cells are also indirectly activated by pig antigens,

leading to recruitment of macrophages and NK cells, and

elicited antibody production (26, 27). Xenogeneic islets may be

particularly vulnerable to T cell mediated rejection as studies

have shown that prolonged survival of porcine xenografts in

athymic mice (28) and prolonged islet survival using T cell

targeted immunosuppression strategies (29). However, as is true

in all pig-to-primate transplants, humoral immunity remains a

critical obstacle to xenograft survival (30).

Strategies to overcome immune
barriers: Encapsulation, genetic
modification, and novel
immunosuppression

Given these greater immunologic hurdles, several strategies

have been developed and studied to prolong xenogeneic islet

survival. These include innovative delivery systems with micro-

andmacro-encapsulation of islets, genetic modification of donor

pigs to reduce immunogenicity, and novel immunosuppression

using costimulatory blockade. Additionally, while portal vein

infusion is the preferred injection site in human islet

transplantation, injection sites are more varied in xenogeneic

islet transplantation studies. There are not enough comparative

studies to draw any conclusions about which injection site is

superior, but we will discuss possible advantages of one site

(renal subcapsular injection) in more detail later in this review

(31, 32).

Innovative delivery systems: Islet
encapsulation

Free islet transplantation is standard of care in

allogeneic islet transplantation, but immunosuppression

is required to achieve modest success in humans—which

is associated with increased risks of infectious disease and

malignancy—and results remain substandard in pig-to-

primate xenotransplantation. Several groups have developed

encapsulation technologies to protect islets from immune

and inflammatory responses while allowing for uptake of

nutrients and release of insulin. Proponents of encapsulation

strategies argue that these technologies may prolong xenograft

survival without immunosuppression. In broad strokes, these

strategies include microencapsulation of islets in alginate

matrix, and macro-encapsulation of immobilized islets in
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bilayered PTFE with a common oxygenation chamber (33).

Encapsulated islets are subsequently transplanted in the

peritoneal cavity. There have been nationally regulated clinical

studies of microencapsulated islets in New Zealand and in

Argentina, which confirmed the safety of this technique but

failed to demonstrate meaningful clinical impact (34, 35).

Macroencapsulation involves utilization of implantable

devices with immobilized islets sharing a common oxygenated

chamber. These technologies are less studied but there are

some encouraging pre-clinical results, including pig-to-primate

study in which microencapsulated islets reversed diabetes for 6

months in diabetic NHPs (36–38).

Genetic modification of pig donors

As mentioned earlier, innate immune barriers in pig-to-

primate transplantation include preformed natural antibodies

(Nabs) to porcine carbohydrate antigens as well as regulatory

protein species incompatibilities that lead to dysregulation

of complement and coagulation systems. In solid organ

xenotransplantation, preformed antibody binding leads to

hyperacute rejection of graft; in free islet xenotransplantation,

preformed antibody binding leads to an amplified IBMIR with

massive islet loss.

The most prevalent natural antibody targets the

carbohydrate component (α-1,3-galactose, or “α-gal”) of a

cell surface glycoprotein produced by an enzyme (α- 1,3-

galactosyltransferase) that is not functional in humans or

old-world primates (39). Accordingly, the creation of α-gal

knockout (GalTKO) pigs represented a major breakthrough

in the field of pig-to-primate transplantation (40–42), with

improved xenograft survival in pig-to-primate heart and kidney

pre-clinical studies (43–45). The impact of using GalTKO

source pigs on xenograft survival in islet transplantation is

less conclusive, which may be a function of changes in α-gal

expression with islet maturation (46): studies using GalTKO

adult pig islets demonstrate no benefit as compared to wild type

adult pig islets (47), whereas studies using GalTKO neonatal

islet cell clusters show increased rates of insulin independence

(48). Other natural antibody targets include Neu5Gc made

by the cytidine monophosphate-N-acetylneuraminic acid

hydroxylase (CMAH) enzyme, and the blood group antigen

SDa, made by β-1,4-N-acetyl-galactosaminyl transferase 2

(β4GALNT2) (49, 50). Cells from triple knockout (Gal, CMAH,

and β4GALNT2 deficient) demonstrate reduced human

antibody binding in vitro, but more studies are needed to

determine whether elimination of all three genes is necessary in

pig-to-primate solid organ and islet transplantation (51, 52).

