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More than two decades ago, the advent of Nanotechnology hasmarked the onset
of a new and critical field in science and technology, highlighting the importance
of multidisciplinary approaches to assess and model the potential human hazard
of newly developed advanced materials in the nanoscale, the nanomaterials
(NMs). Nanotechnology is, by definition, a multidisciplinary field, that integrates
knowledge and techniques from physics, chemistry, biology, materials science,
and engineering to manipulate matter at the nanoscale, defined as anything
comprised between 1 and 100 nm. The emergence of nanotechnology has
undoubtedly led to significant innovations in many fields, from medical
diagnostics and targeted drug delivery systems to advanced materials and
energy solutions. However, the unique properties of nanomaterials, such as
the increased surface to volume ratio, which provides increased reactivity and
hence the ability to penetrate biological barriers, have been also considered as
potential risk factors for unforeseen toxicological effects, stimulating the
scientific community to investigate to which extent this new field of
applications could pose a risk to human health and the environment.
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The last 20 years of nanotoxicology

Pioneering in vitro studies have focused on understanding the basic interactions
between nanomaterials and biological systems and the mechanisms of nanomaterial
cellular uptake. Moreover, in the frame of risk assessment, assays have been developed
to evaluate cytotoxicity, genotoxicity and oxidative stress, leading to the production of high-
volume data on the mechanisms through which nanomaterials may exert adverse health
effects. The advent of the OMICS era has increased the data volume even more. From 2D
models to 3D models, increasing complexity has been added to the developed models, with
the aim tomore faithfully in vitro reproduce tissues and organ systems. Starting from simple
2D cell cultures, generally consisting of tumour cell lines, we have assisted to the
development of more sophisticated models using primary cells, often combined in
complex cultures to create new approach methodologies (NAMs) as tools for a more
reliable safety assessment of nanomaterials. Nearly all tissues have been modeled in vitro,
including the respiratory, immune, nervous, digestive, and reproductive systems. Moreover,
primary and internal biological barriers have been reproduced using advanced in vitro
models to represent the skin, lung and gut barriers, as well as the blood-placental and blood-
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brain barriers. A wide variety of nanomaterials have been tested for
their ability to affect barrier integrity and permeability, as well as for
their effects on the tissues across the barriers (Aengenheister et al.,
2019; Boos et al., 2021; Lacconi et al., 2022).

Additional complexity has been added by the development of
organoids and organ-on-chip models, for which, on the other hand,
the use of NM has demonstrated beneficial in reproducing with
better properties the organ of interest (Boos et al., 2021; Shen
et al., 2023).

Indeed, organoids have been used as physiologically relevant
models of the brain, colon, and lung to test the toxicity of different
NMs, such as, among others, carbon-based, silver, and silica
nanoparticles (Issa et al., 2024; Jiang et al., 2020; Kastlmeier
et al., 2022; Park et al., 2020). They have been also used to
investigate nano-bio interactions for nanomedicine applications
(Bao et al., 2023) and to improve organoid formation (Shen
et al., 2023). Organ-on-chip technology is still in its infancy
(Rogal et al., 2022); however, it presents several invaluable
advantages, such as reproducing human organ physiology and
tissue-tissue interactions in minimal dimensions and providing
human-relevant data (Bendre et al., 2022). In this respect, organ-
on-chip models of different organ systems, including skin, lung, liver
and kidney and the blood-placental-barrier have been developed for
hazard identification and risk assessment of NMs (Kohl et al., 2021;
Yin et al., 2019).

The increase in model complexity, although determining a
greater model validity, raises a major problem in term of
experimental standardization and data interpretation and
management.

