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Microplastics (MPs) have been detected in various aquatic environments and
negatively affect organisms, including marine luminous bacteria. This study
investigated the differences in bioluminescence patterns, cell viability, and
biofilm formation of Photobacterium leiognathi strains (LB01 and LB09) when
exposed to various concentrations of groundmicroplastics (GMPs; 0.25%, 0.50%,
1%, or 2% [w/v] per mL) at 22°C or 30°C for 3.1 days (75 h) and 7 days. The strains
exhibited heterogenous responses, including variable bioluminescence patterns,
cell viability, and biofilm formation, due to the GMPs having effects such as
hormesis and bioluminescence quenching. Moreover, the bioluminescence and
cell viability differed between the two strains, possibly involving distinct cellular
mechanisms, suggesting that GMPs affect factors that influence quorum sensing.
Furthermore, the biofilm formation of LB01 and LB09 was observed following
exposure to GMPs. Both strains showed increased biofilm formation at higher
GMP concentrations (1% and 2%) after 3.1 days at 30°C and 22°C. However, in the
7-day experiment, LB01 significantly (p < 0.05) increased biofilms at 22°C, while
LB09 significantly (p < 0.05) produced biofilms at 30°C. These findings highlight
the strain-specific responses of Phb. leiognathi to MP pollutants. Therefore, this
study underscores the importance of evaluating MPs as environmental stressors
on marine microorganisms and their role in the ecophysiological repercussions
of plastic pollution in aquatic environments.

KEYWORDS

plastic pollution, quorum sensing, luminous bacteria, hormesis, ecophysiology

1 Introduction

The inexorable influx of plastics into the marine environment represents a profound
ecological challenge, with microplastics (MPs) and nanoplastics emerging as pervasive
contaminants (Alimi et al., 2018; Zhang and Xu, 2020). MPs, typically measuring <5 mm
(<0.2 inches), are characterized by their small size, elasticity, and ability to permeate diverse
environments, including aquatic ecosystems (Andrady, 2017; Mattson et al., 2018; Boyle
and Örmeci, 2020). The extensive distribution of these plastic particles poses significant
risks to aquatic life. Aquatic organisms, from microscopic zooplankton to large aquatic
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mammals, can ingest MPs that can cause adverse effects (Lusher
et al., 2015; Rummel et al., 2016). In particular, the leaching of
adsorbed or inherent toxic substances from ingested plastic particles
(such as phthalates, bisphenol A, and persistent organic pollutants)
can disrupt their endocrine and reproductive systems. These toxins
can be transferred up the food chain, thereby posing risks to
predator species and human health (Gallo et al., 2018). These
risks extend not only to the organisms that form the backbone of
aquatic food webs but also to marine microorganisms, including
luminous bacteria (LB).

LB are fundamental to the maintenance of a marine ecosystem’s
integrity, from nutrient recycling (Thompson and Polz, 2006) to the
health of higher trophic organisms, which involves symbiosis (Stabb
et al., 2008). LB are involved in nutrient turnover, breaking down
organic materials and converting them into molecules for use by
other marine organisms. Moreover, LB often engage in symbiotic
interactions with fish and invertebrates, providing them with
benefits such as camouflage, attraction of prey, or deterrence of
predators due to their light-emitting capabilities. Examples of LB are
species belonging to the genera of Aliivibrio (such as Aliivibrio
fisheri, and Aliivibrio salmonicida), Vibrio (such as Vibrio harveyi),
and Photobacterium (such as Phb. phosphoreum, and Phb.
leiognathi). Many LB are equipped with a sophisticated cell-to-
cell communication system known as quorum sensing (QS) system,
which regulates numerous physiological responses including
bioluminescence (Chong et al., 2013; Wang et al., 2022) and
biofilm formation (Hammer and Bassler, 2003).

QS is mediated by the production and detection of signaling
molecules, which enable the bacterial population to collectively
coordinate gene expression and effectively “decide” when to
activate certain genes based on the density of their population
(Anetzberger et al., 2009; Lupp et al., 2003). This mechanism also
influences cell viability in several ways, including by affecting
virulence factor production, resource allocation, stress responses,
and biofilm formation. The latter is particularly significant, with QS
triggering a cascade of genetic and biochemical events that lead to
the establishment, development, and maturation of biofilms, which
are critical for bacterial survival and adaptation in various
environments (Subramani and Jayaprakashvel, 2019). Therefore,
this regulatory system enables bacteria within biofilms to optimize
resource use, enhance defense mechanisms, and synchronize
activities, such as dispersal or virulence, significantly impacting
their interactions with hosts and the environment (Subramani
and Jayaprakashvel, 2019; Warrier et al., 2021).

Environmental pollutants, including MPs and heavy metals,
have been shown to affect QS in marine bacteria, with potential
implications for their survival and ecological functions. For example,
a range of compounds, including MP beads, Cu2+, Gd3+, and
nanoAg, have been shown to affect QS in A. fisheri at non-toxic
concentrations (Gagné, 2017). Although the changes were more
modest, the study found that exposure to these compounds
disrupted bioluminescence and altered the QS between A. fisheri
cells. This is particularly noteworthy as it provides the first evidence
that MPs and other toxic chemicals can disrupt bacterial QS. In
addition, previous studies have reported that MPs acted as substrates
for microbial communities that allowed biofilm communities to
form and thrive (Tu et al., 2020; Valentin et al., 2016). In the present
study, the impact of ground MPs (GMPs) on Phb. leiognathi was

investigated, with a focus on three critical aspects: bioluminescence,
cell viability, and biofilm formation. Phb. leiognathi is a marine LB
that thrives in symbiosis with certain marine organisms (e.g., fish
and squids), and is also free-living in the ocean (Thirukumar et al.,
2022; Naguit et al., 2014; Yaser et al., 2014). The presence of MPs in
aquatic ecosystems has raised concerns about potential
ecophysiological effects. By observing changes in
bioluminescence, the present study assessed the effects of GMPs
on Phb. leiognathi QS. Additionally, using MTT assays provided
insights into the effects of GMPs on bacterial viability. A post-
exposure recovery experiment was conducted to evaluate whether
Phb. leiognathi could achieve the same state as the unexposed group,
using bioluminescence response as an indicator, after GMP
exposure. Finally, examining the biofilm formation by Phb.
leiognathi helps us to understand the implications of plastic
pollution for bacterial colonization. Hence, this study contributes
to the understanding of how plastic particles as environmental
stressors affect LB and their potential ecophysiological roles in
aquatic environments.

