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Bivalve are exposed to awide range of contaminants, some of whichmay be toxic
to human health. The aim of this study was to detect essential and non-essential
elements such as Na, Ca, Mg, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Pb, Hg, Be and Co in
water, sediments, and Mytilus galloprovincialis and Tapes decussatus from Faro
Lake. It is a lake of marine origin located on the northern coast of Messina (Sicily),
where shellfish farming has been practiced for many years. Metals were analysed
by a single quadrupole inductively coupled plasma mass spectrometer (ICP-MS),
except for Hg, which was quantified using a direct mercury analyser (DMA-80).
The study evaluated the nutritional intake of elements through the ingestion of
clams and mussels and the potential health risks to consumers. The lead levels
found in M. galloprovincialis were below the LOQ, while in T. decussatus the
concentrations were below the limit indicated by European Regulation 915/2023.
Statistical analysis was carried out on M. galloprovincialis and T. decussatus
samples using SPSS 27 and the data showed highly significant differences
between the two species (p < 0.001). Cadmium (Cd) and mercury (Hg)
concentrations were also below the legal limit in all samples analyzed. This
study has shown that clams and mussels are a source of sodium (Na) with a
Recommended Dietary Allowance (RDA) of 36% inM. galloprovincialis and 77% in
T. decussatus. The percentages obtained for calcium (Ca) and magnesium (Mg)
were 17%–19% and 18%–8%, respectively. The RDA of chromium (Cr) was of 191%
for M. galloprovincialis and of 405% for T. decussatus. The Fe percentages were
92% and 169% for M. galloprovincialis and T. decussatus, respectively. The
concentrations of the other metals observed in the two bivalve species of
Lake Faro were generally lower than the Tolerable Weekly Intake (TWI) values
estimated as a risk to human health.
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1 Introduction

Bivalve molluscs represent a valuable source of nutrients for
human health, including proteins, omega-3 fatty acids, vitamins and
metal elements, such as selenium and calcium (Prato et al., 2019;
Durazzo et al., 2022). However, different types of contaminants to
which marine organisms are exposed could cause a risk to
consumers (Álvarez-Muñoz et al., 2016). Essential elements play
a vital role in the functioning of living systems, as they participate as
coenzymes in enzymatic reactions, regulate membrane transport,
and ensure nervous and muscular excitability, among other
functions (Weyh et al., 2022). Indeed, fluctuations in the
concentration of essential elements can lead to changes in
normal physiological processes (Baudry et al., 2020). In the field
of human nutrition, bivalves represent an excellent source of
essential elements, and their determination is therefore useful for
assessing the presence of metal contaminants, which indicate the
toxicity of molluscs and environmental pollution (Kapranov et al.,
2021; Vereycken and Aldridge, 2023). The trace and macro elements
play an important biological activity in animals and in humans;
sodium, together with the potassium, is involved in the synaptic
communication processes and the maintenance of the cellular
electrochemical gradient (Singh et al., 2011; Delaney and Finfer,
2014; Strazzullo and Leclercq, 2014). Calcium is useful for bone
mineralisation, cellular communication, the neuromuscular
junction function, and the cardiovascular system (Vannucci et al.,
2018). Iron is involved in the O2 transport in haemoglobin and in
electron transport in oxidative phosphorylation processes (Paul
et al., 2017). Magnesium and zinc play key roles in the
biosynthesis of fatty acids and proteins, in folding and genome
processes, and in the regulation of immune cells (Thompson, 2022;
Weyh et al., 2022). Copper, as an electron transporter, is involved in
oxidative phosphorylation and connective tissue formation, while
cobalt is essential for the relocation of methyl groups in DNA, as a
component of vitamin B12, and in other roles (Ruiz et al., 2021;
Genchi et al., 2023). Manganese has an antioxidant effect, and is a
cofactor in cellular energy metabolism, in the growth of connective
and skeletal tissues, while molybdenum is involved in the
metabolism of uric acid (Sardesai, 1993; Avila et al., 2013).
Essential and non-essential elements are found in coastal marine
environments as a result of anthropogenic activities that alter the
habitat of aquatic organisms (Kolarova and Napiórkowski, 2021).
The toxicity of these elements depends on their varying degrees of
persistence, bioaccumulation and biodegradation (Khawar et al.,
2024). Contamination of the marine environment is primarily
attributable to toxic elements that are easily absorbed and
bioaccumulated due to their ability to interact with the carbon
chains of organic compounds (Hama Aziz et al., 2023). The
significant increase in consumption of bivalve molluscs in recent
years has led to an increase in request and consequently in their
production, with an increase of up to 18 megaton (Mt) of molluscs,
mostly bivalves, with an income of 30 USD billion (FAO, 2022; FAO,
2024). However, their production is essentially based on the
presence of natural quantities of marine phytoplankton and
debris, transported by currents and tides (Wijsman et al., 2019).
The economic importance of shellfish for people living close to
coastal ecosystems is fundamental, but the economic income is
limited by the resources invested in the production process and by

