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The adoption of in vivo digital measures in pharmaceutical research and
development (R&D) presents an opportunity to enhance the efficiency and
effectiveness of discovering and developing new therapeutics. For clinical
measures, the Digital Medicine Society’s (DiMe) V3 Framework is a
comprehensive validation framework that encompasses verification, analytical
validation, and clinical validation. This manuscript describes collaborative efforts
to adapt this framework to ensure the reliability and relevance of digital measures
for a preclinical context. Verification ensures that digital technologies accurately
capture and store raw data. Analytical validation assesses the precision and
accuracy of algorithms that transform raw data into meaningful biological
metrics. Clinical validation confirms that these digital measures accurately
reflect the biological or functional states in animal models relevant to their
context of use. By widely adopting this structured approach,
stakeholders—including researchers, technology developers, and
regulators—can enhance the reliability and applicability of digital measures in
preclinical research, ultimately supporting more robust and translatable drug
discovery and development processes.
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1 Introduction

In vivo digital measures are quantitative measures of biological events or processes using
digital technologies applied directly to an animal or incorporated into an animal’s cage that
could be considered analogous to digital health technologies used in clinical trials. Applying
in vivo digital measures in drug discovery and development is an important addition to the
growing portfolio of novel tools that can improve the efficiency and effectiveness of efforts
to discover and develop new medicines (Baran et al., 2022). However, as with other novel
tools, their near- and long-term impact depends on developing the confidence that these
measures provide meaningful information about the biology of the animals used to model
the human patient. To achieve this confidence, “validation” is the evidence-building process
often applied to quantitative assays and their outputs to support their analytical
performance and ‘clinical’ relevance, respectively.
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To bolster discussions and common understanding, we have
clarified the terminology used in this manuscript in Table 1. While
alternate definitions and terms may have equal merit, these
definitions were chosen to communicate the concepts and
principles in a simple but flexible manner that aligns with the
terminology used in the clinical space. Although the term “digital
biomarker” has been commonly used in the past (Baran et al., 2022),
based on recent discussions within our groups and in alignment with
recent publications (Izmailova et al., 2023; Macias Alonso et al.,
2024; Leyens et al., 2024) we now adopt the term ‘digital measure’
going forward, as we believe it better aligns with the context (See
Table 1). For this manuscript, we do not reference terminology
related to digital measures of micro- and macro-environmental
factors, as while these measures are significant, they are not the
focus of this paper.

The digital measure process begins with the collection of a raw
signal by digital sensors which are transformed into quantitative

measures of behavioral and/or physiological function, and, finally,
transferred into a software platform for analysis, reporting, and
visualization. Each of these components of digital measure
development should be assessed in some way to support the
validity of the final digital quantitative output. For this paper, we
defer to manufacturers to apply industry standards for validating the
performance of the sensor technologies (e.g., digital video cameras,
photobeam, electromagnetic fields (EMF), radio-frequency
identification (RFID) readers, biosensors, microelectronics, etc.),
associated firmware and supporting data acquisition software.
Our focus is validating data processing software (non-AI and AI)
algorithms and their quantitative outputs. The algorithms can be
considered novel “assays” to which the usual principles of analytical
validation apply.

The Digital Medicine Society (DiMe) recently published the V3
(Verification, Analytical Validation, and Clinical Validation)
Framework as a construct within which to build a body of

TABLE 1 Terms, definitions, and related references for verification of digital biomarkers.

Term Definition References

Clinical Studies that involve the treatment and/or monitoring of living human patients

Preclinical and
Nonclinical

The terms preclinical and nonclinical are often used interchangeably to refer to studies
utilizing in vivo, in vitro and in silico methods as part of the research and development
process. They do not involve human participants. These studies are designed to characterize
the pharmacology, efficacy, safety, and disposition (e.g., absorption, distribution,
metabolism, and excretion) of drug candidates to inform their clinical progression.
Typically, preclinical is used to refer to in vivo studies and is therefore the preferred term in
this manuscript

Digital Health
Technologies

A clinical term that is defined as electronic tools, systems, devices, and resources that
generate, store, and process data in healthcare and include mobile health, wearable devices,
telehealth, telemedicine, electronic health records, and patient portals

Clinical Digital
Biomarker

Characteristic or set of characteristics, collected from digital health technologies, that is
measured as an indicator of normal biological processes, pathogenic processes, or responses
to an exposure or intervention, including therapeutic interventions

Digital biomarkers: Convergence of digital health
technologies and biomarkers (nature.com)

Digital In Vivo
Technologies

Digital in vivo technologies include both internal (e.g., injectable, ingestible, surgically
implanted) and external (e.g., wearable, camera, microphone, electromagnetic field detector)
sensors that are used to collect data from research animals. This can also refer to the systems
that process this data

Digital measure (in
vivo)

Digital measures, as related to in vivo research, are quantitative data collected continuously
from unrestrained and uninstrumented animals using digital in vivo technologies

Digital Biomarker A digital biomarker is an objective, quantifiable digital measure of physiological and/or
behavioral response to disease progression or therapeutic intervention. They can be
characterized as exploratory, validated, or qualified based on their maturity in a specific
context of use

Definition adopted and updated from https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC8885444/

Translational Digital
Biomarker

A translational digital biomarker is a digital biomarker that has been determined to be
clinically relevant and translates between preclinical and clinical studies

Home cage or home
environment

The cages and environments where animals are housed for the majority of their lifetime in
the vivarium

https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC8885444/

Clinical validation Demonstrating that technology adequately identifies, measures, or predicts a meaningful
clinical, biological, physical, functional state or experience in the specified (Baran et al.,
2022) animal cohort and (Izmailova et al., 2023) context of use

https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC8885444/#B20

Benchmarking Rigorous comparison of the performance of a novel method with a more established method
to demonstrate equivalent or better performance and value

Nonhuman Primate Model Systems State of the
Science and Future Needs | National Academies

Context of use The manner and purpose of use for a technology or approach (how and when it will be
used). This term can generally be applied to any intended use of a methodology. Contexts of
use (COU) elements include what is measured and in what form, and the purpose of the
technology or approach in the testing of hypotheses or decision-making/action

https://pubmed.ncbi.nlm.nih.gov/35064273/
https://www.fda.gov/media/109634/download
https://www.fda.gov/media/133511/download
Catalyzing the Development and Use of Novel
Alternative Methods (nih.gov)