2 Materials and methods

2.1 LB isolation and purification

Freshly caught squids were bought from a local wet market in Al
Ain, United Arab Emirates. The squids were placed in an ice box and
transported immediately to the laboratory. The squids were
dissected, and the ink sac was identified. The ink sac was gently
opened using a sterile scalpel and the ink was collected by absorption
using a sterile cotton swab and aseptically transferred into a test tube
containing 0.85% saline solution. The solution was then serially
diluted up to 10–4 and 0.1 mL was spread plated onto sea water agar
(SWA; HiMedia®) plates and incubated at 28°C for 48 h. The spread
plating was conducted in duplicates. After incubation, each plate was
visually observed in the dark for LB colonies. The plates without LB
colonies were further incubated for another 24 h. To obtain pure
isolates, an LB colony from each plate was picked using an
inoculating needle, streaked onto a new SWA plate, and observed
after incubation at 28°C for 48 h. The pure LB isolates were then
subjected to bioluminescence screening.

2.2 Bioluminescence screening

To determine the bioluminescence intensity and select the most
suitable isolates for further study, 14 LB isolates were subjected to
bioluminescence screening (Bao et al., 2023). The positive control
was Escherichia coli DH108 transformed with plasmid
pJE202 expressing the Lux operon genes from Vibrio fisheri.
Overnight cultures of the LB isolates were incubated on SWA
plates at 28°C for 48 h. E. coli DH108 was incubated on a plate
containing Luria–Bertani agar with ampicillin at 35°C for 48 h. After
incubation, colonies were picked from the plates and transferred to a
test tube containing 0.85% saline solution. The cell density of each
suspension was determined with reference to the 0.5 McFarland
standard (~1.5 × 108 CFU/mL). A loopful (HiMedia® Hi-FlexiLoop
2; 2.0 mm in diameter, calibrated to 0.005 mL) of each suspension
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was inoculated in tubes containing 10 mL artificial sea water broth
(HiMedia®) with 0.25% [w/v] yeast extract (HiMedia®) and 0.5% [w/
v] tryptone type-1 (HiMedia®) (ASW-YE-T) and incubated at 28°C
while shaking (120 rpm) in a shaking incubator (Bioevopeak Co.,
Ltd., shaking incubator) for 48 h. For E. coli DH108, Luria–Bertani
broth with ampicillin was used. After incubation, 200 µL of
inoculum from each culture was transferred to a well of a
microtiter plate (black, flat bottom, 96 wells, Costar®), with nine
replicates. Themicrotiter plate was covered with foil and left to stand
for 10 min before reading. The bioluminescence intensity was
measured using a GloMax® Discover Microplate Reader
(Promega Corporation, Madison, WI, USA) with a 10-s
integration period prior to reading. Bioluminescence is reported
as specific bioluminescence (SB), which is the log-transformed
values relative light unit (RLU). As a result, two LB strains were
selected: LB01 and LB09. Stock cultures of these bacteria were
maintained in cryovials containing 20% [w/v] NaCl–trypticase
soy broth with 20% [v/v] glycerol and stored at − 20°C for
further study.

2.3 Identification of LB isolates

2.3.1 DNA extraction
DNA materials were extracted from the two LB strains using a

G-spin™ genomic DNA extraction kit (iNtRON Biotechnology Inc.,
South Korea) following the manufacturer’s protocol. Briefly, 24-h
old cultures were prepared and 1 mL aliquot was transferred into a
microcentrifuge tube to collect cells by centrifugation (15,500 × g for
1 min). The supernatant was discarded and 300 µL of buffer solution
was added. The tubes were vortexed and incubated in a heat block at
65°C for 15 min with gentle invert mixing every 5 min. Next, 250 µL
of binding buffer was added and gently vortexed. Thereafter, the cell
lysates (~550 µL) were loaded into spin columns, centrifuged
(15,500 × g for 1 min), and washed twice with 500 µL of
washing buffer. The columns were then placed in a new
microcentrifuge tube and 50 µL of elution buffer was added
directly onto the membrane of each column. The tubes were
incubated at 25°C for 1 min and then centrifuged (15,500 × g for
1 min). Finally, the DNA concentrations were measured using a
NanoDrop™ 2000/2000c spectrophotometer (Thermo Fisher
Scientific Inc., MA, USA).

2.3.2 PCR amplification, purification, and gel
electrophoresis

The extracted DNA was amplified using a PCR amplification
kit (TaKaRa Bio Inc., Japan). The primers 27f (5′-AGAGTTTGA
TCCTGGCTCAG-3′) and 1492r (5′-CTACGGCTACCTTGTTAC
GA-3′) were purchased from Gene Link™, Inc. The PCR mixtures
were prepared by combining 38.75 µL of sterile nuclease-free
water, 2.5 µL of 10× PCR buffer, 2.5 µL of MgCl2, 4 µL of
dNTP mixture, 0.5 µL of each primer, 1 µL of DNA sample,
and 0.25 µL of Taq DNA Polymerase (TaKaRa). Touchdown
PCR was performed using a T-100™ thermal cycler (Bio-Rad
Laboratories Inc., Hercules, CA, USA) under the following
conditions: initial denaturation at 95°C for 3 min; 29 cycles of
denaturation at 95°C for 30 s, annealing at 68°C for 30 s, and
extension at 72°C for 30 s; then another 29 cycles of denaturation at

