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Microphysiological systems (MPS) and Organs-on-Chips (OoCs) hold significant
potential for replicating complex human biological processes in vitro. However,
their widespread adoption by industry and regulatory bodies depends on effective
qualification to demonstrate that these models are fit for purpose. Many models
developed in academia are not initially designed with qualification in mind, which
limits their future implementation in end-user settings. Here, we explore to which
extent aspects of qualification can already be performed during early
development stages of MPS and OoCs. Through a case study of our blood-
perfused Vessel-on-Chip model, we emphasize key elements such as defining a
clear context-of-use, establishing relevant readouts, ensuring model robustness,
and addressing inherent limitations. By considering qualification early in
development, researchers can streamline the progression of MPS and OoCs,
facilitating their adoption in biomedical, pharmaceutical, and toxicological
research. In addition, all in vitro methods must be independent of animal-
derived materials to be considered fully fit for purpose. Ultimately, early
qualification efforts can enhance the availability, reliability, and regulatory as
well as ethical acceptance of these emerging New Approach Methodologies.
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Introduction

With the rise and development of microphysiological systems (MPS) and Organs-on-
Chips (OoCs) (Ingber, 2022), end-users and regulators are increasingly interested in these
complex in vitromodels as potential New ApproachMethodologies (NAMs) for toxicology,
safety pharmacology, and efficacy testing (Homan, 2023; Stresser et al., 2024).While there is
a growing number of commercial OoC products on the market (Zhang and Radisic, 2017),
the majority of reported OoC models are still at a low technology readiness level, and are
mostly developed and used in an academic context. Developers of OoC models typically do
not consider standardization and regulation early in their design process, hindering their
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possible future development into products that are qualified for use
in commercial and regulatory contexts (Leung et al., 2022;
Piergiovanni et al., 2024). For both acceptance by end-users and
regulatory bodies, any in vitro model needs to go through a process
of qualification that demonstrates that the model is fit for purpose.

Qualification can be defined as a process that results in the
“. . .conclusion that the results of an assessment using the model or
assay can be relied on to have a specific interpretation and application in
product development and regulatory decision-making.”(FDA, 2017).
This qualification process includes not only the intended application of
the model, but also how the model works, what its readouts tell us, and
how variable and reproducible it is (Figure 1).Without qualification, the
end-user cannot be sure that the obtained data from a model actually is
fit to answer their question of interest. Stakeholders in the field of OoC
identified qualification as an area of high importance for training of
early developers of OoC models (Moruzzi et al., 2023). However, most
qualification steps are typically taken when models near market
implementation or widespread use within a company, and not
during early model development. Most OoCs developed in an
academic setting are not designed with qualification in mind,
causing a large gap between the development and qualification of
models (Ekert et al., 2020).

Why is qualification often overlooked in academic settings? One
aspect may be that most early model developers focus on
biotechnological innovation, using new fabrication methods,
read-outs or complex tissue interactions. Most of this
development is not primarily driven by a clearly defined intended
use of the final model. A second aspect may be related to cost, with
systematic studies of reproducibility and rigorous benchmarking of
a new OoC model requiring resources that are not available in early
research settings. A third aspect may be that early developers lack
the knowledge and training in the key concepts andmethods that are
used in qualification. The central question is whether it is possible
for early MPS and OoC model developers to consider future
qualification, or whether this is fundamentally incompatible with
their approach, setting or resources. In this manuscript, we address
this question by systematically mapping key aspects of qualification
on the work performed over the past years on development of a
blood-perfused Vessel-on-Chip (VoC) model. We address the key

points that regulatory instances provide as advice to NAM
developers, and critically discuss the opportunities and
limitations of making qualification an integral part of early MPS
and OoC model Development.