the pollution of coastal systems (Figueira and Freitas, 2013). The
market value of bivalves is estimated to be approximately 23 billion
dollars per year (2010–2015) (Wijsman et al., 2019). However, the
total value is likely to be considerably high, given the secondary
services associated with their marketing, such as packaging,
transport and prepared products (Economics, 2010). The Mytilus
galloprovincialismussel and Tapes decussatus clam are filter-feeding
organisms, which can be used for biomonitor the aquatic habitat.
The mussel M. galloprovincialis is a sessile bivalve with a wide
distribution in the Mediterranean and Black Sea, primarily in
temperate environments along rocky coastlines or on other
structures that included stilts and submerged jetties (Peycheva
et al., 2023a). Bivalve exhibit a high degree of filtration (2–4 L/h)
and they showed a high degree of adaptability to variations in
temperature and salty water (Vera et al., 2011). The living habitat
of T. decussatus is represented by the Mediterranean Sea, although it
is distributed in the British Isles and along the Atlantic coasts from
Norway to Senegal (Lucrezia et al., 2011). These clams are benthic
organisms with lower filtration rates (1 L/h) than mussels (Vera
et al., 2011). They live semi-buried in the sand or muddy seabed of
tidal flats and shallow coastal areas, including coastal lakes (Chı´
charo and Chı´charo, 2001). Both species hold commercial
relevance, due to their consumption on a large scale not only by
the local population, but also through the international export in
other countries (Dellali et al., 2021). Trace and macro elements,
found in the marine environment as natural constituents, can be
classified into essential metals such as copper, zinc, iron and
manganese, probably essential metals like nickel and cobalt and
toxic metals as arsenic, cadmium, lead and mercury (Muñoz-Olivas
and Cámara, 2001). At low levels, essential elements are useful for
enzyme activities and many biological processes, but are toxic when
they are taken in excess, for kidney, liver, nervous system and lungs
(Araújo and Cedeño-Macias, 2016; Dadar et al., 2016). This can
occur through the ingestion of foodstuffs capable of
biomagnification along the trophic chain, which involves first, the
smallest organisms (such as filter-feeding molluscs) and then the
larger ones, allowing the contaminants to become a health risk for
consumers (Baeyens et al., 2005; Türkmen et al., 2008). Bivalve
molluscs together with other organisms can constitute an efficient
means of accumulating toxic contaminants released into the
surrounding environment such as roads, cultivated fields,
wastewater management facilities, workshops and shipyards, as
well as fish farms (Mesquita et al., 2023). The exposure of
organisms mainly involves multiple indirect contaminations
related to interactions between environmental matrices, which
cause the accumulation of toxic substances primarily in
organisms at the base of the trophic chain and especially in
marine habitats (Dellali et al., 2022). The occurrence of
bioaccumulation and multiple exposure phenomena, along the
trophic chain is a matter of interest to the European Community,
which is committed to protect the public health by ensuring the food
safety for consumers, with specific attention to children, elderly and
ills. The European Union, with the enforcement of EC Regulation
915/2023, has set specific maximum limits on the concentration of
several animal and plant food contaminants, including some metals
(EC, 2023a).