95°C for 30 s, annealing at 60°C for 30 s, and extension at 72°C for
30 s; termination at 72°C for 5 min; and storage at 4°C until use.
The PCR amplicons were purified using a MEGAquick-spin™ plus
Total Fragment DNA Purification Kit (iNtRON Biotechnology
Inc., South Korea). Next, 10 µL of the PCR amplicons was
transferred to a microcentrifuge tube and 250 µL of lysis buffer
was added. The mixture was then loaded into a column in a
collection tube and centrifugation (at 11,000 × g for 30 s). Next,
750 µL of washing buffer was added to the column and centrifuged
(at 11,000 × g for 30 s). To dry the column membrane,
centrifugation at full speed (18,000 × g) for 3 min was
conducted. Thereafter, the column was placed into a new
microcentrifuge tube and 40 µL of elution buffer was added to
the membrane center and left to stand for 1 min. Finally,
centrifugation at full speed for 1 min was conducted to elute
the DNA. The purified PCR amplicons were subjected to gel
electrophoresis to check the quality and quantity. Next, 8 µL of
each purified PCR product with 2 µL of loading dye was loaded
onto 1% agarose gel well and run in 1X Tris–acetate–EDTA (TAE)
buffer at 100 V for 45 min. A 1-kb molecular DNA ladder (New
England Biolabs®, Beverly, MA, USA) was used. The gel was viewed
under UV light using a Gel Doc™ EZ Imager with Image Lab™
software version 5.0 (Bio-Rad Laboratories Inc.,
Hercules, CA, USA).

2.3.3 DNA sequencing
The purified PCR amplicons were subjected to Sanger

sequencing and fragment analysis by capillary electrophoresis
using a 3,500 Genetic Analyzer (Applied Biosystems, Thermo
Fisher Scientific). The obtained sequences were checked and
cleaned using 4peaks version 1.8 (www.nucleobytes.com). The
cleaned sequences were run against the 16S ribosomal RNA
sequence database for Bacteria and Archaea available from
GenBank® (https://www/ncbi.nlm.nih.gov) using Basic Local
Alignment Search Tool (BLAST; National Center for
Biotechnology Information, Bethesda, MD, USA). LB01 was
identified as Phb. leiognathi subsp. mandapamensis, while
LB09 was identified as Phb. leiognathi.

2.4 Preparation of ground
microplastics (GMPs)

Microbeads, which made of polyethylene with inorganic metal
pigments, extracted from cosmetic products by Habib et al. (2020)
were used in this study. First, 10 g of microbeads were rinsed using
type 1 ultrapure water to remove unwanted particulates, submerged
in 70% ethanol for 30 min, washed with deionized water, and dried
at 45°C in a hot air oven (Daihan Scientific Co., South Korea). The
beads were ground using a sterile pestle and mortar and then
exposed to UV light overnight. A small amount (0.01 g) of the
GMPs were observed under a stereomicroscope (Leica Zoom 2000).
The size of GMPs was measured using the ImageJ software (https://
imagej.net/ij/) and the size distribution was determined
(Supplementary Figure S1). To ensure asepsis, 0.1 g of GMPs was
transferred into several tubes containing trypticase soy broth and
incubated at 35°C for 48 h. After incubation, no tube
showed turbidity.
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2.5 Growth kinetics and bioluminescence
profiles of Phb. leiognathi strains

The Phb. leiognathi strains in stock cultures were revived in
tubes containing ASW-YE-T broth and incubated at 28°C for 48 h.
Revived bacterial cells were collected by repeated centrifugation
(6,000 × g for 10 min) and resuspended in phosphate-buffered
solution (PBS, pH 7.4). The optical density at 600 nm (OD600) was
determined and adjusted to 0.5–0.8 (Swift et al., 1993; Ahmad et al.,
2012; Muneeswaran et al., 2021). To initially determine the optimal
temperature for peak bioluminescence, an experiment was
conducted across a temperature range of 15°C–35°C. After 48 h
of incubation, bioluminescence intensity was measured at each
temperature, revealing that the highest levels were observed at
22°C and 30°C. The said temperatures were selected for this
study to characterize growth kinetics and bioluminescence of
Phb. leiognathi strains.

Freshly revived bacterial cells were collected, and new
suspensions were prepared. Subsequently, 3 µL of the suspension
was inoculated into tubes containing 15 mL ASW-YE-T broth and
incubated at 22°C or 30°C while shaking (120 rpm). The bacterial
growth was monitored over time (until it reached the death phase)
by transferring 200 µL to a microtiter plate well and measuring the
OD600 using a GloMax® Discover Microplate Reader (Promega
Corporation, Madison, WI, USA).

2.6 GMP exposure experiment

To investigate the effects of GMPs on Phb. leiognathi strains,
fresh cultures of the strains in the exponential growth phase were
prepared. An aliquot was transferred into a microcentrifuge tube
and the cells were harvested by centrifugation (6,000 × g for
10 min). The supernatant was carefully discarded, and the
pellet was washed twice with PBS (pH 7.4) and then
centrifuged again (6,000 × g for 10 min). After washing twice
with PBS (pH 7.4), the supernatant was carefully discarded,
ensuring the pellet remained undisturbed. The OD600 was
adjusted to 0.5–0.8 and the bacterial suspension was
immediately used for the GMP exposure experiment. Various
GMP concentrations (0.25%, 0.50%, 1.00%, and 2.00% [w/v] per
mL) were added to tubes containing 15 mL of ASW-YE-T broth.
Control tubes contained ASW-YE-T broth without GMPs. Next,
10 µL of the bacterial suspension was transferred into each tube.
The tubes were then incubated at 22°C or 30°C while shaking
(120 rpm) in a shaking incubator (Bioevopeak Co., Ltd.). The
bioluminescence responses of the bacteria to different GMP
concentrations and temperatures were monitored over two
timeframes: (1) every 5 h for 3.1 days (75 h) to assess
immediate effects, and (2) every 24 h for 7 days to assess long-
term effects. To prevent nutrient depletion, double-strength ASW-
YE-T broth was added in the 7-day experiment. To assess the
bioluminescence, 200 µL (n = 3) from each tube was transferred to
each well of a black microtiter plate. The plate was covered with foil
and left undisturbed for 10 min. SB was then measured as
described in the Bioluminescence Screening section. This
experiment was conducted three times on separate occasions,
with triplicate wells (n = 9).