Frontiers in Toxicology frontiersin.org02

Baran et al. 10.3389/ftox.2024.1484895

https://www.nature.com/articles/s41746-022-00583-z.pdf
https://www.nature.com/articles/s41746-022-00583-z.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885444/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885444/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885444/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885444/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885444/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885444/
https://pubmed.ncbi.nlm.nih.gov/35064273/
https://www.fda.gov/media/109634/download
https://www.fda.gov/media/133511/download
https://acd.od.nih.gov/documents/presentations/12142023_NAMs_Working_Group_Report.pdf
https://acd.od.nih.gov/documents/presentations/12142023_NAMs_Working_Group_Report.pdf
https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2024.1484895


evidence that supports the reliability and relevance of Biometric
Monitoring Technologies (BioMeTs) applied in a clinical setting
(Goldsack et al., 2020). DiMe is an independent organization
dedicated to delivering clinical-quality digital medicine resources
on a tech timeline. BioMeTs are defined by DiMe as “. . .connected
digital medicine products that process data captured by mobile
technologies using algorithms to generate measures of behavioral
and/or physiological function”. This framework distinguishes the
verification of source data and the device that generated it from the
analytical validation of the algorithm, and from the clinical
validation of the biological relevance of the quantitative output
within its intended context of use. This framework was derived from
existing regulatory guidelines and represented as analogous to the
FDA’s Bioanalytical Method Validation Guidance for Industry
(Goldsack et al., 2020; FDA, 2020).

The 3Rs Collaborative’s (3RsC) Translational Digital
Biomarkers (TDB) initiative recently published a review of the
emerging role of digital measures derived from animal home
cage monitoring in which they referenced DiMe efforts and
briefly discussed technology verification, analytical validation, and
clinical validation (Baran et al., 2022). The 3RsC is an independent
non-profit organization whose mission is to advance better
science–for both people and animals–through the 3Rs of animal
research: replacement, reduction and refinement. It facilitates
collaborative efforts across all stakeholders including academia,
industry, and more. One such effort is focused on increasing
industry adoption and regulatory acceptance of TDB by bringing
together a broad stakeholder group of developers and end-users.

In this publication, we are building on these initial efforts by
providing more detailed guidance on the use of an “In Vivo
V3 Framework” as an adaptation of the V3 Framework first
described by Goldsack, et al. This adaptation was first proposed
by the Digital In Vivo Alliance (DIVA), a precompetitive and multi-
disciplinary collaboration of preclinical scientists and data scientists,
as a key element of its digital biomarker discovery and development
paradigm (DIVA, 2024).

Adopting this clinical framework for preclinical use is useful for
several reasons. The holistic scope of the framework ensures
addressing key sources of data integrity throughout its life cycle
from its raw source (i.e., verification) to its transformation into
quantitative measures (i.e., analytical validation) and application in
biological interpretation and translational decision-making
(i.e., clinical validation). Also, replicating this clinical approach to
building confidence in these novel measures strengthens the line of
sight between these two distinct but interdependent drug
development efforts. Additionally, it enables us to fully apply the
learnings from the growing experience in validating clinical
measures for clinical decision-making.

Unlike the DiMe V3 Framework, the in vivo V3 Framework is
specifically tailored to address the unique requirements and
variability of preclinical animal models. It incorporates validation
strategies that are adapted to the complexity of animal models,
ensuring that digital tools are validated not only for their analytical
performance but also for their biological relevance within a
preclinical context. The key distinction between the DiMe
V3 Framework and the in vivo V3 Framework lies in their
respective scopes. The in vivo V3 Framework must account for
challenges unique to preclinical research, such as the need for sensor

verification in variable environments, and analytical validation that
ensures data outputs accurately reflect intended physiological or
behavioral constructs. This adaptation is crucial in preclinical
research, where the goal is to establish translational relevance
and scientific insights rather than immediate clinical utility. The
framework also emphasizes replicability across species and
experimental setups—an aspect that is critical due to the inherent
variability in animal models.

The responsibility for applying this in vivo framework is shared
by developers, vendors, and end users, depending on technologies,
maturity of the measure, study use, and scale. This paper supports
this adaptation by communicating the underlying concepts and
principles behind validation as applied to digital measures in in vivo
animal studies.

For clinical measures, Goldsack, et al. (2020) proposed a “data
supply chain” model, which serves as a beneficial guide for
understanding where verification and validation are applied (see
Figure 1). This model is also useful when considering digital
measures within in vivo animal studies. In these studies, digital
technology is attached to or implanted in the animal or incorporated
into the home cage or a test environment for a specific assessment.
Digital sensors collect and digitize raw data, which is then organized
and stored either locally or remotely, along with its corresponding
metadata identifiers. Algorithms are used to convert this raw data
into quantifiable representations of the recorded behavioral or
physiological events, such as activity, locomotion, or respiration.
These algorithms and/or technology’s resolution determine the
temporal resolution of the data (e.g., centimeters traveled per
second, percentage of time spent in locomotion, breaths per
minute, and core body temperature at minute(s) intervals. This
concept also applies to spatial parameters, especially relevant for
behavioral measures (time spent in a zone, distance between
animals, etc.), as they depend on the spatial resolution of the
technology (e.g., a video camera has a higher resolution than a
matrix of photobeams depending on the density of the beams). The
transformed, quantitative data is then exported for statistical
analysis or visualization, typically supported by a software
platform. The results of this statistical analysis of the data
provide insights for study interpretations and guide subsequent
development decisions.

2 Metadata, raw data, and
consensus data

In animal research, particularly in the context of validating
digital measures, accurate metadata, raw data, and consensus
data are important.

Metadata, a term sometimes referred to as “data about data,”
plays a vital role in providing both essential context for study
findings and critical information needed to reproduce a study
(Moresis et al., 2024). Metadata plays a crucial role in providing
context to raw data by providing information on the circumstances
in which the data were gathered. Metadata includes two types of
information: the study protocol metadata (which describes the
conditions that apply to all study subjects and experimental
trials) and the independent variables metadata (which often vary
between groups within one experiment but are generally constant
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for the duration of a trial). The latter include variables generated by
the system (date, time, trial duration, etc.) and user-defined
independent variables (e.g., animal ID, treatment, dosage).
Metadata serves as a navigational tool, providing guidance for
interpretations and analyses, and guaranteeing that the data can
be comprehended and utilized effectively by fellow researchers.
Including such a comprehensive degree of detail is of utmost
importance in ensuring the study’s interpretability and integrity
by providing thorough information, it also enables other researchers
to replicate the experiment under comparable circumstances,
thereby verifying the results obtained.