Standardization represents a critical point to allow experimental
reproducibility and interpretation and potential applications of the
results. However, the interpretation of results has often been
challenging, as many variables may affect the data, including the
use of unrealistic concentrations, which may demonstrate toxicity
for otherwise low-toxic nanomaterials. Indeed, the raising attitude to
report sensational results, soliciting the fear from the community,
has in some cases led to the perception of nanotechnology as a
potential serious harm for human health, overshadowing its
undoubted benefits. In this respect, biosafety assessment has
become mandatory for the development of any new
nanomaterial, and over the last two decades, nanotoxicology
studies have allowed the identification of the physicochemical
properties driving toxicity and the emergence of the concept of
safe and sustainable by design (SSbD) as the basis for the
development of new materials.

A number of efforts have been made to develop strategies for
reducing the testing of NMs while characterizing their potential risks
to human health and the environment. The concepts of quantitative
structure-activity relationship (QSAR), grouping and read across
have been revisited for their application to NMs. QSAR is based on
computerized approaches to correlate toxicity and chemical
structure and provide information for grouping and read-across.
These strategies represent the first attempt to apply modelling and
artificial intelligence algorithms to identify and classify NM toxicity.
In the frame of grouping, over the last years, a number of physico-
chemical parameters have been tentatively recognized as important
to characterise NM and their potential toxicity, including among
others, chemical identity, size and particle size distribution, aspect

ratio, surface activity and reactivity and aging, and strategies have
been designed to identify the critical criteria for NM grouping
(Lynch et al., 2014). Nevertheless, the lack of detailed
descriptions of protocols and standardization in data collection
have hampered the possibility to develop defined algorithms for
unbiased grouping of NMs, although grouping would greatly reduce
the costs for NM risk assessment and would improve the SSbD
development of new NMs (Drasler et al., 2017; Ribeiro et al., 2017).
Moreover, in terms of costs, grouping, by allowing the categorization
of NMs into defined categories, represents the first step to allow the
application of read-across strategies to fill data gaps for NMs of
poorly characterized hazard, and to position them in groups of NMs
with well characterized nano-bio interaction. The application of
read-across approaches, however, requires the identification of a
wide range of physicochemical parameters that precisely
characterize the NM, limiting their use for some NMs. Moreover,
the application of read-across is strictly related to the endpoint of
interest, making evenmore complex its use. The European Chemical
Agency (ECHA) has recently produced a guidance document, Read-
Across Assessment Framework (RAAF), as a tool for the assessment
of grouping and read-across according to the REACH regulations.
This document provides valuable information for its application also
to NMs (ECHA, 2017).

AI application to nanotoxicology, how
far are we?