2.7 Post-exposure recovery experiment

This experiment was conducted to determine whether Phb.
leiognathi strains previously exposed to GMPs for 3.1 days and
7 days can recuperate based on their bioluminescence intensities.
A 1-mL aliquot of the bacterial culture was carefully pipetted
from the tubes in 3.1-day and 7-day GMP exposure experiment,
transferred into a microcentrifuge tube, and centrifuged (6,000 ×
g for 10 min). Next, the supernatant was carefully discarded, the
pellet was washed three times with PBS (pH 7.4), and then
resuspended in PBS (pH 7.4). The OD600 was measured,
adjusted to 0.5–0.8, and 10 µL of each prepared bacterial
suspension was transferred into tubes containing 15 mL ASW-
YE-T broth. The tubes were then incubated for 35 h at 22°C or
30°C while shaking (120 rpm). The bioluminescence responses of
the strains were monitored every 5 h for 35 h. Then, 200 µL (n =
3) from each tube was transferred to the wells of a black
microtiter plate. The plate was covered with foil and left
undisturbed for 10 min. Next, the SB was measured as
described in the Bioluminescence Screening section. This
experiment was conducted three times on separate occasions,
with triplicate wells (n = 9).

2.8 MTT assay

The cell viability of Phb. leiognathi strains after exposure to
varying GMP concentrations were assessed using MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays
with modifications (Wang et al., 2010). To prepare the MTT
solution, 50 mg of MTT powder (bioWORLD, GeneLinx
International, Inc. USA) was dissolved in 10 mL deionized
water while stirring at 37°C. The solution was stored in
microcentrifuge tubes at − 20°C until use. 3 μL of each bacterial
suspension was inoculated in a well of a microtiter plate (clear, flat
bottom, 96 wells, Costar®) containing 100 µL of ASW broth. The
plate was incubated at 22°C or 30°C for 8 h. Next, 10 µL of MTT
solution was added using a multi-channel pipette (Eppendorf
Research®) and left to stand for 20 min. Thereafter, the broth
was removed by gentle pipetting and 100 µL of dimethyl sulfoxide
(purity >99%; Merck, Darmstadt, Germany) was added. The
OD560 was measured using a microtiter plate reader after
shaking the plate for 10 s. Each OD value was corrected based
on the blank (medium without cells), and the mean corrected OD
values were then calculated. This experiment was conducted with
replicates (n = 12).

2.9 Crystal violet biofilm formation assay

The biofilm formation of Phb. leiognathi strains after GMP was
assessed using the method (De Jesus and Dedeles, 2020) with
modifications. To initiate biofilm formation, 1% (w/v) squid’s ink
solution was used to coat the wells of a microtiter plate (clear, flat
bottom, 96 wells, Costar®). The ink was collected from a squid’s ink
sac using a sterile syringe and added to sterile deionized water. The
ink solution was heated at 55°C for 10 min and then 100 µL was
transferred to the wells and the microtiter plate was placed in an
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incubator overnight. Next, the contents were removed from the
wells and 100 µL of double-strength ASW-YE-T broth was added
to the wells. The wells were then inoculated with 3 µL of bacterial
suspension and incubated at 22°C or 30°C while shaking (150 rpm)
for 48 h. After incubation, the broth was removed by gentle
pipetting, replenished with freshly prepared ASW-YE-T to
support the biofilm formation, and incubated again at the
previously mentioned temperatures for 48 h. The growth in
microtiter plate wells was assessed based on the OD600 using
the GloMax® Discover Microplate Reader. Using a multi-
channel pipette (Eppendorf Research®), the broth of each well
was removed, and the wells were gently washed once with 200 µL of
sterile PBS (pH 7.2), and then air-dried for 20 min. The attached
biofilms in the wells were stained with 130 µL of 1% (v/v) crystal
violet solution (HiMedia®) for 5 min and washed three times with
200 µL of sterile distilled water. The stained biofilms in the wells
were solubilized with 130 µL of absolute ethanol (Carlo Erba,
Milan, Italy) and the OD560 was assessed. The results were
expressed as specific biofilm formation (SBF), calculated as (A –

B)/C,where A is the OD560 of the stained biofilms, B is the OD560 of
the stained blank control wells (to eliminate non-specific or abiotic
OD values), and C is the OD600 of bacterial growth in ASW-YE-T
broth. The assay was performed in replicates (n = 9).

2.10 Data analysis

The bioluminescence intensities were normalized (min-max
scaling; 0–1) to reduce potential errors. The differences in mean
OD values in MTT assays and the mean SBF in biofilm formation
assays (control groups vs. exposed groups) were examined using
two-way ANOVA, followed by Dunnett’s post hoc analysis in
Graphpad Prism 10 (version 10.2.3). p < 0.05 was accepted as
statistically significant, indicating reliable differences between
control groups and exposed groups.