In contrast, raw data refers to unmodified outcomes derived
from observations or measures which is generally the primary
analytical substrate of interest to the investigator. Raw data play
a fundamental role in scientific investigation since they constitute an
unprocessed account of experimental observations that are crucial
for the verification and reproduction of research results. The careful
acquisition, retention, and dissemination of unprocessed data are
important as they allow scholars to track the path of their research,
examine the technique employed, and independently validate the
findings. Digital raw data should be collected and stored in
adherence with “FAIR” principles (i.e., findable, accessible,
interoperable, reusable) of data management (Wilkinson
et al., 2016).

The utilization of consensus data is of importance in
guaranteeing uniformity and synchronization within research
studies. Researchers can ensure the consistency, comparability,
and interoperability of data across various studies and platforms
by attaining a consensus on data standards and procedures. This is
particularly crucial in collaborative research settings where
numerous teams or institutions may be engaged in
interconnected initiatives. The use of a consensus strategy in
research endeavors facilitates a shared understanding among

participants, consequently augmenting the credibility and
dependability of research findings. The inclusion of consensus
data in study findings enhances their credibility by
demonstrating conformity to established standards and
best practices.

Combining raw data, metadata, and consensus data is crucial in
information analysis. Raw data serves as the fundamental source of
information, while metadata serves as a framework that enables
effective interpretation of this information. Additionally, consensus
data ensures the establishment of standardized and credible
information. The careful handling and organization of these data
categories are crucial for maintaining the accuracy and replicability
of study outcomes. Additionally, raw data and applicable metadata
allow for its repurposing where novel digital measures can be
extracted without running new studies (Moresis et al., 2024;
Fuochi et al., 2023).

3 In vivo V3 Framework for preclinical
applications

3.1 Protocols

Verification and validation are processes that are applied to
sensor-derived digital data and the algorithms that transform those
data into a useable analytical form to ensure their accuracy and
relevance for the decision being made. Essential aspects of the
verification and validation process should be pre-defined by
comprehensive protocols that specify the endpoint(s) for
validation and delineate the actions and the anticipated outcomes
for each segment of the verification and validation process. These
protocols should assign responsibility for the conduct of the
verification or validation and establish the time of application

FIGURE 1
In vivo V3 Framework. this framework builds confidence in the accuracy and relevance of digital biomarkers in preclinical biomedical research. The
figure visually represents the 3 stages of verification, analytical validation, and clinical validation including the data supply chain framework. This figure is
adapted and expanded from Berridge et al. (2023).
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(e.g., when during the development or life cycle of a digital measure),
the method to be employed, and the relevant context of use. The
results derived from these protocols then serve as valuable resources
for end-users of these measures and should be included with
commercial products and referenced in scientific publications
that present these in vivo digital measures.

3.2 Verification

This step assumes that technology verification, which ensures
that the technology, including hardware and software components,
functions correctly and reliably, has already been completed by the
developer or manufacturer of that technology.

Verification is the process of confirming the source and correct
identification of primary sensor data, ensuring the integrity of the
raw data used as input for appropriate algorithms. These algorithms
transform the raw data into quantitative metrics that represent
biological events from the specific cage it was collected. For
instance, for computer vision sensors, verification includes
ensuring proper illumination (intensity level), contrast between
animal and background or bedding, visibility of a marker (if
appropriate), absence of reflection (e.g., in a water maze), that
the camera is recording events from the correct cage, with the
right animals, for the designated study, at the correct
timestamp. Similar checks are applied to other technologies like
photo beam breaks, capacitance, or RFID to ensure data is collected
from the intended animals and matches the metadata identifying
the source.

This verification process (Figure 1) is a key quality assurance
step involving digital measures, akin to standard quality assurance
(QA) processes in drug development, usually conducted primarily
by technology providers and may be confirmed by end-users.
Furthermore, additional QA checks should be performed at the
end-user level. For instance, a protocol, which could be a checklist,
guides the verification by documenting sensor function, correct data
labeling, and proper data storage, ensuring data integrity and
continuity from study initiation to termination. This includes
checks at study completion to confirm that data collection
covered the intended period, identifiers remained consistent, and
the data was preserved without corruption.

3.3 Analytical validation

Analytical validation ensures that the quantitative metrics
reported by an algorithm accurately represent what the digital
measure captured in the cage at the time that the technology
time stamp said it did, as an estimate of what truly happened in
the cage, and at the quantitative resolution intended. Analytical
validation is an affirmation of data accuracy and precision, as well as
its level of sensitivity and specificity irrespective of context of use or
post hoc analyses. Alternatively, the specific context of use will define
the acceptable limits of these attributes and whether those limits
meet expectations for clinical usefulness.

The approach to analytical validation depends on the biological,
behavioral, or physiological function being detected and measured.
It requires a clear definition of that function which should be

established at the start of the algorithm development process.
This becomes more challenging with unsupervised algorithm
development, where the algorithm may identify a biological
feature that we can’t define or visualize. The ability to
prospectively define the function of interest (i.e., that is being
measured) is a key distinction between supervised and
unsupervised digital measure algorithm development.
Unsupervised approaches offer the opportunity for useful
discovery of novel endpoints or biomarkers but may be more
difficult to validate.

Analytical validation can be the most challenging component of
the V3 Framework since digital technologies often measure
biological events at resolutions greater than humans can detect
and may be of higher temporal resolution, greater precision and/
or accuracy than a “gold standard” or comparator measure (Van
Dam et al., 2023). Also, there may not be an existing comparator to
apply in the validation process (i.e., when measuring a unique
measure). Accordingly, a weight of evidence or ‘triangulation’
process may be necessary using biological plausibility,
comparison to an existing analytical reference standard or
reasonable surrogate, and direct observation and annotation for
those technology outputs that are amenable to direct observation
(e.g., computer vision). The collective assessment of each of these
features (measurable properties or characteristics used by an
algorithm to make predictions or understand patterns) provides a
level of confidence greater than any one by itself, particularly when
no single one of them is a perfect standard.

The assessment of features can be done using interpretability
tools (methods used to understand how an algorithm makes its
decisions) such as SHAP (SHapley Additive exPlanations), LIME
(Local Interpretable Model-Agnostic Explanations), Grad-CAM
(Gradient-weighted Class Activation Mapping), and permutation
feature importance, each serving a unique purpose. SHAP values
provide an understanding of howmuch each feature contributes to a
model’s output, helping to discern if the features being used align
with biological expectations. LIME, on the other hand, allows a local
approximation of the model behavior, giving insights into how
specific features impact individual predictions, which can be
helpful in validating the algorithm’s behavior in different
contexts of use.

For deep learning models, particularly those utilizing
convolutional neural networks, tools like Grad-CAM help
visualize which parts of an image or input are contributing most
to the prediction. This is crucial when attempting to understand how
well the algorithm “sees” and processes data, ensuring that it focuses
on meaningful biological signals rather than background noise or
artifacts. For example, in a home-cage monitoring scenario, Grad-
CAM could verify whether an algorithm assessing activity is truly
focusing on the movement of the animal rather than irrelevant
elements such as cage bedding.