Species incompatibilities between pig and human

complement regulatory proteins pose another innate immune

barrier to xenograft survival. These incompatibilities and the

ensuing complement dysregulation may be circumvented

through creation of “transgenic” pigs expressing human

complement regulatory proteins, including hCD46, hCD55,

and hCD59. Although expression of individual complement

regulatory transgenes may not significantly reduce incidence

of IBMIR (47), xenograft survival may be improved when

combining carbohydrate antigen gene knockouts with

complement regulatory transgenes: xenogeneic islets from

multiply modified pigs (GalTKO + hCD55 + hCD59 or

GalTKO + hCD39 + hCD46) demonstrated attenuated IBMIR

and reduced islet loss (53, 54), and more recently, improved

islet function and survival with insulin independence >1 year

in a pig-to-baboon pre-clinical model (55). Although creation

of multiply genetically modified pigs was challenging and

prohibitively slow 20 years ago, the recent development of rapid

gene editing tools including CRISPR-Cas9 has transformed

production and availability of these multiply modified animals.

Novel immunosuppression

Advances in genetic engineering have enabled researchers

to overcome key innate immune barriers in pig-to-primate

transplantation, but vigorous B and T cell responses limit the

long-term viability of xenografts. Standard immunosuppression

regimens used in allotransplantation do not work in solid organ

pig-to-primate xenotransplantation (56), as humoral immunity,

which is difficult to control with standard immunosuppression

regimens, plays a dominant role in rejection of xenografts.

The CD40-CD154 pathway influences T cell-dependent

antibody production, and modulation of this costimulatory

interaction seems to be critical for rejection-free survival

in heart and kidney xenograft transplantation (45, 56–58).

Costimulation blockade has also proven important in pig-to-

primate islet transplantation: immunosuppressive regimens

including blockade of CD40-CD154 pathway are associated

with prolonged islet survival and insulin independence in

diabetic recipients (29, 55, 59, 60).

Unfortunately, anti-CD154 may be thrombogenic,

raising concerns about the clinical applicability of these

immunosuppression regimens (11, 61–63). Given these

concerns, other groups have tried to replicate earlier results

with regimens that do not include anti-CD154. Shin et al found

that regimens replacing anti-CD154 with both tacrolimus and

anti-CD40 (210R4) prolonged islet survival, although these

regimens remained inferior to those containing anti-CD154

(64, 65). Higher doses of anti-CD40mAb may be needed

to achieve the same results, as suggested by results from

heart xenotransplantation studies (66). Another group has

demonstrated prolonged islet survival with regimens targeting

lymphocyte function-associated antigen 1 (LFA-1) instead of

costimulation blockade (67). Although encouraging, additional

studies using anti-LFA-1-based immunosuppression regimens

are needed.
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Strategies to overcome immune
barriers: Tolerance induction

Despite remarkable progress with gene editing and new

immunosuppression protocols, these studies suggest that the

adaptive immune responses—particularly antibody-mediated

rejection—continue to limit the long-term viability of these

transplants. Accordingly, strategies to induce tolerance may

be a necessary adjunct to immunosuppression in clinical

xenotransplantation. The tolerance strategies discussed here

include regulatory T cell (Treg) infusions, mixed hematopoietic

cell chimerism, and thymus transplantation.

Induction of tolerance with Tregs in islet
transplantation

Regulatory T cells (Tregs) have been shown to play a key

role in preventing rejection of transplanted allografts (68) via

prevention of effector T cell responses and even inhibition

of innate immune responses (69). This organic peripheral

tolerance, mediated by host Tregs, has given rise to a targeted

strategy to induce tolerance with transfer of in vitro culture

expanded Tregs (70). Recipient culture expanded Tregs, also

called autologous polyclonal Tregs, have been shown to promote

tolerance of co-transplanted islets across allogeneic barriers in

mice and are under active investigation in clinical allogeneic islet

transplant trials in humans (NCT03444064) (71).

Autologous polyclonal Tregs may also promote tolerance

across xenogeneic barriers. Treg infusions have been shown to

delay porcine islet xenograft rejection in mouse models through

control of effector T cell function (72). However, results of large

animal islet xenograft transplantation with autologous Tregs

have been mixed: although some animals have been able to

achieve insulin independence while on immunosuppression,

cessation of immunosuppression leads to complete rejection

of islet grafts (73). To date, pre-clinical and clinical studies

of culture expanded Tregs in allogeneic and xenogeneic islet

transplantation have failed to show durable tolerance and

have failed to consistently achieve insulin independence. Still,

autologous polyclonal Tregs remain attractive to investigators

given their safety profile and promising data from mouse

experiments: one of the only ongoing clinical trials in porcine

islet xenotransplantation uses autologous polyclonal Tregs in

patients with Type 1 DM (NCT03162237) (71).