Blood-perfused Vessel-on-Chip

The blood-perfused VoC model has been applied in multiple
research projects and its fabrication and associated protocols have
been described in detail in previous publications (Jain et al., 2016;
Albers et al., 2019). Briefly, it is based on a polydimethylsiloxane
(PDMS) microfluidic device that contains four rectangular channels
(14 mm × 300 μm × 50 μm; length × width × height), bonded to a
PDMS-coated microscope slide (Figure 2A). Different endothelial cell
sources, like Human umbilical vein endothelial cells (HUVECs) or
Human induced pluripotent stem cell derived endothelial cells (hiPSC-
ECs; LUMCi001-A) (Halaidych et al., 2018) are seeded at high density
(15×106 cells/ml) in two steps, first on the top half and then on the
bottom half, forming a monolayer that covers all sides of the channels
overnight (Figure 2B) (Albers et al., 2019). Thereafter, the endothelium
can be treated with different stimuli, including those that mimic various
disease states. With this approach, it is also possible to titrate
concentrations of different medications, such as monoclonal
antibodies against cytokines, to induce specific effects on the
endothelium.

After treatment of the endothelium, the VoC is perfused with
recalcified human whole blood, to simulate the acute thrombotic
reaction that occurs after endothelial activation. This reaction is
visualized and quantified using fluorescently labelled anti-CD41
antibodies and fibrinogen. After the channels are washed and
fixated, the channels are imaged using a fluorescence microscope to
calculate the area covered by thrombi within the channels (Figure 2C).

Qualification framework

There are many available resources from regulatory bodies,
governmental organizations and research institutes that outline the

FIGURE 1
Timeline of development of new approach methodologies. In early development, models are designed, extensively characterized up to proof-of-
concept, which is used to start the qualification process. Qualification contains different aspects that have to be answered, before the model can be
deemed fit-for-purpose within its context of use. Subsequently, a qualified model is implemented for its context of use, where it sees standardized use
within biomedical, pharmaceutical, or toxicological settings. The central question that we try to answer is to which extent aspects of qualification
can already be considered during early stages of model development.
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overall approach to qualification of NAMs, including MPS and OoC
models (European Medicines Agency, 2016; FDA, 2020; Piergiovanni
et al., 2021; 2024; Baran et al., 2022; Center for Drug Evaluation and
Research, 2024; European Commission, 2024). Overall, the key aspects
of a model that need to be defined and supported by data are the
context-of-use, readouts, robustness, and limitations. All these aspects
will be discussed in more detail in the respective sections below, and are
summarized in Figure 2D. We will also critically consider the work on
early development and application of the VoC model in the context of
these aspects.

Qualification of the blood-perfused Vessel-
on-Chip model

Context of use
The context-of-use (CoU) of a NAM is defined by the FDA as

the manner of application and purpose of an assay, including its

characterizing conditions and parameters (FDA, 2020). It is
important that early on in development, developers already
identify the potential future CoU of their models: what exact
mechanism of action or key event in toxicology or pharmacology
can themodel capture, and what functional requirements are needed
for their model to be used as an assay for such events?

A well-defined CoU explains to future users what the MPS or
OoC model does, and what uses it might have for their questions. A
clearly defined CoU also enables future end-users to identify the
existing models that may be fit for answering their particular
questions of interest, and even allows side-by-side evaluation to
identify the model that best fits their requirements (Homan, 2023).

Development of our VoC model started with no clearly defined
CoU; instead, we were mostly interested in evaluating whether it was
possible to develop anMPS that could capture aspects of thrombosis
in vitro. Proof-of-concept studies were performed in which the VoC
was treated with the inflammatory cytokine tumor necrosis factor
(TNF)-α, and patterns of platelet adhesion upon human whole

FIGURE 2
Overview of addressing aspects of qualification during early model development within the blood-perfused Vessel-on-Chip. (A) Photograph of the
blood-perfused Vessel-on-Chip system, where blood is drawn by a syringe pump through the channels to create a physiological blood flow. (B) Typical
morphological images of the endothelial monolayer in negative (top; EGM-2) and positive (bottom; 10 ng/mL TNF-α) conditions. Positive conditions
show more elongated endothelial cells parallel to the flow direction. Scale bar, 100 µm. (C) Typical fluorescence microscopy images of platelet
aggregation in negative and positive conditions. Positive conditions have elevated deposition of platelets (green) and fibrin (magenta). Scale bar, 100 µm.
(D) Schematic of aspects of qualification that could be answered during early model development of the blood-perfused Vessel-on-Chip. For all criteria
of qualification, certain aspects were found to already be addressed, mostly implicitly, in early development.
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blood perfusion were analysed (Jain et al., 2016). Based on this
proof-of-concept, we engaged in collaborative studies to apply the
model in more defined CoUs, e.g., in tracking thrombosis as an
unwanted side-effect of immunosuppressive monoclonal antibody
drug candidates (Barrile et al., 2018), or novel therapeutic chimeric
antigen receptor (CAR-)T cells. Moreover, in vitro modelling of
microthrombosis in COVID-19 was explored by treating the VoC
with patient plasma, with foreseen future use as a model for
developing therapeutic strategies to counter this key
pathophysiological process. This broad variety of applications
also highlights the typical pragmatic and explorative nature of
early academic research with MPS models.