3 Results

3.1 Bioluminescence and growth dynamics
of Phb. leiognathi strains

Two LB isolates, LB01 and LB09, identified as Phb. leiognathi
subsp. mandapemensis and Phb. leiognathi, respectively, were
selected based on their increased bioluminescence intensity after
incubation at 28°C for 48 h (Figures 1A, B). The mean SB of
LB01 was 6.04E+06, whereas LB09 exhibited a 1.7 times higher
mean SB of 1.04E+7. This indicates that LB09 has a significantly

FIGURE 1
Bioluminescence assay and growth phases of Phb. leiognathi strains LB01 and LB09. (A) Bioluminescence assays. The mean specific
bioluminescence (SB) was 6.04 E+06 for LB01, 1.04 E+07 for LB09, and 6.60 E+06 for the positive control (E. coli DH108 transformed with plasmid
pJE202 expressing the Lux operon genes from V. fisheri. (B) LB01 and LB09 grown on seawater agar (SWA) plates after a 48-h incubation period at 28°C.
(C, D) Growth phases of LB01 and LB09 at two distinct temperatures: 22°C and 30°C.
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FIGURE 2
Heatmaps of the heterogenous bioluminescence responses of Phb. leiognathi strains LB01 and LB09 over 3.1 days at different ground microplastic
(GMP) concentrations and two different temperatures, 30°C and 22°C. (A) At 30°C, prolonged bioluminescence activity of LB01were observedwith higher
concentrations vs. lower GMP concentrations, indicating an enhanced response to GMPs, while the bioluminescence of LB09 exhibited shorter
bioluminescence responses at this temperature, suggesting a possible inhibitory threshold. (B) Microtiter plate displaying bioluminescence of LB
strains exposed to different GMP concentrations at 30°C and specified time points. Biphasic bioluminescencewas observed in LB01 exposed to 0.5%GMP
concentrations (in red broken lines). (C) At 22°C, both strains demonstrated uniform patterns of bioluminescence when compared to the control
group. (D) Microtiter plate displaying bioluminescence of LB strains exposed to different GMP concentrations at 22°C and specified time points.
LB09 exposed at a 2% GMP concentration exhibited prolonged and gradual bioluminescence response, as indicated by the red broken lines.
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FIGURE 3
Heatmaps of the heterogenous bioluminescence responses of Phb. leiognathi strains LB01 and LB09 over 7 days at different ground microplastic
(GMP) concentrations and two different temperatures, 30°C and 22°C. (A) At 30°C, both strains exhibited early pronounced bioluminescence compared to
control groups. Biphasic bioluminescence patterns were observed in LB01 exposed to lower GMP concentrations (0.25% and 0.5%) (red broken lines). (B)
Microtiter plate displaying bioluminescence of LB strains exposed to different GMP concentrations at 30°C and specified time points. (C) At 22°C,
delayed bioluminescence was observed in LB01 exposed to lower GMP concentrations but earlier peaks at higher concentrations (1% and 2%). Potential
biphasic bioluminescence pattern was observed in LB09 at 0.5% GMP concentration, as indicated in red broken lines. (D) Microtiter plate displaying
bioluminescence of LB strains exposed to different GMP concentrations at 22°C and specified time points.
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higher bioluminescence capability than LB01. Nevertheless, both
strains were studied further.

The growth dynamics of both strains were monitored at two
distinct temperatures, 22°C and 30°C, to assess temperature-
dependent growth variations (Figures 1C, D). At 22°C, both
strains exhibited similar growth phases. The lag phase
started <1 h and was immediately followed by the
exponential phase. However, at 30°C, LB01 had a <2 h lag
phase then followed by a prolonged exponential phase, which
continued until approximately 32 h (Figure 1C). On the other
hand, LB09 had a 1.5-h lag phase and a shorter exponential
phase, which lasted until between approximately 22.5 h
(Figure 1D). Both strains exhibited faster growth at the lower
temperature.

3.2 Phb. leiognathi bioluminescence varied
with GMPs concentration

The effects of GMPs on the bioluminescence intensities of the
two Phb. leiognathi strains at 22°C or 30°C were investigated. The SB
values were presented in Supplementary Tables S1, S2). The
bioluminescence intensities of the two strains exposed to varying
GMP concentrations were found heterogeneous (Figures 2, 3).

In the 3.1-day experiment, which was used to assess the
immediate effects, both strains displayed early peaked of
bioluminescence intensity compared to the control group at 30°C
(Figures 2A, B), suggesting an upregulation of QS in response to
GMP exposure. Interestingly, a biphasic bioluminescence was
observed in LB01 exposed at 0.5% GMP concentration that could
reflect adjusted QS in response to the presence of GMPs (Figure 2A).
These early bioluminescent responses of the two strains are
indication of hormetic effect, where low-dose exposure triggers a
stimulatory response. At 22°C, both strains exhibited uniform
patterns of bioluminescence when compared to the control
group, except for LB09 exposed to 2% GMP concentration
(Figures 2C, D).

The 7-day experiment involved monitoring the bioluminescence
of both strains at both temperatures, with varying GMP
concentrations, which was used to assess the long-term effects of
plastic particles (Figure 3). At 30°C, an obvious biphasic
bioluminescence phenomenon was observed in LB01 at lower
concentrations (0.25% and 0.5%) (Figure 3A). Furthermore, the
strain also demonstrated biphasic-dose response, where biphasic
bioluminescence observed at lower concentrations and a potential
bioluminescence quenching (an inhibitory effect) at higher
concentrations (1% and 2%) (Figure 3A). At 22°C, both strains
showed complex bioluminescence responses (Figures 3C, D).
LB01 exposed to lower concentrations showed delayed
bioluminescence peaks (Figure 3C). In contrast, LB09 displayed
initial bioluminescence peaks across all GMP concentrations, with a
potential biphasic bioluminescence pattern observed specifically at
the 0.5% GMP (Figure 3C).

Overall, these results highlight the heterogenous
bioluminescence patterns of Phb. leiognathi strains to GMP
exposure, with strain-specific responses emerging based in GMP
concentration and temperature that lead to differences in their
physiological adaptation. Furthermore, the observed biphasic

bioluminescence and hormesis underscore the complex
interactions between bacterial metabolic processes and
MP stressors.