Moreover, permutation feature importance can be applied to
estimate the drop in model performance when the values of a
particular feature are shuffled. This method helps identify which
features are truly significant for output, indicating their biological
relevance. By understanding feature importance, researchers can
also determine if the model is utilizing spurious correlations that do
not make biological sense, thus preventing overfitting the model to
artifacts that might be specific to a certain dataset or environment.
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Integrating these interpretability assessments into the validation
framework provides transparency in understanding how the
algorithm arrives at its output. By applying tools like SHAP,
LIME, and Grad-CAM within the framework, researchers can
gain insights into feature importance, validate model behavior in
specific contexts of use, and ensure that the model’s focus aligns with
biologically relevant signals. For example, SHAP values can help
identify the contribution of features such as light cycle or
environmental enrichment, while Grad-CAM can visualize which
parts of an image are driving predictions of behaviors like
locomotion.

Interpretability assessments within the validation framework
allow researchers and regulators to build confidence that digital
measures are accurate reflections of biological phenomena rather
than coincidental associations. Ultimately, such assessments
reinforce the reliability of digital measures, aiding in their
adoption for decision-making in preclinical and
translational research.

While we have discussed certain methods above, it is important
to note that numerous other models and tools for feature assessment
and model interpretation exist beyond the scope of this work. These
tools offer alternative insights and approaches that complement
those we have covered. For readers interested in a broader
exploration of these methods, we recommend consulting the
following references (van Zyl et al., 2024; Li et al., 2022; Allgaier
et al., 2023; Ali et al., 2023; Alzubaidi et al., 2021; Hosain et al., 2024).

For biological events with accepted normal ranges, algorithm-
defined measures within expected normal and/or disease-associated
responses provide some confidence in their legitimacy. Examples
include circadian rhythm variations in rodents’ activity, locomotor
velocity and distance traveled, and respiratory rates. Furthermore,
analytical validation of an automated system depends on the
appropriate filtering of the raw data, e.g., to separate locomotion
from body motion, and track smoothing. Inappropriate filtering will
lead to over- or under-estimation of the distance traveled.
Technically this is easy, but it needs to be agreed on what
locomotion is (e.g., spatial movement over some X distance) and
what it is not (e.g., rearing, resting, sniffing, etc.). The traditional
approach in the field is to first agree on the definition of the
behavioral measure, then develop an automated measure system,
and finally validate that system against the agreed definition. More
recently, AI approaches are sometimes being used where the system
starts without a priori defined classes and does the clustering itself
(i.e., unsupervised). However, this approach is still in its infancy and
not yet standard in commercial systems.

A common validation approach is to compare a measure
collected in a novel way to one collected using usual approaches.
Examples include comparing respiratory rates obtained with
computer vision with a measure collected by plethysmography,
temperature readings from an implanted RFID chip with
readings collected with a manually inserted thermometer, and a
digital measure of seizure derived from invasive EEG recording. For
example, the breathing rate in mice as determined by a computer
vision-equipped “smart cage” was validated by placing mice in a
plethysmography chamber within the smart cage to collect that data
simultaneously (Supplementary Material to (Baran et al., 2020)).
Similarly, Tse, et al. compared digital assessments of individual
animal locomotion using a computer vision-equipped home cage

system to visual activity assessments included in a manual modified
Irwin test (Tse et al., 2018). Though these comparisons must often
account for the impact of environmental factors on the measures,
they are often found to be very similar.

Understanding if these environmental factor differences could
plausibly lead to differences in the examples of respiratory rate and
temperature is critical in validation and supports the principle that
observing the variance in response to a stimulus or condition like a
test compound or a disease state may be more insightful than the
absolute values of the measures themselves. For instance, while the
basal respiratory rate or body temperature of a mouse might exhibit
discrepancies between the digital measure reported value and the
more traditionally acquired value, the response to a known
respiratory rate or temperature modulator should be consistent.
For example, Lynch, et al. compared the responses of rats to varying
doses of chlorpromazine and caffeine using an infrared beam-based
activity meter, a mechanical vibration-based system, and the
traditional modified Irwin test (Lynch et al., 2011). Though the
absolute measures varied across those assessments, they revealed
responses (e.g., increased or decreased activity) consistent with each
other and the expected pharmacology of the test articles. These types
of assessments would also support clinical validation since they
represent “clinical” contexts in which those measures would
be applied.

The VAME framework presented by Luxem et al. (2022) focuses
on unsupervised learning of behavioral motifs and hierarchical
structure in animal motion (Luxem et al., 2022). The study used
a Hidden Markov Model (HMM) to cluster behavioral motifs and
compare these to human observations. One notable example was the
identification of subtle behavioral differences in Alzheimer
transgenic mice that were not detectable by human observation.
This emphasizes the potential of automated digital measures to
detect effects consistent with traditional methods (e.g., significant
behavioral changes), even when specific measurement values may
differ. This approach to developing algorithms for digital measures
also involves a validation process. Specifically, the validation of these
digital measures can be done by comparing the outputs of the
Hidden Markov Model (HMM) to manual human observations,
demonstrating consistency in identifying meaningful behavioral
patterns. Additionally, the study exemplifies analytical validation
by showing that the automated system can detect subtle differences
beyond the resolution of human observation, thus providing
evidence that the algorithm’s quantitative outputs accurately
reflect biological events.

The study by Van Dam et al. (2013) used an automated behavior
recognition (ABR) system to identify rat behaviors, which were then
compared to manual scoring by expert annotators (van Dam et al.,
2013). The validation involved measuring the behavioral effects of
drug treatments and comparing automated outputs to those from
manual scoring, which showed similar behavioral effects despite
some discrepancies in individual measures. This practical approach
shows how discrepancies were handled by verifying effect
consistency through pharmacological validation, ultimately
aligning the outcomes from both automated and
traditional methods.

Amajor impetus for developing automated digital measures is to
collect biological data more continuously, more sensitively, and with
fewer artifacts than traditional measures. Accordingly, digital
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measures may be more sensitive than traditional measures
undermining our use of traditional measures as a “standard”
(and thus the use of a triangulation approach). In cases where
the raw data can be manually reviewed (e.g., raw video), a manual
validation of what the sensor “saw” and what the algorithm reported
may be useful. Modern cloud technology can facilitate this approach
by enabling the development of software platforms through which
researchers can share annotated animal behavior and physiology
data (e.g., data collected from wildtype or control animals) thus
preventing intellectual property issues. By doing so, they can
contribute to the development and improvement of AI models
for automated collection and analysis of digital measure data,
from which the entire field will benefit.