Overall, the VoC does not have a well-defined CoU as required
in a framework of qualification. Naturally, the VoC has a broad, and
mostly implicit, CoU in that it i) captures key aspects of
microthrombosis (platelet aggregation and fibrin formation), ii)
does so on activated vascular endothelium, iii) also performs in
an acute (hours to days) setting. Only when collaborating with other
partners did we more sharply define respective CoUs on top of the
broad foundational description. For example, in studying
microthrombosis as a side-effect in CAR-T immunotherapy, we
defined the CoU as capturing a ‘Key Event’ of disseminated
intravascular coagulation in the context of cytokine release
syndrome. This ‘Key Event’ was derived from an immune-related
adverse outcome pathway (irAOP), describing the causal chain of
events based on scientific evidence and a consortium of experts.
Similarly, when using the VoC to study microthrombosis after
treatment with patient plasma, the CoU was defined as
microthrombosis due to endothelial activation in response to
systemic inflammation in COVID-19.

Readouts
Each CoU requires a well-defined readout or endpoint that

aligns with the models intended purpose. According to the FDA-
NIH Biomarker working group, an endpoint is “a precisely defined
variable intended to reflect an outcome of interest” (FDA-NIH
Biomarker Working Group, 2021). For qualification of models,
developers can choose between continuous readouts or endpoint
measurements, but eachmust be relevant to the in vivo phenomenon
being modelled. Regulatory bodies require that the connection
between the readout and the mechanism of action is clearly
defined and supported by evidence, as this determines the
model’s CoU and capabilities (European Commission, 2024).

To support model claims, regulatory bodies require results
obtained from positive and negative controls, as well as reference
compounds that demonstrate a direct link between the model and
the in vivo situation. A reference compound is seen as a previously
developed drug used in humans, with well-characterized effects on
the relevant tissues (Leite et al., 2021). While positive and negative
controls routinely verify the overall technical effectiveness of a
model’s readouts, reference compounds are adaptable and may
vary depending on the specific CoU.

In our case study of the VoC model, an endpoint analysis was
defined based on the assumption that the model could capture
microthrombosis. We identified platelet aggregation and fibrin clot
formation as key parameters and used fluorescence microscopy as
the readout method for both. The model uses an anti-CD41 flow
cytometry antibody to stain platelets and fluorescently labelled

fibrinogen to stain fibrin deposits. Both labels are introduced
10 min before blood perfusion, enabling real-time tracking of
platelet aggregation via fluorescence microscopy, or the
measurement of final clot area after flushing excess blood (Manz
et al., 2020). Positive and negative controls were based on earlier
in vitro models, with TNF-α inducing the thrombotic cascade of
endothelial cells, and EGM-2 culture medium serving as the negative
control (Levi et al., 2006).

However, these controls only demonstrate the model’s ability to
recapitulate microthrombosis under certain conditions and may not
be applicable for other stimuli. For example, if a CoU involves
microthrombosis induced by a monoclonal immune therapy, a
reference compound with a similar mechanism of action is
preferred. As an example, monoclonal antibodies against CD154,
known to cause thromboembolic events in halted clinical trials
(Sidiropoulos and Boumpas, 2004), were tested in the VoC
model at relevant concentrations and successfully induced
thrombosis (Barrile et al., 2018). This initial proof-of-concept of
detecting a relevant thrombotic side-effect should be reinforced by
testing other biologicals at drug-relevant concentrations.