Mixed hematopoietic cell chimerism

Another strategy to induce donor-specific immunologic

tolerance involves combined organ and hematopoietic stem

cell transplantation (HSCTx) from the same donor. When

HSCTx is performed after non-myeloablative conditioning,

donor hematopoietic cells coexist with recipient cells, resulting

in “mixed” chimerism—in contrast to “full” chimerism, seen

after myeloablative conditioning, where no hematopoietic cells

of recipient origin are present and recipients may be at risk

for immune-incompetence (74). This strategy has been used

to achieve tolerance of allogeneic kidneys in multiple clinical

studies (75–77), and has been shown to promote survival

of allogeneic islets after withdrawal of immunosuppression

in NHP pre-clinical models (78). However, it has proven

more challenging to reproduce these results and establish

mixed chimerism across xenogeneic barriers. Early studies

demonstrated successful tolerance induction in pig-to-mouse

transplantation models (79, 80), but xenogeneic cells are rapidly

eliminated after HSCTx in pig-to-primate transplantation

models (81, 82). There has been recent progress in this area. The

insertion of a human macrophage inhibitory protein, hCD47,

prevents phagocytosis of porcine hematopoietic stem cells and

prolongs both chimerism and donor skin grafts in a pig-to-

baboon skin transplant model after HSCTx (83). Additionally,

injection of porcine hematopoietic stem cells directly into

recipient bone marrow has also been shown to prolong

chimerism and even achieve bone marrow engraftment in

recipient NHPs (Figure 1) (84, 85). Combining these techniques

may have synergistic effects, but chimerism is lost by 60 days

after HSCTx. More work is needed to reliably establish mixed

chimerism across xenogeneic barriers in large animal studies

before this strategy can be applied to islet xenografts.

Vascularized thymic graft transplantation

Although less studied in clinical transplantation,

vascularized thymic graft transplantation has been shown

to be a powerful strategy to induce tolerance in pre-clinical

models. The thymus plays a critical role in deletion of

autoreactive T cells, and so it was hypothesized that thymic

tissue transplantation may promote tolerance via central

deletion of donor-reactive T cells. This theory was validated

in mouse models across allogeneic barriers, and subsequently

validated in pig-to-mouse studies which demonstrated that

transplantation of devascularized porcine thymic tissue enabled

tolerance of porcine skin grafts via central deletion of pig-

reactive T cells (86). However, devascularized thymic tissue

was rapidly rejected in large animal models. To avert this

prompt destruction of implanted thymic tissue before it was

able to participate in tolerance induction, techniques were

developed to transplant vascularized thymic tissue. These

included (1) pre-vascularization of thymic tissue underneath

donor kidney capsule with subsequent transplantation of

composite thymus and kidney (“thymokidney”), and (2)

tracing diminutive thymic vessels to their larger originating

vessels, and transplanting thymic tissue with larger source
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FIGURE 1

Two major strategies for the induction of tolerance of xenograft in the author’s laboratory: (1) Intra-bone bone marrow transplantation followed

by solid organ transplantation, (2) Co-transplantation of vascularized thymic grafts with solid organs.

vessels as a vascularized thymic lobe (Figure 1) (87, 88). Unlike

previous attempts to induce tolerance in large animals using

devascularized thymic tissue, these vascularized thymic grafts

facilitated donor-specific tolerance across allogeneic and

xenogeneic barriers (89–91). When GalTKO pigs first became

available, the addition of vascularized thymic grafts to GalTKO

pig-to-NHP kidney transplant extended kidney xenograft

survival from 29 to 83 days (43). Combining vascularized

thymic graft transplantation with novel immunosuppression

including costimulatory blockade and CTLA4-Ig has yielded

further improvements, with survivals now reliably >6

months using GalTKO pigs without additional genetic

modifications (45).

Vascularized thymic graft co-transplantation has been

demonstrated to be one of the most effective strategies to

induce tolerance and prolong xenograft survival in pre-clinical

pig-to-NHP studies and may be a key component of the

first clinical trials in pig-to-human kidney transplantation.

Indeed, this tolerance strategy was employed in two highly

publicized pig-to-human kidney transplants in brain dead

patients at New York University in 2021 (NYTimes, October

21st, 2021).