The aim of this study was to determine Na, Ca, Mg, Cr, Mn, Fe,
Ni, Cu, Zn, As, Cd, Pb, Hg, Be and Co concentrations in water,
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sediments and samples of M. galloprovincialis and T. decussatus
from Lake Faro of Messina, Sicily. It is a natural water basin used for
shellfish farming. In addition, in this research the nutritional intake
through the ingestion of M. galloprovincialis and T. decussatus was
evaluated, as the health risk for consumers. Furthermore, the
essential element concentrations (Na, Ca, Mg, Cr, Mn, Fe, Ni, Cu
and Zn) were compared with the Recommended Dietary Allowance
(RDA) and the Adequate Intake (AI) values. The exposure to non-
essential elements (As, Cd, Pb and Hg) was assessed by comparing
the toxicity of the elements with the TolerableWeekly Intake (TWI),
Tolerable Daily Intake (TDI) or the lower confidence limit of the
benchmark dose (BMDL01).

2 Materials and methods

2.1 Samples collection

During September 2023, 160 specimens of Mytilus
galloprovincialis (80) and T. decussatus (80) were collected from
various Lake Faro (ME) sampling sites, forming a single sample site.
It is a lake of marine origin, located on the northern coast of Messina
(Sicily). Its depth, about 30 m, makes it the deepest of both coastal
and internal lakes in Italy. It communicates with the Tyrrhenian Sea
and the Strait of Messina. The physiochemical parameters of the
water were assessed using a pH meter. Samples of surface water and
sediment were collected, placed in plastic bottles and refrigerated at
4°C in the laboratory. The WTW Multi 340i/SET multi-parameter
sensor was utilized to measure temperature, pH, dissolved oxygen,
and conductivity values in field and laboratory settings. Ammonia,
nitrites, phosphate, and orthophosphate were also measured (data
not showed). Samples taken straight from the lake were cooled at 4°C
for 24 h prior to analysis.

2.2 Mineralization

Mineralization of soft tissues was carried out according to
Bruno, et al. (2024) and 0.5 g of mussel sample was weighed in
PTFE vessels. Each sample was digested in triplicate using a closed-
vessel microwave digestion system Ethos 1 (Milestone, Bergamo,
Italy). To each sample, 1 mL of internal Re standard at a
concentration of 0.5 mg/L, 8 mL of HNO3 (65% volume/
volume), and 2 mL of H2O2 (30% volume/volume) were added
(Bruno et al., 2024). Table 1 shows the instrumental parameters and
settings. Each sample was made up to volume using 25 mL of
ultrapure water as a blank after digestion and cooling. All samples
were filtered with 0.45 µm PTFE filters prior to ICP-MS analysis. For
digestion and subsequent dilution of tissues samples, the following

reagents were purchased from Fluka (Milan, Italy): hydrogen
peroxide (H2O2, 30% v/v), nitric acid (HNO3, 65% v/v) and
ultrapure water (Bruno et al., 2024).

2.3 ICP-MS and minerals detection

The commercial standard solution of Re (internal standard) and
the standards of the elements utilized for the calibration curves were
obtained from Supelco (Bellefonte, PA, United States). Thermo
Scientific ICP-MS iCAP-Q was used to determine Na, Ca, Mg,
Cr, Mn, Fe, Ni, Be and Co, and all the samples were analysed three
times under the same conditions (Bruno et al., 2024). The following
operating conditions were used to analyse all samples: RF power,
1,550 W; plasma gas flow rate (Ar), 15 L/min; auxiliary gas flow rate
(Ar), 0.9 L/min; carrier gas flow rate (Ar), 1.2 L/min; collision gas
flow rate (He) flow rate, 4.8 mL/min; spray chamber temperature,
2.8°C; sample depth and sample introduction flow rate, 5 mm and
0.94 mL/min. Integration times were 0.6 s/point for As and 0.2 s/
point for the other elements. Data acquisition was performed using
Thermo Scientific QtegraTM Intelligent Scientific Data System
software, Waltham, United States. For quantitative analysis, a
seven-point calibration curve with internal standard
normalization was also constructed.

2.4 Statistical analysis

Statistical analysis was carried out using SPSS 27.1 (IBM
Company, Novegro-Tregarezzo, Italy). Shapiro-Wilk normality
was performed. Results were reported as mean ± standard
deviation (SD). Differences between species were assessed using
t-test for indipendent data. Data was corrected automatically by
SPSS with the base 10 logarithm. Statistical significance was set
at p < 0.05.