Examples could include reviewing a segment of home cage video
to correlate with algorithm-reported measures such as activity,
distance traveled, or velocity of that spatial movement as
described in Tse, et al., 2018 where activity assessments were
done using raw video as a comparison to computer vision-
derived measures generated at the same time (Tse et al., 2018).
Algorithm reported seizure events or time spent at a feeder could be
confirmed by video review. Corrective annotations by the human
observer can be used to improve the AI-based behavior recognizer (a
technique called active learning). By doing so, the power of
computer vision and that of the human brain are combined to
increase the performance of the automated tool (van Dam et al.,
2024). This approach may be more difficult when the raw data is less
accessible, such as when observation is obscured, say due to nesting
material or assessing non-visual events.

Analytical validation necessitates determining the amount of
data to be validated to provide confidence in the data not directly
validated. This can be achieved by understanding the principles and
power of statistical analysis and data validation.

The frequency of the events being measured greatly influences
the amount of data to be validated. If the event is rare (such as
seizures), a larger sample size may be needed to ensure that enough
instances of the event are captured to accurately assess true and false
positives and negatives. Conversely, if the event is common (such as
locomotion), a smaller sample size may suffice.

The likelihood of “false negatives” becomes a major determinant
in this context because if a significant number of false negatives are
present, it could lead to an underestimation of the event’s frequency
or severity. Therefore, a sufficient amount of “negative” data must be
reviewed to ensure its true negativity. For example, in the case of
measuring behavioral “activity” in rodents during the dark cycle, if
the frequency of activity is high, a smaller sample size may be
sufficient. However, if the activity is infrequent or unpredictable, like
seizures in an epilepsy model, a larger sample size may be needed to
ensure accurate detection of both true and false positives
and negatives.

The constancy and consistency of the event, such as respiration,
can affect the amount of data reviewed. When detection and
quantification of respiration are constant and consistent, fewer
data points may be needed to establish a reliable baseline.
However, if respiration is variable due to environmental or
behavioral factors, more data may be needed to accurately
capture this variability. The state of the animal (sleeping or
locomoting) or the light cycle (light or dark) can affect the
accuracy and detectability of respiration measures. For instance,

an animal’s respiration rate may change depending on whether it is
sleeping or active, and these changes may be detectable depending
on the light conditions. When using computer vision, these factors
can influence the accuracy of the measures, so they must be
considered when determining the amount of data to be validated.

The sample size for analytical validation should account for
bioassay performance metrics like sensitivity, specificity, accuracy,
and precision. An analytical validation should also provide insights
into the limits of detection/quantitation, dynamic range, and
reproducibility. Statistical approaches can guide the number of
“events” or “bouts” to be validated by determining the sample
size needed to confidently represent the entire data set. For
example, validating an algorithm’s ability to detect a bout or
period of horizontal locomotion (i.e., the animal is moving across
the cage floor) might involve determining how often those events
might be expected to occur either from manual observation or other
technology-derived data and defining a target level/or expected level
of sensitivity (for example, I want to be able to identify 90% of an
animal’s bouts of horizontal locomotion). Power analysis will allow
us to determine how many bouts of horizontal locomotion we need
to evaluate to provide confidence that an algorithm is detecting them
90% of the time. Likewise, assessing how many events the algorithm
detected are horizontal locomotion versus some other behavior (e.g.,
active but not locomoting) will provide insights into the algorithm’s
specificity. Modern video tracking systems can assist with
addressing this challenge through their filtering functions. This
aspect becomes a more significant challenge when we are trying
to identify rare behaviors (for which it may be hard to collect enough
training material), behaviors of which the execution by the animal is
heavily impacted by the treatment (so a tool trained for wildtype
mice or untreated rats is unapplicable), and in particular social
behaviors (because most multi-animal video tracking systems are
still not able to maintain animal identity for more than a
few minutes).

Data sets used for validation should be distinct from the
“training sets” used to develop the algorithm even if from the
same study but, most usefully, should be from a bespoke study-
i.e., a validation study (which might also serve as a “clinical”
validation study). Ideally, analytical validation should be assessed
on data from more than one study.

Accuracy and precision relate to the quantitative output of the
algorithm. Using the previous paragraph’s example, the temporal
duration of a bout of locomotory activity or distance traveled
reported by an algorithm should be validated for accuracy-i.e.,
that the quantity reported is what happened in the cage.
Validating accuracy requires some other measure of the event
collected at the same time or the ability to manually review the
raw data (e.g., video for computer vision systems). Precision would
be a measure of the consistency of the reported event or bout when
determined multiple times under similar conditions. Digital data is
particularly amenable to determining precision since the raw data is
often archived and can be processed through the algorithm
repeatedly to assess precision.

An additional consideration for algorithms that might be
applied to raw data generated from more than one technology or
varying experimental conditions (e.g., species, strain, cage
environment conditions, etc.) is generalizability. Generalizability
is a key issue for AI-defined algorithms that are ‘trained’ with
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examples of the behaviors or physiological events of interest.
Generalizability refers to the varying spectrum of conditions
under which the raw technology data is collected for which the
AI algorithm performance would be expected to be consistent.
Animals and cage conditions vary considerably across studies
where animals’ color, size, and temperament vary; cage bedding
varies, cage “furniture” and/or enrichment is variable, lighting
conditions are different, sensor technologies may vary, etc.
Generalizability explores how the algorithm performance varies
across data derived from different sensor technologies or within
the context of varying environmental cage conditions. The latter
aspect is one of the weaknesses of deep learning based automated
behavior recognizers: they perform very well in the context for
which they have been trained but transfer poorly to other contexts
(van Dam et al., 2020). A highly generalizable algorithm would
maintain its performance across these varying conditions but that
depends on the variety of conditions represented in the data used to
train the algorithm and the specific feature being monitored.
Accordingly, generalizability can be improved by training an
algorithm with raw data collected under a broad spectrum of
conditions. Generalizability may come at the expense of accuracy,
i.e., reliability compared to the human observer (van Dam et al.,
2020). This challenge can be overcome by training data from
different contexts (van Dam et al., 2013).

Training an algorithm to handle every possible change in raw
data isn’t practical, so it would be beneficial for users to have a
simplified validation process. This process would ensure that the
algorithm is working correctly in their specific situations. This could
be done using an internal control, which is a known data set that the
algorithm has been tested on before, the use of orthogonal validation
to cross-check the results, and/or a manual check of a small portion
of the data to confirm the algorithm’s performance.