One of the challenges with islet transplantation for diabetes

is that the morbidity associated with immunosuppression

already limits the potential recipients: current data only supports

human islet transplantation or pancreas transplantation for

specific indications including hypoglycemic unawareness or

concurrent renal disease. Accordingly, despite encouraging

results with pig-to-NHP vascularized thymic grafts co-

transplanted along with kidneys, thymic graft transplantation

is invasive and may be difficult to justify in conjunction

with porcine islets in patients with diabetes alone. As

we will discuss in the next section, diabetic nephropathy

presents a specific—and growing—indication for a new

technique designed to combine islet-preservation and

tolerance strategies.

Cure for diabetic nephropathy using
composite islet-kidney +

vascularized thymic lobe
transplantation

Diabetes is a major cause of ESRD and is a risk factor for

perioperative mortality and premature graft loss after kidney

transplantation. The senior author of this review developed

a strategy to cure both diabetes and end stage renal disease

with transplantation of porcine composite islet-kidney along

with vascularized thymic graft (Figure 2) (88–90). As detailed

above, xenogeneic islets are susceptible to destruction by

both innate and adaptive mechanisms. This strategy counters

innate immune destruction of islets by circumventing the

typical pathway that triggers IBMIR, which is amplified in

xenogeneic islet transplantation, and takes advantage of the

relative immune privilege of the kidney. Porcine islets are

isolated and pre-vascularized under autologous renal capsule,

with subsequent transplantation of composite islet-kidney (92).

Preclinical allotransplantation studies in pigs and in NHPs

have demonstrated that this procedure preserves islets, likely

by limiting innate immune destruction: diabetes is cured in

animals who undergo composite islet kidney transplantation,

while animals who undergo conventional free islet injection

with the same islet equivalents (IEQs) remain insulin dependent

(93, 94). Combined islet-kidney transplantation for patients

with diabetic nephropathy also allows for co-transplantation of

vascularized thymic grafts, which is one of the most promising

tolerance induction strategies in pig-to-NHP kidney xenograft

transplantation and may effectively counter B and T cell-

mediated islet destruction.

On a practical level, this strategy tilts the risk-benefit calculus

in favor of islet transplantation. Patients receiving kidney graft

have already committed to lifelong immunosuppression, and so

concerns about long-term consequences of immunosuppression
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FIGURE 2

Composite Islet-Kidney preparation and transplantation.

are not relevant when considering co-transplantation of

islets. Similarly, patients receiving kidney graft have already

committed to an operation, and so may receive vascularized

thymic grafts without need for an additional invasive procedure.

Lastly, islets transplanted in islet-kidney grafts are localized and

easy to remove with the kidney graft in the event of rejection,

whereas free islets injected into the portal vein are diffusely

engrafted throughout the liver and not amenable to removal.

Ongoing research will confirm whether these approaches are

specifically effective for pig-to-NHP islet transplantation, but

combined islet-kidney xenograft transplantation for diabetic

nephropathy is a promising strategy for a targeted population.

Conclusion

Clinical islet transplantation is limited by a relatively static

supply of donor pancreases. Porcine islet xenotransplantation

has long been proposed as a solution to this organ shortage,

but enthusiasm for islet xenotransplantation waned in the

face of mixed results from pre-clinical and early clinical

studies. However, progress in the field of kidney and heart

xenotransplantation with the development of rapid genome

editing technologies, novel immunosuppression regimens,

and even tolerance induction strategies has led to significant

improvements in pig-to-NHP heart and kidney graft survival

in recent years. As described in this review, these broader

developments in xenotransplantation have contributed

to specific improvements in pig-to-NHP islet xenograft

transplantation, with recent studies demonstrating reversal

of diabetes with costimulation-based immunosuppression

protocols using islets obtained frommultiply modified pigs (55).

Recent pig-to-human heart and kidney xenograft

transplants have recaptured the popular imagination. As

the transplant community nears clinical trials in pig-to-human

heart and kidney xenograft transplantation (https://www.wsj.

com/articles/fda-said-to-plan-pig-organ-transplant-clinical-

trials-11656622411), there is renewed interest in clinical islet

xenotransplantation. Given recent progress, there may be

adequate pre-clinical efficacy and safety data to initiate select

clinical trials within targeted patient populations, according to

guidelines established by the International Xenotransplantation

Association (11). The results of ongoing pre-clinical studies

focusing on further genetic modifications of donor pigs,

optimizing costimulation blockade without anti-CD154 mAb,

and applying tolerance-inducing strategies to pre-clinical islet

xenotransplantation will provide more clarity on the question

of when islet xenotransplantation will become a viable clinical

solution to diabetes.
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