3 Results and discussion

3.1 Method validation

The ICP-MS and DMA-80 procedures were carried out by
Eurachem requirements (Bertil et al., 2014). The methods were
validated in terms of linearity (R2), sensitivity (LODs and LOQs),
and accuracy (% of recovery), as shown in Table 2. Six standard
solutions were injected eight times each to check linearity.
Calibration curves were generated for each analyte. All
concentration ranges exhibited good linearity, with R2 values
consistently equal to or higher than 0.999. Experimental
calculations yielded the following results for the limits of
detection (LODs) and limits of quantification (LOQs): 3.4 s/S
and 9.90 s/S, respectively (s is the standard deviation of the
response of ten blanks and S is the slope of the calibration
curve). The LOD and LOQ ranges were from 0.001 to 1.314 mg/
Kg and from 0.003 to 4.336 mg/Kg respectively. Accuracy was
assessed using the certified reference material, ERM-CE278k-
mussel tissue. This parameter was evaluated by comparing six
certified matrix determinations and the result was a percentage

TABLE 1 Microwave oven operative settings ingestion.

Step Time Temperature Microwave power

1 18 min 0°C–175°C 1100 W

2 18 min 175°C 1100 W

3 22 min Cooling

Frontiers in Toxicology frontiersin.org03

Bruno et al. 10.3389/ftox.2024.1494977

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2024.1494977


of recovery between the true value reported in the certified reference
materials and the value found experimentally. The matrix was
spiked with a known quantity of analyte and then examined if

the element was not verified in the reference material.
Linearity, sensitivity, accuracy, and precision were suitable for
this analysis.

TABLE 2 Analytical parameters of the method.

Element R2 LOD (mg/Kg) LOQ (mg/Kg) ERM-CE278k-mussel tissue

Experimental value (mg/Kg) Certified value (mg/Kg) Recovery (%)

Ca 0.999 0.016 0.053 1817.8 1830 99.33

Be 0.999 0.001 0.003 1.934 2.0a 96.70

Ni 0.999 0.004 0.013 0.688 0.69 99.71

Cr 0.999 0.001 0.003 0.71 0.73 97.26

Fe 0.999 0.011 0.036 158.3 161 98.32

Mg 0.999 0.028 0.092 1,461 1,510 96.76

Mn 0.999 0.011 0.036 4.82 4.88 98.77

Na 0.999 1.314 4.336 13,157 13,900 94.66

Co 0.999 1.140 3.762 0.20 0.21 95.24

Cu 0.999 0.013 0.043 5.95 5.98 99.50

As 0.999 0.001 0.003 6.5 6.7 97.02

Cd 0.999 0.001 0.003 0.339 0.336 100.89

Pb 0.999 0.001 0.003 2.21 2.18 101.38

Zn 0.999 0.033 0.109 68.95 71.00 97.11

Hg 0.999 0.001 0.003 0.068 0.071 95.78

aAnalyte not present in the certified matrix.

TABLE 3 Elements in mussel M. galloprovincialis, in clam T. decussatus, in water and sediment samples from Faro Lake.

Element M. galloprovincialis (mg/Kg) T. decussatus (mg/Kg) Water (mg/L) Sediment (mg/Kg)