3.3 Phb. leiognathi demonstrated
heterogenous recovery responses

A post-exposure recovery experiment was conducted to
determine whether the two strains previously exposed to GMPs
for 3.1 days and 7 days could recuperate from the effects of this
exposure. The SB values for the first 35 h were presented in
Supplementary Tables S3, S4). Following the 3.1-day GMP
exposure, the bioluminescence responses of LB01 exposed to all
GMP concentrations were comparable to those of the control group,
except at 2% GMP, indicating that the strain was able to recuperate
from the effects of GMPs at low concentrations (Figure 4A).
However, early bioluminescence peaks were observed in
LB09 following exposure to 0.5%, 1%, and 2% GMPs, but the
bacteria exposed to 0.25% displayed slower peaking of
bioluminescence (Figure 4B). At 22°C, early bioluminescence
peaks were still observed in LB01 following 3.1-day exposure to
GMPs (Figure 4C), while LB09 showed contrasting responses, where
the bacteria exposed at higher GMP concentrations have
bioluminescence patterns comparable to the control
group (Figure 4D).

Following the 7 days GMP exposure, LB01 at 30°C displayed
slower peaking of bioluminescence, while exposure to higher
GMP concentrations (1% and 2%) remained incomparable with
the control group (Figure 5A). Similarly, LB09 exposed to 0.25%
GMP concentration at the same temperature also showed slower
peaking of bioluminescence, but exposure to 0.5%, 1% and 2%
GMP concentrations created initial peaks of bioluminescence
(Figure 5B). At 22°C, the bioluminescence responses of
LB01 exposed to lower GMP concentrations were comparable
to those of the control group (especially at 0.5% GMP
concentration), except at 2%, indicating that the strain was
able to recuperate from the effects of GMPs at low
concentrations (Figure 5C). However, early bioluminescence
peaks were observed in LB09 following exposure to 0.5%, 1%,
and 2% GMPs, but the bacteria exposed to lowest GMP
concentration also displayed slower peaking of
bioluminescence (Figure 5D).

3.4 Phb. leiognathi viability varied with GMP
concentrations

MTT assays were performed to evaluate the effects of GMPs on
the cell viability of both strains under different experimental
conditions (Figure 6). Then, the mean OD560 readings were
determined and presented in Supplementary Tables S5, S6). In
the 3.1-day experiment at 30°C, LB09 showed no significant
decrease in viability compared to the control group (Figure 6A).
LB01, where a hormetic effect of low GMP concentrations was
previously observed, exhibited with no significant differences in
viability at 0.25% and 0.50% GMP concentrations compared to the
control groups (Figure 6A). At 22°C, LB01 revealed a significant (p <
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0.05) decrease in viability after exposure at all GMP concentrations
compared to the control group (Figure 6B). Conversely, LB09 had
distinct MTT assays results at the same temperature. The viability
decreased significantly (p < 0.05) at low concentrations (0.25%
and 0.5%) compared to the control group, but not at high
concentrations (1% and 2%), indicating possible adaptive
mechanisms (Figure 6B).

Extending the exposure period to 7 days yielded substantial
differences (Figures 6C, D). At 30°C, LB01 exhibited a significant
(p < 0.05) increase in viability at low concentrations (0.25% and
0.5%) vs. to the control group, but not at high concentrations (1%
and 2%) (Figure 6C). In contrast, LB09 demonstrated a significant (p <
0.05) decrease in viability compared to the control group at all
concentrations (Figure 6C). At 22°C, LB01 showed a significant (p <

FIGURE 4
Heatmaps of the bioluminescence recovery patterns in Photobacterium leiognathi strains LB01 and LB09 following 3.1-day GMP exposure at 30°C
(A, B) and 22°C (C, D).
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0.05) decrease in viability compared to the control groups at the 2%
GMP concentration, whereas LB09 generally exhibited a decrease in
viability at the 0.25% GMP concentration compared to control group
(Figure 6D). These observations suggest strain-specific differences in
bacterial viability to MPs through QS regulation, which influenced by
GMP concentration, temperature, and time exposure.

3.5 Effects of GMPs in biofilm formation of
Phb. leiognathi strains

The biofilm formation of the two strains was assessed
by crystal violet biofilm formation assays following GMP
exposure (Figure 7). The biofilms were quantified and

FIGURE 5
Heatmaps of the bioluminescence recovery patterns in Photobacterium leiognathi strains LB01 and LB09 following 7-day GMP exposure at 30°C (A,
B) and 22°C (C, D).
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expressed as SBF, which were presented in Supplementary
Tables S7, S8).

In the 3.1-day experiment at 30°C, the SBF of LB09 increased
significantly (p < 0.05) as the GMP concentration increases
compared to the control group (Figure 7A). Similarly,
LB01 produced significantly (p < 0.05) high SBF at all GMP
concentrations, except at 0.50%, compared to the control group
(Figure 7A). On the other hand, at 22°C, the SBF in both strains
increased vs. control group following exposure to GMP
concentrations, except at 0.50% (Figure 7B). In the 7-day
experiment, both strains showed contrasting SBF results at
different temperatures (Figures 7C, D). It was observed that the
LB01 and LB09 produced significantly (p < 0.05) low SBF as
compared to the control group at 30°C and 22°C, respectively
(Figures 7C, D). These observations suggest that there were
strain-specific responses based on their biofilm formation after
exposure to GMPs at lower temperature.