Analytical validation works best when AI scientists who created
the algorithm work together with biologists who identified the
biological event of interest and might have provided the data
used to train the algorithm. A crucial part of this teamwork is
defining the event, behavior, or physiology that the algorithm is
detecting. For example, defining a mouse’s in-cage ‘locomotion’
derived from digital sensors can be more complex than cage-side
observers agreeing the mouse is moving. One way to define
locomotor activity could be a mouse moving more than 2 cm
across a cage floor for at least 2 s, followed by at least 2 s of no
movement with no maximum limit for these values. Alternatively, as
in Penhold et al.’s study, where the activity of single-housed mice
using technologies placed under the cage bottom that record
changes in capacitance every 250 ms was assessed, activity or
motion was defined as a change in Euclidean distance of ≥1 mm
between samples (Pernold et al., 2023). Previous experiences were
used to define local movement or movement-on-the-spot as being
less than one average stride length and locomotion as when the
distance covered at least one full stride length. Having a clear
definition supports the validation process and lets the end-user
know what biological endpoint is being measured. This clear
definition ensures that a bout defined by the algorithm can be
validated against a bout of similar definition, using any
validation method.

As we’ve discussed above, many of today’s technologies are more
precise than the human eye in identifying the details of a behavior.

They can pinpoint the start and end of a behavior or event with great
accuracy and likely greater precision. Accordingly, developing and
improving algorithms is an iterative process, starting by defining the
behavior based on direct observation, and then using the detailed
data from the technologies to refine that definition based on
experiential observations.

3.4 Clinical validation

Clinical validation follows analytical validation, where the
primary aim of clinical validation is to support the clinical
relevance of a digital measure that has demonstrated a sufficient
level of analytical performance (e.g., sensitivity, specificity). Clinical
validation is context-of-use (COU) dependent and is a process that
confirms if a digital measure, like an algorithm’s output, accurately
represents an animal’s health or disease status and helps to ensure
the measure is biologically relevant. For example, clinical validation
may provide confidence that measures of locomotor activity in a rat
or mouse toxicology study are relevant for assessing drug-induced
central (CNS) or peripheral nervous system (PNS) or
musculoskeletal effects in that animal or that a measure of
scratch reports the sensation of itch or the severity of cutaneous
eosinophilic inflammation in a model of atopic dermatitis.

It is possible for a digital measure to be biologically or clinically
relevant but lack the sensitivity to be clinically useful (e.g., inability
to detect the onset of disease early enough to assess the ability to
modulate the disease). The relevance of that measure in animals to
the human condition is a different process of translational validation
involving both the biological measure being collected but also the
model in which it is being measured, which is outside the scope of
this paper.

Clinical validation studies should be designed to represent the
expected COU for a novel digital measure. Those studies should
include not only the analytically validated digital measure but also
an assessment that links the digital measure to the biology or
pathobiology of interest. They may also include a traditional
measure to demonstrate improved clinical usefulness. For
example, a clinical validation study using the House Dust Mite
mouse model that applies a digital measure of scratch might also
include skin histopathology to correlate measures of scratch with the
severity of eosinophilic inflammation that causes the itch that
instigates scratching. Ideally, changes in measures of scratch
would correlate with changes in the severity of inflammation.
Likewise, that study could also include intermittent observational
measures of scratch to demonstrate the usefulness of the more
continuous and automated measures provided by digital
technologies.

Clinical validation considers the biology represented by the
quantitative digital measure and its relevance to the biology or
pathobiology that the animal is being used to model. Importantly,
the relevance of the measure may be reflected more by its change
than its absolute quantity. For example, a measure of locomotor
activity in a mouse may be within its physiological dynamic range
but an increase or decrease in the presence of a drug may reflect the
onset, progression, and resolution of a disease or toxicity.
Alternatively, loss-of-righting reflex (LORR) is not generally
considered a normal behavior so its detection may reflect a
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pathologic event. Likewise, its frequency and durationmay represent
the severity and progression of the CNS disease or injuries
that caused it.

Though we often consider ‘clinical validation’ in the context of
the relevance of our models and measures to our human clinical
interests, these measures also often have relevance and usefulness in
our efforts to optimally manage the welfare of our animal research
subjects. Accordingly, many of these measures may also be used to
identify animal health issues allowing us to mitigate pain and
discomfort in those animals aside from the experimental intent.

Clinical validation is best performed by biologists who are
familiar with the intended COU, who have experience in
applying the models that define that context, and who
understand the biology or pathobiology represented by the digital
measure. A clinical validation could be one well-designed study that
includes correlative endpoints, or a set of parallel studies conducted
under similar conditions if technical incompatibilities prevent
combining them in the same study. It could also be a series of
studies that represent the variability in ways that the model or
measure may be used. For example, EEG recordings may be a useful
correlative endpoint that validates the association of LORR to a
seizure event but might not be technically amenable to integrating
into a computer vision-based approach to detecting loss of righting.
Accordingly, parallel studies with those complementary endpoints
could be run replicating study design elements as closely as possible.

4 Stakeholders and their roles and
responsibilities with the V3 framework

Advancing the application of digital measures can be complex as
it involves multiple stakeholders (Baran et al., 2022). This includes
researchers whose primary interest is the collection of digital
measures for scientific aims, animal care staff whose interests
related to animal care and management, technology experts who
oversee data storage and cybersecurity, data scientists who analyze
the data, project teams that use study outcomes to inform decisions,
business managers or operational managers who must approve
purchase decisions, and finally, regulators who may use the
results of studies to inform approvals. It is necessary to break
down silos and foster collaboration to accelerate the application
of these technologies, hence the development of the 3Rs
Collaborative Translational Digital Biomarkers Initiative (www.
3rc.org/tdb).

4.1 Role of collaboration and education

Interdisciplinary collaboration, sharing, and education are
essential to progress the regulatory acceptance of digital measures
with each stakeholder playing a unique role. Technology developers
should provide data-driven presentations about their technologies
and technical expertise to end-users and regulators. This is essential
to introduce potential new users to these technologies and promote
meaningful dialogue. End-users should, when possible, openly share
case studies of successful regulatory submissions with digital
measures data to multiply their efforts. This dissemination can be
achieved through open-access presentations, publications, and even

databases. Ideally, a database with easily understandablemetadata and
key sets related to regulatory submissions could be established to
maintain confidential data, while allowing stakeholders to identify
how digital measures are being used in different therapeutic fields or
types of submissions. Of course, this can be a challenge with
proprietary information. In turn, regulators can actively engage
with digital measures in development, encourage submissions with
digital measures, and communicate any specific requirements for
digital measures submissions after they are developed.