Na 3,564 ± 303 7,715 ± 59a 2.6 ± 0.1 9,532 ± 441

Ca 903 ± 0.4 1,005 ± 1a 1,022 ± 59 8,109 ± 37

Mg 443 ± 1.3a 203 ± 7 10.2 ± 0.7 9,612 ± 78

Cr 0.51 ± 0.14 1.1 ± 0.2a <LOQ 36.39 ± 0.34

Mn 3.15 ± 0.07 7.1 ± 0.5a 0.11 ± 0.05 605 ± 0.54

Fe 86.2 ± 0.3 157.9 ± 0.5a 2.57 ± 0.08 10,827 ± 782

Ni 0.65 ± 0.08 1.77 ± 0.09a 0.22 ± 0.07 76.17 ± 0.08

Cu 3.1 ± 0.2a 1.30 ± 0.12 <LOQ 18.30 ± 0.3

Zn 16.5 ± 0.3a 4.22 ± 0.18 0.22 ± 0.02 85.20 ± 0.5

As <LOQ 0.08 ± 0.01a <LOQ 2.90 ± 0.32

Cd 0.05 ± 0.01 0.08 ± 0.02a 0.18 ± 0.04 0.39 ± 0.05

Pb <LOQ 0.02 ± 0.01a <LOQ 7.10 ± 0.09

Hg 0.01 ± 0.00 0.01 ± 0.00 <LOQ 0.03 ± 0.00

Be <LOQ <LOQ <LOQ 1.27 ± 0.14

Co 0.11 ± 0.03 0.90 ± 0.01a 0.31 ± 0.06 5.77 ± 0.35

aDifferences between M. galloprovincialis and T. decussatus (p < 0.001). Data are expressed as mean ± standard deviation.
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3.2 Essential and non-essential elements

The possible risks to human health from the consumption of
these species may be due to several factors that influence the
amounts of elements in mussels and clams, including diet, season
and the possible environmental pollution (Mititelu et al., 2022). The
elements found inM. galloprovincialis and T. decussatus samples are
reported in Table 3.

3.2.1 Trace elements in Bivalve species
The mean concentrations (mg/Kg) and standard deviations of

the elements of the two bivalve species from Lake Faro are shown in
Table 3. Concentrations of Mn, Cr and Ni were higher in T.
decussatus than in M. galloprovincialis, while Fe was higher in M.
galloprovincialis than in T. decussatus.

Nickel is normally occurred at very low levels in the
environment, but bivalves have a high filtration capacity, which
lead to the accumulation of this and other different pollutants in the
molluscs. This particular feature of filter-feeding organisms allows
them to be used as “bioindicators” of the aquatic environment. High
levels of Ni can cause skin allergies, chronic bronchitis, reduced lung
function, and cancer of the lung and nasal sinuses (Hédouin et al.,
2007). Nickel concentrations found in M. galloprovincialis (0.65 ±
0.08 mg/Kg) were lower than in T. decussatus (1.77 ± 0.09 mg/Kg).
As reported in the literature, nickel concentrations ranged from
0.13 to 0.43 mg/Kg ww inM. galloprovincialis from the Italian coast
and the western Adriatic Sea, but in a recent study conducted in the
Black Sea (Bulgaria) by Peycheva et al. (2023b), nickel
concentrations were up to 0.04–0.21 mg/Kg ww (Desideri et al.,
2010). Chromium, manganese, and iron are essential elements for
humans and most of them occur naturally in many food sources.
The concentration of Cr was almost twice as high in clams than in
mussels, with a Cr content of 0.51 ± 0.14 mg/Kg in M.
galloprovincialis and 1.08 ± 0.17 mg/Kg in T. decussatus.
Moreover, our results showed similar concentrations to those
reported in the literature (Bilgin and Uluturhan-Suzer, 2017).

Manganese is well recognized as a necessary element for both
plants and animals, so an inadequate amount of Mn can cause major
damage to the skeletal and reproductive systems (Sivaperumal et al.,
2007). The Mn concentrations found inM. galloprovincialis were of
3.15 ± 0.07 mg/Kg ww and in T. decussatus of 7.08 ± 0.50 mg/Kg ww.
These values are in line with those reported in the literature for wild
species ofM. galloprovincialis from the Sea of Marmara (Bosporus),
with levels ranging from 0.865 to 11.306 mg/Kg ww and from 1.33 to
3.85 mg/Kg ww for M. galloprovincialis in three locations of Boka
Kotorska in 2015 (Özden et al., 2010; Perošević et al., 2018).

The iron levels detected in bivalve species were of 86.22 ±
0.27 mg/Kg for M. galloprovincialis and 157.91 ± 0.50 mg/Kg for
T. decussatus. According to European legislation, there is no
maximum level for Fe in bivalve (EC, 2023b), but the US Food
and Drug Administration has set 80 mg/Kg ww as a limit (FDA,
2012) and a safe daily dose of 40 mg of Fe has been established for
the adults, including pregnant or lactating women (EFSA et al.,
2022). The iron values found in our bivalve samples may be due to
fertilizers and pesticides used in the surrounding agricultural areas,
but also to contamination of raw materials in the marine
environment, such as bins and metal cases, poor handling
practices in waste disposal, or boat maintenance procedures

(Mehrandish et al., 2019; Byrnes and Dunn, 2020). Beryllium
concentrations were below the LOQ. Co concentrations were
found to be 0.11 ± 0.03 mg/Kg for M. galloprovincialis and 0.9 ±
0.01 mg/Kg for T. decussatus. These Co values are in accordance
with those reported in the literature, with values ranging from
0.038 to 0.084 mg/Kg for M. galloprovincialis samples in the
same research area (Meloni et al., 2022).