4 Discussion

The presence of plastics in the aquatic environment is
widespread and varied. Studies have shown that 94% of the
plastics entering the ocean settle on the sea floor, with an
estimated 70 kg of plastics per square kilometer of seabed.
About 1% of marine plastics are found floating at or near the

ocean surface, with a global average concentration of less than
1 kg/km2. However, this concentration increases in certain mid-
ocean locations, with the highest recorded concentration in the
North Pacific Gyre at 18 kg/km2 (Author Anonymous, 2016).
Plastic pollutants exist in ecosystems in various forms and sizes,
which can be classified as megaplastics, macroplastics,
mesoplastics, and MPs (Thushari and Senevirathna, 2020). Both
primary MPs (produced directly as MPs) and secondary MPs
(produced by the breakdown of larger plastic items) are widely
distributed across marine and coastal environments, in both water,
and sediments (Scherer et al., 2020; Lu et al., 2021). The
concentrations of MPs in global marine and coastal ecosystems
varies, ranging from 0.001 to 140 particles/m3 in water and from
0.2 to 8,766 particles/m3 in sediments globally (Thushari and
Senevirathna, 2020; Quaglia et al., 2023; Veettil et al., 2024).
These plastic particles can be ingested by fish and bivalves,
causing physical harm, and potentially blocking digestive tracts,
which can lead to starvation (Ryan, 2016; Egbeocha et al., 2018).
Chemical pollutants from plastics can leach into the tissues of these
animals, and the plastics can carry pathogens that increase the risk
of disease (Gallo et al., 2018). In addition, marine LB, such as Phb.
leiognathi, may exhibit impaired bioluminescence and cell viability
due to plastic exposure, as observed in this study. Furthermore,
biofilm formation on plastics can alter microbial communities
within marine ecosystems (Pinto et al., 2019; Rummel et al., 2017;
Zettler et al., 2013).

FIGURE 6
The cell viability of Phb. leiognathi strains LB01 and LB09 were assessed using MTT assays. Microtiter plate wells showing the production of red-
violet formazan, a reduced form of MTT, after 8-h incubation. (A, B) LB following exposure to GMPs after 3.1 days at 30°C and 22°C, respectively. (C, D) LB
following exposure to GMPs after 7 days at 30°C and 22°C, respectively. Control groups: (C). Asterisks indicate significant increase in formazan production
as compared to the control groups: *p < 0.05. Hashtags indicate significant decrease in formazan production as compared to the control groups:
#p < 0.05. Error bars are the 95% confidence interval.
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Bacterial bioluminescence is a complex mechanism regulated by
QS that plays a vital role in both ecological and physiological
processes (Anetzberger et al., 2009; Lupp et al., 2003). It has been
reported that microbeads disrupted QS in bacterial populations by
binding to autoinducer molecules (Gagné, 2017). The present study
revealed intricate disparities in the bioluminescence patterns of Phb.
leiognathi strains when exposed to different GMP concentrations at
different temperatures. One of the critical observations in this study
is the hormetic effect of low GMP concentrations in LB01 at 30°C in
3.1-day experiment. Hormesis is a dose–response phenomenon
characterized by low-dose stimulation and high-dose inhibition
(Calabrese and Baldwin, 2003), which is regulated by the QS
system (Lin et al., 2023; Sun et al., 2018). Numerous studies have
reported on the hormesis in various biota caused by environmental
pollutants. Fan et al. (2021) reported on induced hormesis in soil
microbial populations induced by cadmium and lead. Similar results
were found for Microcystis aeruginosa exposed to halogenated

organic pollutants (Zhang et al., 2022), Phb. phosphoreum
exposed to sulfonamides (Deng et al., 2012), and plant species
exposed to urban metal pollutants (Salinitro et al., 2021).
Moreover, a recent meta-analysis on the effects of MPs at
environmentally relevant concentrations (≤1 mg/L-1) on aquatic
biota also revealed hormesis regarding various endpoints, such as
behavior, genotoxicity, immunotoxicity, neurotoxicity, and
reproduction (Sun et al., 2021).

Another critical observation in this study is the bioluminescence
of high GMP concentrations in LB01 exposed for 7 days at 30°C.
Several environmental contaminants exhibit inhibitory effects,
resulting in various types of metabolic dysfunction. Aged tire
wear particles, which are among the microplastic pollutants in
the environment, were found to inhibit bacteria community
leading to negatively affecting nitrogen metabolism in marine
sediments (Liu et al., 2022). Aromatic compounds (such as
benzene, toluene, and furfural) detected in wastewater were

FIGURE 7
Biofilm formation of Phb. leiognathi strains LB01 and LB09was assessed using crystal violet biofilm formation assays. (A, B) Biofilm formation of both
strains exposed to GMPs vs. the control groups (red broken lines) for 3.1 days at 30°C and 22°C, respectively. (C, D) Biofilm formation of both strains
exposed to GMPs vs. the control groups (red broken lines) for 7 days at 30°C and 22°C, respectively. Asterisks indicate significant increase in biofilm
formation as compared to the control groups: *p < 0.05. Hashtags indicate significant decrease in biofilm formation as compared to the control
groups: #p < 0.05. Error bars are the 95% confidence interval.
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identified as growth inhibitors as they inhibited the metabolic
assimilation processes of purple phototrophic bacteria (San Martín
et al., 2021). It has been reported that membrane barrier impairment
and direct inhibition of enzyme systems by toxic pollutants are likely
to underlie bioluminescence quenching (Ismailov et al., 2000). In the
present study, bioluminescence was not directly correlated with cell
viability; while some conditions resulted in bioluminescence
quenching, the Phb. leiognathi strains’ cells remained largely
unaffected in terms of their ability to survive and grow (based on
MTT assays). This discrepancy suggests that the factors influencing
bioluminescence and cell viability are distinct and may involve
different cellular mechanisms. Sully et al. (2014) found that the QS
inhibitors disrupt bacterial behaviors, including biofilm formation,
without directly killing or inhibiting Staphylococcus aureus cells. In
addition, MPs are capable of adhering contaminants, which raises the
possibility theMPs could also bind signalingmolecules involved inQS
resulting to disrupted QS mechanism (Gagné, 2017). Thus,
bioluminescence alone may not be a reliable indicator of bacterial
viability in this context.