Throughout the efforts to advance regulatory acceptance, it is
essential to advance awareness of any developed frameworks
through communication and training to relevant stakeholders
about evaluation processes, methods, and findings. This ensures
that stakeholders are aware of how various data and processes will be
evaluated by regulators, while simultaneously encouraging the use of
digital measures. Training is important to equip personnel with the
skills to use the evaluation framework and navigate regulatory
submissions using digital measure data. Proactive communication
facilitates informed decision-making between all stakeholders.

5 Conclusion

In our pursuit to establish a robust evaluation framework for
preclinical digital measures, we have chosen to adopt DiMe’s
V3 framework as a foundational reference. By extrapolating the
principles of this framework to the preclinical setting, we aim to
foster a comprehensive and scientifically rigorous approach to
digital assessments at this crucial phase of research. To provide
clarity for all stakeholders, including end-users and regulators
intending to adopt this approach, the framework is built on three
cardinal pillars. The first, technology verification, emphasizes the
necessity for devices to measure and store data with utmost
precision, reliability, and reproducibility. The second, analytical
validation, delves into the evaluation of data processing
algorithms that transform raw technological readings into
interpretable and actionable output metrics. The third, clinical
validation, albeit adapted to a preclinical context, ensures that the
digital tools effectively identify, measure, or predict relevant
biological or functional states specific to the animal cohort and
the defined context of use.

The in vivo V3 Framework provides a distinct advantage over
the original DiMe V3 Framework for preclinical applications by
tailoring its verification, analytical validation, and biological
validation processes to accommodate the variability and
complexity inherent in animal studies. By adapting these
processes, the framework ensures that digital measures are
validated in a way that reflects their translational relevance,
thereby bridging the gap between preclinical findings and human
clinical outcomes. This adaptation is crucial for enhancing the
reliability and applicability of digital measures in drug
development, ultimately supporting the transition from
preclinical research to clinical trials. The in vivo V3 Framework’s
emphasis on tailored validation, including rigorous sensor
verification and replicability across species, makes it particularly
suitable for the diverse and variable settings encountered in animal
research. By elucidating each aspect of this in vivoV3 Framework for
Preclinical Applications, we aim to equip stakeholders with a
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structured pathway to seamlessly integrate and validate digital
measures within preclinical investigations.

Author contributions

SzB: Conceptualization, Writing–Original Draft, Writing–Review
and Editing, SuB: Conceptualization, Writing–Original Draft,
Writing–Review and Editing. SG: Conceptualization, Writing–Original
Draft, Writing–Review and Editing. MV: Conceptualization,
Writing–Original Draft, Writing–Review and Editing. ML:
Conceptualization, Writing–Original Draft, Writing–Review and
Editing. C-NL: Conceptualization, Writing–Original Draft,
Writing–Review and Editing. SM: Conceptualization,
Writing–Original Draft, Writing–Review and Editing. LN:
Conceptualization, Writing–Original Draft, Writing–Review and
Editing. NB-P: Conceptualization, Writing–Original Draft,
Writing–Review and Editing. BB: Conceptualization,
Writing–Original Draft, Writing–Review and Editing. NB:
Conceptualization, Writing–Original Draft, Writing–Review and
Editing, Visualization MRL: Conceptualization, Writing–Original
Draft, Writing–Review and Editing, Visualization and Project
Administration.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

We would like to acknowledge the larger 3Rs Collaborative’s
Translational Digital Biomarkers Initiative and the Digital In Vivo
Alliance for aiding the efforts of the authors.

Conflict of interest

Author SWB was employed by VeriSIM Life. Author
SEB was employed by AbbVie Inc. Author SG was employed
by Tecniplast SpA. Author MvG was employed by Evotec.
Author ML was employed by The 3Rs Collaborative. Author
C-NL was employed by Pfizer. Author SM was employed by
GSK. Author LN was employed by Noldus Information
Technology BV.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ali, S., Akhlaq, F., Imran, A. S., Kastrati, Z., Daudpota, S. M., and Moosa, M. (2023).
The enlightening role of explainable artificial intelligence in medical and healthcare
domains: a systematic literature review. Comput. Biol. Med. 166, 107555. doi:10.1016/j.
compbiomed.2023.107555

Allgaier, J., Mulansky, L., Draelos, R. L., and Pryss, R. (2023). How does the model
make predictions? A systematic literature review on the explainability power of
machine learning in healthcare. Artif. Intell. Med. 143, 102616. doi:10.1016/j.artmed.
2023.102616

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., et al.
(2021). Review of deep learning: concepts, CNN architectures, challenges, applications,
future directions. J. Big Data 8 (1), 53. doi:10.1186/s40537-021-00444-8

Baran, S. W., Bratcher, N., Dennis, J., Gaburro, S., Karlsson, E. M., Maguire, S., et al.
(2022). Emerging role of translational digital biomarkers within home cage monitoring
technologies in preclinical drug discovery and development. Front. Behav. Neurosci. 15,
758274. doi:10.3389/fnbeh.2021.758274

Baran, S. W., Gupta, A. D., Lim, M. A., Mathur, A., Rowlands, D. J., Schaevitz, L. R.,
et al. (2020). Continuous, automated breathing rate and body motion monitoring of rats
with paraquat-induced progressive lung injury. Front. Physiol. 11, 569001. doi:10.3389/
fphys.2020.569001

DIVA (2024). DIVA. Available at: https://diva.bio/home/.

FDA (2020). Bioanalytical method validation guidance for industry. FDA. Available
at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/
bioanalytical-method-validation-guidance-industry.

Fuochi, S., Rigamonti, M., Raspa, M., Scavizzi, F., de Girolamo, P., and D’Angelo, L.
(2023). Data repurposing from digital home cage monitoring enlightens new
perspectives on mouse motor behaviour and reduction principle. Sci. Rep. 13 (1),
10851. doi:10.1038/s41598-023-37464-8

Goldsack, J. C., Coravos, A., Bakker, J. P., Bent, B., Dowling, A. V., Fitzer-Attas,
C., et al. (2020). Verification, analytical validation, and clinical validation (V3):
the foundation of determining fit-for-purpose for Biometric Monitoring
Technologies (BioMeTs). npj Digit. Med. 3 (1), 55–15. doi:10.1038/s41746-
020-0260-4

Hosain, M. T., Jim, J. R., Mridha, M. F., and Kabir, M. M. (2024). Explainable AI
approaches in deep learning: advancements, applications and challenges. Comput.
Electr. Eng. 117, 109246. doi:10.1016/j.compeleceng.2024.109246