The Zn content was similar between the two species analysed
with values of 16.52 ± 0.30 and 14.22 ± 0.18 mg/Kg in M.
galloprovincialis and T. decussatus, respectively. Our results are
higher than those reported by Ozden, et al. (2010) in M.
galloprovincialis.

The amount of Zn undoubtedly comes from inappropriate
incineration of municipal solid waste, and most of the Zn in the
soil remains bound to solid particles. Zn dispersed in the air is
absorbed by the soil and transported to large reservoirs where it
settles to the bottom (Wei et al., 2023). Zn is then taken up by
bivalve organisms.

The analysis of Cu in M. galloprovincialis reported a higher
concentration than in T. decussatuswith values of 3.11 ± 0.15 mg/Kg
and 1.30 ± 0.12 mg/Kg respectively, due to the higher volumes of
water filtered by the mussels. The copper levels are in line with those
reported by Di Bella et al. (2013) in samples of Cerastoderma edule
glaucum and Venerupis aurea laeta from Lake Ganzirri
(Messina, Italy).

TheM. galloprovincialis showed a concentration of As below the
limit of quantification, whereas the T. decussatus reported a level of
0.08 ± 0.01 mg/Kg. The arsenic contents in the samples were in
agreement with those found by Licata et al. (2004) for M.
galloprovincialis from Faro Lake. Furthermore, the data obtained
showed a higher concentration of As in the sediment than in the
water, because there is a possible uptake in the benthic environment
(Fendorf et al., 2008; Litzow, 2008). The bioavailability of As
depends on the pH of the marine environment, as demonstrated
by Fendorf et al. (2008) and Velez et al. (2016). However, the As
concentrations found in mussel and clam samples were lower than
those reported in the literature (Meloni et al., 2022).

Cadmium concentrations in M. galloprovincialis and T.
decussatus were slightly lower (0.05 ± 0.01 and 0.08 ± 0.02 mg/
Kg, respectively) than those found by Di Bella et al. (2010) in two
different species of clams (V. aurea laeta and C. edule/glaucum)
collected from Ganzirri Lake (Messina), with a range between
0.011 ± 0.001 and 0.044 ± 0.008 mg/Kg, respectively.

The lead levels found in M. galloprovincialis were below the
LOQ, while in T. decussatus the concentrations were 0.02 ± 0.01 mg/
Kg, slightly higher than in themussel samples. This may be related to
the living conditions of the bivalve T. decussatus, which lives in
contact with the benthic sediments, compared to M.
galloprovincialis, which is attached to rocks and reefs.
Furthermore, Pb concentrations in the sediment were higher
(7.10 ± 0.09 mg/Kg) than those found in the water, where the
levels were below the limit of quantification value. As reported by
Culotta et al. (2008), Pb content in T. decussatus samples from
Ganzirri Lake in Messina (Italy) was higher than those described in
our study (Culotta et al., 2008).

The mercury concentrations were like those showed in the
literature by Castello et al. (2019) in M. galloprovincialis samples
from different Sicily coasts. The results reported that the Hg
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concentrations in M. galloprovincialis and T. decussatus were
equivalent to each other and, as reported in EC Regulation 915/
2023, below the MRLs (EC, 2023b).

3.2.2 Macro elements
Table 3 shows the concentrations of the elements analysed.

Sodium and calcium were the most abundant elements in all
samples. Sodium is usually one of the most abundant macro-
elements in seafood, such as bivalves from salt or fresh water, as
reported in the literature (Moniruzzaman et al., 2021). M.
galloprovincialis showed lower Na levels (3,564.263 ± 302.96 mg/
Kg ww) than to T. decussatus (7,715.37 ± 58.82 mg/Kg ww). Calcium
concentrations were 903.27 ± 0.44 mg/Kg inM. galloprovincialis and
1,005.28 ± 1.02 mg/Kg in T. decussatus. A different trend was
observed for Mg concentrations. In fact, the highest levels of this
element were found in M. galloprovincialis (443.28 ± 1.31 mg/Kg
ww), whereas the lowest in T. decussatus (203.17 ± 7.42 mg/Kg).
However, the concentration range for these elements in the studied
species was within the values reported by several authors (Özden
et al., 2010; Nekhoroshkov et al., 2021).