Previous studies have reported the effects of plastic particles at
different concentrations. For example, Liu et al. (2021) exposed
Streptomyces coelicolor to nanoplastics and found that the fatality
rate peaked (at 64.8%), when the particle size was 20 nm (tested
range: 20 nm–1 mm) and the concentration was 10 mg/L (tested
range: 0.1–10 mg/L). Tang et al. (2022) found that the polyethylene
MPs at 100 and 500 MP/L shifted the community structure of
sulfate-reducing bacteria. However, both Phb. leiognathi strains
showed notably strain-specific response patterns, which highlights
microbial variances in the presence of MPs. Yi et al. (2021) reported
that 160 mg/L polystyrene microspheres, with sizes ranging from
0.323 to 0.656 µm, inhibited E. coli growth but promoted Bacillus
cereus growth. They concluded that this difference is attributed to
the cell wall compositions and surface interactions between each
species and the polystyrene microspheres. The size of GMPs,
ranging from 25.5 µm to 2.81 mm (Supplementary Figure S1).
Larger particles (closer to 2.81 mm) may cause physical
disruption by blocking signaling molecules or altering the
microenvironment around the cells, which potentially hindering
QS. In contrast, smaller particles (closer to 25.5 µm) have a larger
surface area-to-volume ration, making them more likely to adsorb
chemicals or release additives, which could affect bacterial
metabolism more directly, resulting to bioluminescence alteration
either through stress responses or metabolic interference. Both Phb.
leiognathi strains used in the present study belong to the same genus
and share similar cell wall compositions, so their differing
“behaviors” under specific conditions suggest that other cellular
functions may influence their responses to GMPs.

The post-exposure recovery experiments conducted in this study
demonstrated that both strains exhibited heterogenous recovery
responses possibly that the response dynamics change within 3-day
and 7-day GMPs exposure due to the alteration in gene expression,
which eventually affecting QS mechanism responsible for
bioluminescence. For instance, genes regulating light production can
be upregulated or downregulated in response to environmental stress,
shifting in the timing of peak bioluminescence (Tu et al., 2008; de Nadal
et al., 2011; Zavilgelsky et al., 2015). Additionally, this study suggests
that the bioluminescence response to GMP exposure in Phb. leiognathi
strains is concentration-, time-, and temperature-dependent, which

emphasize the importance of temporal and physical factors on
evaluating the environmental impacts of pollutants on marine
organisms. The bacterial response from GMPs might influences QS
mechanisms, which are essential for coordinating bioluminescence in
bacterial populations. Plastic particles may influence signaling
molecules that bacteria use to communicate, resulting in a collective
bioluminescence response (Gagné, 2017). The premature
bioluminescence activities observed in this study emphasize the need
for further studies to understand the full ecophysiological consequences
of plastic exposure. Future research should focus on elucidating the
genetic and molecular mechanisms underlying these responses.

The present study indicates that biofilm formation in Phb.
leiognathi strains LB01 and LB09 is influenced by exposure to
different GMP concentrations, temperature, and exposure duration.
The crystal violet biofilm formation assays revealed distinct biofilm
development under varying conditions, suggesting complex
interactions between the set laboratory conditions and bacterial
behavior. The increased biofilm formation observed with higher
concentrations vs. lower GMP concentrations was due to bacteria
utilizing the GMPs as a substrate, which promoted adherence and
aggregation of bacterial cells. Plastics have been reported to be utilized
by bacteria as substrates and they induce bacterial aggregation (Ganesan
et al., 2022; Hossain et al., 2018; Ayush et al., 2022). For instance,
plastics with reduced hydrophobicity increased E. coli biofilm
formation and exopolysaccharide content (Ganesan et al., 2022).
Conversely, both strains have opposite biofilm formation responses
in 7-day experiment at 22°C. These observations may be attributable to
the differential metabolic responses of the bacteria at low temperature
(Price and Sowers, 2004). Additionally, the zeta potential of plastic
particles plays a significant role in biofilm formation (Ganesan et al.,
2022; Okshevsky et al., 2020; Saygin and Baysal, 2020). Amore negative
zeta potential generally enhances bacterial adhesion by reducing
electrostatic repulsion between bacterial cells and the plastic surface
(Abram et al., 2021). This effect was particularly evident at higher GMP
concentrations in the present study. Furthermore, the increased biofilm
production observed in this study corroborated previous findings that
plastics provide additional surface area that facilitates biofilm growth
(Ganesan et al., 2022; Webb et al., 2009; Semcesen and Wells, 2021).
However, at 22°C in 7-day experiment, the results for LB01 and
LB09 differed, pointing again to strain-specific responses to GMPs.
The increase in biofilm formation with higher GMPs, especially at 30°C
and over longer exposure periods, suggests that temperature and
exposure duration are critical factors in biofilm dynamics. Higher
temperatures generally enhance microbial activity and biofilm
stability, while longer exposure times allow bacteria to adapt and
optimize their biofilm-forming capabilities (Stepanović et al., 2003;
Bhagwat et al., 2021; Tu et al., 2021). These findings align with studies
that have shown that biofilm formation is a complex adaptive response
to environmental conditions, which includes factors such as nutrient
availability, temperature, and the presence of surfaces for attachment.

The environmental implications of our findings are significant,
given the escalating concerns surrounding plastic pollution in marine
ecosystems. The present study suggests that plastic particles, prevalent
in marine environments, may alter the natural bioluminescence
behavior of Phb. leiognathi potentially impacting ecological
interactions and energy transfer in these ecosystems, which can be
applied to explore the combined effects of multiple pollutants, on
microbial physiology in real marine environments. For instance,
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xenobiotics may alter bacterial biofilm formation, quorum sensing,
and bioluminescence (Gagné, 2017; Kumari et al., 2016), as well as
microbial interactions withMPs. On the other hand, this research will
benefit environmental scientists, marine biologists, and policymakers
by offering insights into the ecophysiological repercussions of MP
pollution. Understanding these interactions opens potential avenues
for biotechnological applications, such as developing sensitive
bioindicators for monitoring environmental pollution levels,
including the MPs. For future research, exploring longer exposure
durations, investigating gene regulation changes underlying the
cellular mechanisms, using different types of plastics, and
simulating more natural conditions to reflect the full complexity of
marine environments and MP interactions are warranted to better
understand the ecophysiological consequences of MP pollution.
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