Izmailova, E. S., Demanuele, C., and McCarthy, M. (2023). Digital health technology
derived measures: biomarkers or clinical outcome assessments? Clin. Transl. Sci. 16 (7),
1113–1120. doi:10.1111/cts.13529

Leyens, L., Northcott, C. A., Maloney, L., McCarthy, M., Dokuzova, N., Pfister, T.,
et al. (2024). Why Language matters in digital endpoint development: harmonized
terminology as a key prerequisite for evidence generation. Digit. Biomark. 8 (1), 1–12.
doi:10.1159/000534954

Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, J., et al. (2022). Interpretable deep
learning: interpretation, interpretability, trustworthiness, and beyond. Knowl. Inf. Syst.
64 (12), 3197–3234. doi:10.1007/s10115-022-01756-8

Luxem, K., Mocellin, P., Fuhrmann, F., Kürsch, J., Miller, S. R., Palop, J. J., et al.
(2022). Identifying behavioral structure from deep variational embeddings of
animal motion. Commun. Biol. 5 (1), 1267–1315. doi:10.1038/s42003-022-
04080-7

Lynch, J. J., Castagné, V., Moser, P. C., and Mittelstadt, S. W. (2011). Comparison
of methods for the assessment of locomotor activity in rodent safety pharmacology
studies. J. Pharmacol. Toxicol. Methods 64 (1), 74–80. doi:10.1016/j.vascn.2011.
03.003

Macias Alonso, A. K., Hirt, J., Woelfle, T., Janiaud, P., and Hemkens, L. G. (2024).
Definitions of digital biomarkers: a systematic mapping of the biomedical literature.
BMJ Health Care Inf. 31 (1), e100914. doi:10.1136/bmjhci-2023-100914

Moresis, A., Restivo, L., Bromilow, S., Flik, G., Rosati, G., Scorrano, F., et al. (2024). A
minimal metadata set (MNMS) to repurpose nonclinical in vivo data for biomedical
research. Lab. Anim. 53 (3), 67–79. doi:10.1038/s41684-024-01335-0

Pernold, K., Rullman, E., and Ulfhake, B. (2023). Bouts of rest and physical activity in
C57BL/6J mice. PLOS ONE 18 (6), e0280416. doi:10.1371/journal.pone.0280416

Tse, K., Sillito, R., Keerie, A., Collier, R., Grant, C., Karp, N. A., et al. (2018).
Pharmacological validation of individual animal locomotion, temperature and
behavioural analysis in group-housed rats using a novel automated home cage

Frontiers in Toxicology frontiersin.org10

Baran et al. 10.3389/ftox.2024.1484895

https://doi.org/10.1016/j.compbiomed.2023.107555
https://doi.org/10.1016/j.compbiomed.2023.107555
https://doi.org/10.1016/j.artmed.2023.102616
https://doi.org/10.1016/j.artmed.2023.102616
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.3389/fnbeh.2021.758274
https://doi.org/10.3389/fphys.2020.569001
https://doi.org/10.3389/fphys.2020.569001
https://diva.bio/home/
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry
https://doi.org/10.1038/s41598-023-37464-8
https://doi.org/10.1038/s41746-020-0260-4
https://doi.org/10.1038/s41746-020-0260-4
https://doi.org/10.1016/j.compeleceng.2024.109246
https://doi.org/10.1111/cts.13529
https://doi.org/10.1159/000534954
https://doi.org/10.1007/s10115-022-01756-8
https://doi.org/10.1038/s42003-022-04080-7
https://doi.org/10.1038/s42003-022-04080-7
https://doi.org/10.1016/j.vascn.2011.03.003
https://doi.org/10.1016/j.vascn.2011.03.003
https://doi.org/10.1136/bmjhci-2023-100914
https://doi.org/10.1038/s41684-024-01335-0
https://doi.org/10.1371/journal.pone.0280416
https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2024.1484895


analysis system: a comparison with the modified Irwin test. J. Pharmacol. Toxicol.
Methods 94 (Pt 1), 1–13. doi:10.1016/j.vascn.2018.03.008

van Dam, E. A., Daniels, T. J., Ottink, L., van Gerven, M. A. J., and Noldus, L. P. J. J.
(2024). Fast annotation of rodent behaviors with AI assistance: human observer and
SmartAnnotator collaborate through active learning, 232–237.

van Dam, E. A., Noldus, LPJJ, and van Gerven, M. A. J. (2020). Deep learning
improves automated rodent behavior recognition within a specific experimental setup.
J. Neurosci. Methods 332, 108536. doi:10.1016/j.jneumeth.2019.108536

Van Dam, E. A., Noldus, LPJJ, and Van Gerven, M. A. J. (2023). Disentangling rodent
behaviors to improve automated behavior recognition. Front. Neurosci. 17, 1198209.
doi:10.3389/fnins.2023.1198209

van Dam, E. A., van der Harst, J. E., ter Braak, C. J. F., Tegelenbosch, R. A. J., Spruijt, B.
M., and Noldus, LPJJ (2013). An automated system for the recognition of various
specific rat behaviours. J. Neurosci. Methods 218 (2), 214–224. doi:10.1016/j.jneumeth.
2013.05.012

van Zyl, C., Ye, X., and Naidoo, R. (2024). Harnessing eXplainable artificial
intelligence for feature selection in time series energy forecasting: a comparative
analysis of Grad-CAM and SHAP. Appl. Energy 353, 122079. doi:10.1016/j.apenergy.
2023.122079

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak,
A., et al. (2016). The FAIR Guiding Principles for scientific data management and
stewardship. Sci. Data 3 (1), 160018. doi:10.1038/sdata.2016.18

Frontiers in Toxicology frontiersin.org11

Baran et al. 10.3389/ftox.2024.1484895

https://doi.org/10.1016/j.vascn.2018.03.008
https://doi.org/10.1016/j.jneumeth.2019.108536
https://doi.org/10.3389/fnins.2023.1198209
https://doi.org/10.1016/j.jneumeth.2013.05.012
https://doi.org/10.1016/j.jneumeth.2013.05.012
https://doi.org/10.1016/j.apenergy.2023.122079
https://doi.org/10.1016/j.apenergy.2023.122079
https://doi.org/10.1038/sdata.2016.18
https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2024.1484895

	Validation framework for in vivo digital measures
	1 Introduction
	2 Metadata, raw data, and consensus data
	3 In vivo V3 Framework for preclinical applications
	3.1 Protocols
	3.2 Verification
	3.3 Analytical validation
	3.4 Clinical validation

	4 Stakeholders and their roles and responsibilities with the V3 framework
	4.1 Role of collaboration and education

	5 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