3.2.3 Statistics data
The levels of Fe, Na, Ca, As, Cd, Co, Cr, Mn, Ni, Pb were higher

in T. decussatus than in M. galloprovincialis. These concentrations
showed significant differences between the two analysed species (p <
0.001). Mg, Cu and Zn concentrations were higher in M.
galloprovincialis than in T. decussatus (p < 0.001). No significant
difference was found between the Hg concentrations in T. decussatus
andM. galloprovincialis (p > 0.05). No concentrations of As and Pb
were found in M. galloprovincialis (<LOQ), while Be levels were
below LOQ in both species (Table 3).

3.2.4 Human health risk assessment of mussels/
clams consumption

For the European Food Safety Authority and the European
Commission, the recommended daily allowances (RDAs) for Ca, Cr,
Cu, Fe, Na, Mg, Mn and Zn are 800, 0.040, 1, 14, 1,500, 375, 2 and
10 mg/day, respectively (EFSA, 2005; ECC, 2008). The TDI and
BMDL01 reference values are used for toxic and potentially toxic
elements: As at 0.3 μg/Kg b.w./day (EFSA, 2009), Hg at 4 μg/Kg b.w./
day (EFSA, 2012), Pb at 0.5 μg/Kg b.w./day (EFSA, 2010) and TWI
reference values for Cd at 2.5 μg/Kg b.w./week (Arcella et al., 2012).
An opinion on the public health risk of Ni in food and drinking
water was adopted by the EFSA’s Scientific Panel on Contaminants
in the Food Chain (CONTAM), which established a tolerable daily
intake (TDI) of 2.8 μg/Kg Ni/Kg b.w per day (0.0028 mg/Kg Ni/Kg
b.w or 0.0196mg/Kg Ni/Kg b.w tolerable weekly intake) (EFSA et al.,
2020). Table 4 shows the assessment of the mineral contribution
derived from the consumption of mussels and clams gathered from

various sampling sites in Lake Faro (Messina, Italy). To calculate the
daily exposure (mg/d), the average concentration in the sample (mg/
Kg) was multiplied by the amount consumed (g).

The estimation of the metal contribution from the consumption
of 150 g/day of molluscs was based on the minimum and maximum
values of the analysed samples (Table 4) (INRAN-CRANUT, 2014).

The highest uptake was mostly obtained for T. decussatus. The
uptake of toxic elements was very low in all samples. Arsenic (As)
and lead (Pb) uptake was only calculated for T. decussatus samples
with a percentage of 7% and 3% respectively. This was not possible
forM. galloprovincialis as the concentrations of these elements were
below the limit of quantification. Cadmium (Cd) uptake ranged
from 3% for M. galloprovincialis to 7% for T. decussatus, while for
Hg the mussels and clams showed the same uptake percentages
(1%). This study showed that clams and mussels were also a good
source of sodium (Na), with an RDA ranging from 36% in M.
galloprovincialis to 77% in T. decussatus. For calcium (Ca) and
magnesium (Mg), the percentages obtained were of 17%–19% and
8%–18%, respectively (Table 4). Among the essential trace elements,
chromium (Cr) and iron (Fe) uptake was the highest with
percentages of 191%–405% and 92%–169% for M.
galloprovincialis and T. decussatus, respectively.