Robustness
The robustness of a readout and endpoint must be evaluated

within each CoU. Robustness is typically demonstrated through
analyses of variability and reproducibility, encompassing both intra-
test variability and inter-operator or inter-laboratory variability.
While some variability is expected, the qualification framework
requires that it remains within predictable ranges, based on
identified influencing factors, to ensure reproducibility. To assess
robustness, standardization is critical, often demonstrated through
Standard Operating Procedures (SOPs), quality control of model
components, and dynamic range criteria for positive and
negative controls.

Intra-test variability can arise from factors such as the
(biological) materials used. Since MPS and OoCs are more
biologically complex than standard in vitro models, they may
exhibit greater variability, which must be understood and
managed. Each cell type used in the model must be thoroughly
characterized to ensure it accurately replicates the intended
pathological or toxicological effects. Additionally, both
commercial and in-house cell batches often show some degree of
heterogeneity in cell type or phenotype (Mertz et al., 2018).
Commercially available cells are typically standardized and pre-
characterized, while in-house produced cells must follow Good
Manufacturing Practices (GMP) and established standards, such
as those outlined by the International Society for Stem Cell Research
(ISSCR) (Coecke et al., 2005; Pamies et al., 2022; Ludwig et al., 2023).
These practices ensure high-quality cell sources, which can be
further characterized for specific uses in the model. Regardless of
the source, all cells should be assessed for variability within the
developed model.

In our VoC model, we tested different types of endothelial cell
sources to test the robustness of the model, showing similar patterns
of increased platelet and fibrin deposition if treated with 10 ng/mL
TNF-α. Furthermore, each new source of endothelial cells or freshly
differentiated batches of hiPSC-ECs are tested using the positive and
negative controls, to ensure their susceptibility towards the used
stimuli. Moreover, we observed variability in platelet aggregation
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levels among blood donors, affecting both negative controls (pre-
treatment with EGM-2 medium) and positive controls (pre-
treatment with 10 ng/mL TNF-α). Due to donor service
regulations, we cannot access information such as age or gender,
limiting our ability to predict donor-related variability. To manage
this, we established clear thresholds for platelet aggregation: <2%
culture area covered for negative controls and >4% coverage for
positive controls before including experimental data from a
particular blood donor. Finally, we are drafting an SOP to
standardize the fabrication and readout process of the VoC
model, enabling other researchers to apply the model.

Limitations
Every choice made during the development of a system introduces

limitations inherent to its design. These do not render the product
flawed, but they do affect how data is interpreted and how experiments
are designed for specific CoUs. Such limitations can arise from different
aspects of the model, including constraints related to designs, materials,
biological cells and tissues, or culture parameters.

Our VoC, lined with endothelial cells, focuses on the interaction
between blood and endothelial cells. This differs from other flow-
based systems might target platelet adhesion and fibrin deposition
on collagen-coated surfaces, primarily addressing platelet activation
in response to different treatments (Gandhi et al., 2024).
Additionally, some systems incorporate multiple cell types, while
our model is limited to endothelial cells, meaning it cannot account
for tissue-resident immune cells (Gray and Farber, 2022) or organ-
organ interactions (Jain et al., 2018). Thus, a comparison made with
associated devices can assist in understanding how your developed
model fits its CoU and therefore your system’s limitations. These
limitations are inherent to the model and cannot be easily overcome.

Other design limitations relate to the dimensions and shape of the
channels within the model. Different CoUs may require alternative
channel sizes or the inclusion of hydrogels, which would necessitate
significant redesigns. Furthermore, our VoC faces biological limitations,
such as only being able to assess acute thrombotic effects. The
maximum perfusion time which is currently achievable is
30 minutes. This prevents the study of long-term blood perfusion,
drug pharmacokinetics, or repeated dosing scenarios.

Material-based limitations are also significant, particularly the
absorption of small hydrophobic molecules by PDMS. This
absorption has been extensively characterized and can limit the
model’s accuracy in studies involving such molecules (van Meer
et al., 2017). When materials other than PDMS are used, factors like
oxygen permeability and cell adhesion properties may also impact
cell behaviour (Sønstevold et al., 2023). Researchers should carefully
consider material-specific properties of their model and be aware
how this might limit normal cell behaviour in their model.