Although mathematical modelling has provided significant
progress in the management of the large volume of data
generated by nanotoxicology studies, challenges remain, including
the complexity of data interpretation, variability in experimental
results, and the necessity for high-throughput analysis. Moreover,
the correlation between data and information is often not trivial to
identify since, as already discussed, the quality of data may not
always allow the extraction of information. A solution to these
challenges may be represented by Artificial Intelligence (AI), defined
as “a machine-based system that can, for a given set of human-
defined objectives, make predictions, recommendations or decisions
influencing real or virtual environments”(OECD AI, 2020).
Algorithms of AI may be used to manage and integrate a vast
amount of data produced in the context of nanotoxicology and
hence provide information for the identification of shared features
for grouping and read-across. These algorithms could easily manage,
for example, the high-volume data obtained by OMICS approaches,
whose quality generally represents the optimal information to feed
machine learning. However, despite their high accuracy, AI model
predictions are often perceived as black boxes, especially in
healthcare decision-making. Therefore, the explainability or
interpretability of AI model predictions is crucial for providing
comprehensible cause-effect relationships (Holzinger et al., 2019). In
recent years, significant attention has been devoted to developing
various models, such as Causal and Graph Neural Networks, which
can compute the causal effect of each feature on the output
(Chattopadhyay et al., 2019; Simon et al., 2024). However, the
application of AI to nanotoxicology is still in its infancy. To date,
machine learning approaches have been applied to silver
nanoparticles with different sizes and surface coatings to predict
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protein corona formation, a parameter that may greatly influence
nano-bio interactions. A similar approach has been used to identify
the parameters mediating silver nanoparticle cytotoxicity by
extracting data from 162 independent experiments,
demonstrating exposure concentration and duration, zeta
potential, particle size, and coating as the most relevant features.
Similar approaches have been applied to extract predictors of
cytotoxicity for other types of NMs (Martin et al., 2023; Regonia
et al., 2022). In this respect, recently, we reported the use of machine
learning algorithms to identify nanoparticle chemical properties and
experimental settings relevant for predicting cytotoxicity of
12 different NMs (Conti et al., 2022). For this study, we used a
multicentre database of data collected under the EU funded COST
Action MODENA (MODENA, 2012; https://www.cost.eu/actions/
TD1204/). A regressor model based on extreme gradient boosting
(XGBoost) considering 22 nanoparticles descriptors was used to
identify the correlation with toxic effects; although the small size of
the database prevented the use of more powerful tools, we could
identify size in situ, shape surface charge and the type of test as the
most predictive parameters of toxicity. In this context,
understanding the features correlated with nanoparticle
cytotoxicity can enhance model interpretation, providing a clear
roadmap for predicting the toxicity of nanoparticles (Yu et al., 2021).
Simultaneously, extracting knowledge using transparent and
explanatory approaches can boost confidence in adopting AI
systems across various frameworks. For example, developing
quantitative relationships between nanostructure
(physicochemical properties) and toxicity offers novel insights
into the molecular mechanisms underlying toxicity (Yan et al.,
2023). However, much remains to be done to make these
automatic approaches more transparent, reliable, understandable,
and useable for humans. We can speculate that, based on the data
obtained from this type of analysis, AI tools may be applied to the
opposite perspective, namely for the purpose of designing and
efficiently producing NMs with specific requirements. Indeed, the
potential of machine learning in guiding the design process of
nanoparticles and contributing to their safe-by-design
development has been very recently discussed (Furxhi et al., 2024).

This perspective becomes of even greater value when NMs are
designed for biomedical applications, as AI tools may help
deciphering the minimal requirements for the development of
safe and effective instruments for nanomedicine. Several authors
have highlighted the benefit of applying AI methodologies for the
design and selection of nanobiomaterials to reduce the experimental
costs and allow the rapid translation from bench to bedside (Mendes
et al., 2024; Tomitaka et al., 2023). AI has the potential to address key
challenges in in vitro nanotoxicology and nanomedicine, offering
enhanced data analysis, predictive modeling, and experimental
optimization. By leveraging AI, researchers can achieve more
accurate, efficient, and comprehensive assessments of
nanomaterial biocompatibility and target delivery, overcoming
the need for in vivo studies and greatly reducing the number of
in vitro experiments, although still producing reliable information
on potential nanomaterial behavior.

Conclusion

The integration of AI in nanotoxicology holds significant
promise. AI applications in nanotoxicology can dramatically
enhance our ability to predict and understand the
toxicological profiles of nanomaterials. Indeed, machine
learning algorithms can analyse large datasets to identify
patterns and correlations that might be missed by traditional
methods. This can lead to more accurate predictions of
nanomaterial behaviour, potentially reducing the need for
extensive in vivo and in vitro testing and enabling faster
identification of hazardous nanomaterials. Moreover, AI can
assist in modelling complex biological interactions, helping to
elucidate the mechanisms of nanotoxicity at various biological
levels. Nevertheless, several challenges and caveats need to be
critically addressed as the field advances, such as data quality and
availability, as well as protocol standardization for AI models
validation and applicability in nanotoxicology.

In conclusion, a systematic application of AI for the
development of safe NMs and for the prediction of their
interaction with biological systems, especially with a view to their
use in nanomedicine, must be stimulated, and above all, it becomes
essential to create database repositories that allow access to all the
data produced so far, so as to allow a substantial reduction in
experimental costs. AI holds great promise for a substantial push for
a sustainable development of nanotechnology.
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