The content of Cr was 191% for M. galloprovincialis and 405%
for T. decussatus. These results require special attention due to the
known effects of Cr (VI), classified by the International Agency for
Research on Cancer (IARC) as a Group 1 carcinogen, and not of
chromium (III), which is not a carcinogen but an essential nutrient
whose deficiency can have negative effects on human health
(DesMarais and Costa, 2019). However, since the ICP-MS
analysis carried out determined the total Cr content, we cannot
determine the exact form of this element. For this reason, it is crucial
to continuously monitor the Cr concentration in clam and mussel
samples analysed for the protection of consumer health.
Gastrointestinal risks related to the presence of Cr (VI) are
another concern related to the chromium intake through the
mussel consumption. The metal can irritate the digestive system,
causing symptoms such as nausea, vomiting and gastrointestinal
disorders. Furthermore, the presence of chromium in water can have
a negative impact on soil quality and on the food chain, thus
contributing to further risks to human health. Cr (III) can also
have adverse health effects: although it is considered less toxic than
Cr (VI), long-term accumulation of trivalent chromium can
contribute to health problems such as liver and kidney damage.
The presence of Cr in the waters of Faro Lake may be due to the
presence of hospitals around the lake, as well as pollutants reaching
this aquatic environment through the natural erosion of fields, water
discharges and waterways.

Our matrices revealed a good source of Fe. In fact, the
percentages of this element were of 92% for M. galloprovincialis

TABLE 4 Elements uptake (%) for M. galloprovincialis and T. decussatus.

Elements uptake (%)

Na Ca Mg Cr Mn Fe Ni Cu Zn As Cd Pb Hg

M. galloprovincialis 36 17 18 191 24 92 6 42 23 — 24 — 1

T. decussatus 77 19 8 405 53 169 17 17 20 57 48 13 1
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and 169% for T. decussatus. After oral exposure, Fe induces a direct
corrosive effect on the gastrointestinal tract. Additionally, it induces
oxidative stress by altering mitochondrial oxidative
phosphorylation, which may determine the severity of symptoms
(Baranwal and Singhi, 2003). The primary effects are
gastrointestinal, such as vomiting, diarrhoea, and bleeding. Other
effects include dehydration and related symptoms such as
hypotension, cardiovascular collapse, shock, hepatic necrosis and
jaundice, coagulopathy, acute haemolytic anaemia,
hemoglobinemia, haemoglobinuria, and death (Baranwal and
Singhi, 2003). In addition, prolonged exposure can lead to an
oxidative burst that may promote carcinogenesis in the
gastrointestinal tract (Toyokuni et al., 2020). Concentrations of
Ni were of 6% in M. galloprovincialis and 17% in T. decussatus.
This percentage is optimal, based on the data obtained in the study
conducted by Bartos et al. (2014), where the authors determined an
ideal average nickel absorption rate of 16% related to the daily
uptake. Good percentages were also obtained for Cu (42% for M.
galloprovincialis and 17% for T. decussatus), Mn (24% for M.
galloprovincialis and 53% for T. decussatus) and Zn (23% for M.
galloprovincialis and 20% for T. decussatus).

4 Conclusion

Concentrations of essential and non-essential elements in the
musselM. galloprovincialis and the clam T. decussatus from the Faro
Lake, located in Messina (Sicily), did not exceed the European Union
and US Food and Drug Administration limits. Bivalves’ levels of
elements can be determined by several matters, including their
feeding, species, season, and environment. The results of this study
highlight both the benefits and risks of consuming local mussels and
clams and the importance of regularly testing locally produced
bivalves for the presence of elements of toxicological concern and
essential elements to protect consumer health. The data relating to the
essential and toxic elements are within themaximum acceptable limits
set by different health organizations and within the literature data.
However, it would be required to set maximum amounts for all
elements to facilitate the assessment of the safety or harmfulness of the
bivalve samples. A daily consumption of 150 g was used to calculate
the absorption rates of each element, and this demonstrated that
mussels and clams are safe to consume. Using the samples as
indicators of environmental pollution, our findings indicated that
the samples have a high toxicological risk, for Cr in both M.
galloprovincialis and T. decussatus and for Fe in T. decussatus. In
fact, the Cr and Fe absorption in the samples analyzed is higher than
100%. However, to determine the risk of Cr, it would be appropriate to
carry out further studies, especially to evaluate and control the levels of
Cr (III) and Cr (VI) and to demonstrate the safety for humans. It
remains to be understood today the Fe content in clams to understand
its origin. As a result, this study also helped to assess the possible
hazard to consumer health. The element concentrations observed in
the two bivalve species from Lake Faro are generally lower than the
tolerable weekly intake (TWI) values estimated as a risk to human
health. Moreover, further studies will be conducted on seasonality in
the concentrations of the elements determined in the bivalve samples
could undergo changes and, consequently, the nutritional intake of
the consumer.
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