Discussion

This case study shows that it is possible to incorporate qualification
within early model development of MPS and OoC models, and
highlights its importance. Certain qualification aspects, particularly
related to readouts and model robustness, are already integrated in
early development of our VoCmodel. This is typical forMPSmodels in
early development towards generating proof of concept, as this often

includes basic characterization. It would be useful to make the
supporting data of these aspects of readouts and reproducibility
explicitly available to end-users and other developers, for example,
by uploading them in open repositories. Currently, early model
developers might publish their gained results and characterizations
split up over different publications, creating a fractured view of the
characterization of the developed model. Developers should also be
aware that characterization of robustness and readouts in their early
model development, will not be enough to drive full qualification of
their model; more data will typically be needed to demonstrate that the
model is fit for a particular purpose.

Another aspect of qualification, namely, the limitations of the
developed MPS or OoC, is typically something of which early model
developers are often well aware. For example, one of the biggest
disadvantages of using biological components is their natural
variability, which is well-known in the field of cell culture.
Particularly, the use of animal-derived products is widely recognized
as a source of variability in MPS and OoC, including the model
discussed here. Transitioning toward fully defined media
compositions will be important for reducing batch-to-batch
variability and enhancing the human relevance of in vitro models
(Weber et al., 2024). For the endothelial cell cultures in our model,
commonly used supplements like heparin, which is animal derived, can
be replaced with biochemically synthesized alternatives (Douaisi et al.,
2024). Similarly, animal-derived antibodies in our workflow can be
substituted, as demonstrated by the use of chemical cell tracker DiOC6

to stain platelets within blood, achieving comparable readouts to
antibody-based approaches (Westein et al., 2012). In addition,
multiple other animal-derived components in our study, like rat tail
collagen, would need to be replaced to obtain a full animal-free model.
The claim of a robust system is only possible when all animal derived
components are replaced, but standardization and optimization of these
animal free methods is needed. As long as MPS and OoCs continue to
rely on animal-derived products, they cannot be considered fully fit for
purpose, limiting their adoption towards reliableNAMs. Still, it is highly
recommended if we as a field want to develop MPS and OoC that
contribute to developing robust, reproducible, and ethically
sustainable models.

While defining a clear CoU is one of the most important aspects
of future qualification of assays based on the model, it is also the
aspect that early model developers typically tend to overlook. When
models are first developed, developers tend to demonstrate broad or
generic functions while more specific CoUs are typically established
later on through dialogue with stakeholders who wish to adapt the
model for their research needs. This transition from a focus on early
proof of concept of a model towards using it in defined CoUs is not a
given, as it requires multi-stakeholder collaboration. Researchers
that do not have access to interaction with future users may focus
repeatedly on innovation up to the point of proof of concept without
defining a specific CoU that will be essential for future qualification.
We advocate for both early model developers and end users to
proactively look for collaborations, as we have noticed that it
strongly facilitates the definition of a meaningful CoU.

Multiple stakeholders, particularly from the pharmaceutical
industry, are advocating for increased qualification of academic
models. The growing demand for qualified MPS and OoC
models is driven by initiatives such as the IQ MPS Consortium
(Tomlinson et al., 2024), which focuses on integrating these systems
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into industry workflows. These consortia not only promoteMPS and
OoC adoption but also generate lists of reference compounds
relevant to various organ systems (Ainslie et al., 2019; Baudy
et al., 2020; Hardwick et al., 2020; Peters et al., 2020; Phillips
et al., 2020; Pointon et al., 2021). Early model developers have
growing demands for these reference lists and can use them to
benchmark their models against existing in vivo data, whether from
animal models or human subjects (Stresser et al., 2024). These
initiatives highlight the strong awareness in the field that
building multi-stakeholder interactions will be essential to
facilitate qualification of MPS and OoC, as well as their
implementation as potential NAMs in regulatory science.

We argue that early model developers should implement our
recommendations for addressing aspects of future qualification early
in their workflow, as it will streamline subsequent stages of
qualification and will facilitate dialogue with future end-users.
Combined with later-stage improvements, like standardization
and cost-efficient manufacturing, this approach could make MPS
and OoC models widely accessible for end-users (Mastrangeli et al.,
2019). For the field as a whole, an early focus on qualification means
that developed MPS or OoC models will transition more often or
more quickly into the phase of commercial assay development.
Overall, qualification is essential for accelerating the implementation
of MPS and OoC systems and should therefore be a key
consideration from the outset of animal-free model development.
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