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Microplastics (MPs) and other anthropogenic particles (APs) are pervasive
environmental contaminants found throughout marine and aquatic
environments. We quantified APs in the edible tissue of black rockfish,
lingcod, Chinook salmon, Pacific herring, Pacific lamprey, and pink shrimp,
comparing AP burdens across trophic levels and between vessel-retrieved and
retail-purchased individuals. Edible tissue was digested and analyzed under a
microscope, and a subset of suspected APs was identified using spectroscopy
(μFTIR). Anthropogenic particles were found in 180 of 182 individuals. Finfish
contained 0.02–1.08 AP/g of muscle tissue. In pink shrimp (Pandalus jordani), the
average AP/g was 10.68 for vessel-retrieved and 7.63 for retail-purchased
samples; however, APs/g of tissue were higher in retail-purchased lingcod
than vessel-retrieved lingcod, signaling possible added contamination during
processing from ocean tomarket. Riverine young adult Pacific lamprey contained
higher concentrations of APs (1 AP/g ±0.59) than ocean phase adults (0.60 AP/
g ±0.80 and p = 0.08). Particle types identified were 82% fibers, 17% fragments,
and 0.66% films. These findings suggest a need for further research into
technologies and strategies to reduce microfiber pollution entering the
environment.
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1 Introduction

Anthropogenic particles (APs), a broad category of materials produced or modified by
humans, include microplastics (MPs), plastics less than 5 mm in diameter at their longest
dimension (Mattsson et al., 2021; Coffin et al., 2022). Environmental MPs are found in a
variety of shapes, including films, foams, pellets, beads, fibers, fragments, and tire wear
particles (Brander et al., 2020; Granek et al., 2020; Tamis et al., 2021), and polymer types,
including polyester, polyethylene terephthalate (PET), high-density polyethylene (HDPE),
and polyvinyl chloride (PVC). Anthropogenically modified substances refer to materials of
anthropogenic origin or those that are heavily processed, like dyed cellulose textiles or poly-
blends (Athey and Erdle, 2022). Since environmental particles are often a mix of MPs and
other anthropogenically modified materials, we refer to APs throughout the paper, a term
used by many researchers in the field (Gao et al., 2023; Adams et al., 2021).
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To date, APs have been found in a variety of environmental
media, including air, fresh and marine waters, sediment, wastewater,
and organisms (Crawford and Quinn, 2017; Granek et al., 2022;
Thornton Hampton et al., 2022). Pathways include microfibers
(MFs) shed from laundering clothing (Galvão et al., 2020), MP
beads from personal care products (Sun et al., 2020), and tire wear
particles resulting from tire degradation (Goßmann et al., 2021;
Siddiqui et al., 2022). APs can be transported aerially by wind
(Brahney et al., 2020), into freshwater sources via wastewater
treatment plants (WWTPs) and urban runoff (Horton et al.,
2017), and into the ocean via rivers, WWTP effluent, and
degradation of plastic litter (Cole et al., 2011). APs are abundant
in terrestrial, freshwater, and marine environments (Wang et al.,
2021) and have been found in the bodies of aquatic organisms across
trophic levels, including cetaceans, avifauna, fishes, bivalves, and
zooplankton (Currie et al., 2017; Romeo et al., 2015; Tanaka et al.,
2019), as well as in human blood, tissue, and organs (Ragussa et al.,
2021, 2022).

APs are manufactured with an array of chemicals and can also
adsorb substances from the environment (Qi et al., 2021). Chemical
additives used in plastic production, such as per and poly-
fluorinated compounds (PFAS), phthalates, and colorants, can
leach from plastics into water and body tissues over time (Sait
et al., 2021; Wang et al., 2020). AP ingestion and adhesion can cause
physical damage when internalized by marine organisms (Qiao
et al., 2019) and lead to the transfer of constituent or associated
chemicals to bodily tissues after ingestion (Tanaka et al., 2020). Gut
damage (Qiao et al., 2019), adverse immune response (Sharifinia
et al., 2020), protein and enzyme changes (Trestrail et al., 2021),
stress response (Lanctôt et al., 2020), oxidative stress (Solomando
et al., 2020), and false satiation or food dilution (Mallik et al., 2021)
can result from AP exposure.

Despite the array of studies on AP ingestion across diverse
species (Barboza et al., 2018; Carbery et al., 2018; Lusher et al., 2017),
most studies to date have focused on bivalves in their entirety or the
gastrointestinal tract of fish and crustacean species, leaving large
gaps in our understanding of AP contamination in the tissue of
commercially valuable finfish consumed by humans (Baechler et al.,
2019; Dawson et al., 2021; Ferrante et al., 2022; Munno et al., 2021;
Qiao et al., 2019; Rochman et al., 2015). However, Akoueson et al.
(2020) found 0.50–1 AP/g of tissue in four finfish species collected
from Scotland and Argentina, and a study of three Portuguese finfish
found an average of 0.054 AP/g in dorsal muscle tissue (Barboza
et al., 2020). These represent a limited number of species,
geographies, habitats, and trophic levels and generate questions
regarding baseline microplastic concentrations in finfish and
crustaceans from different regions and trophic levels.
Additionally, no known studies to date have examined the
consumer source (vessel versus retail) of seafood and its
relationship with AP abundance in seafood.

Oregon boasts numerous commercial, recreational, and
traditional fisheries, an important part of the state’s coastal
economy and fishing culture (Harte et al., 2008; Richerson et al.,
2020; Robison, 2022; Sjostrom et al., 2021). There is growing interest
in MP regulation and research in Oregon; however, due to the
geographic variability in AP distribution and morphology,
policymakers have expressed a need for further site-specific APs
to guide decision-making (Das et al., 2021). Only two studies in

Oregon have identified APs in consumed species (bivalves; Baechler
et al., 2020; rockfish, Lasdin et al., 2023), and five studies have
examined transport pathways and environmental abundance (Kapp
and Yeatman, 2018; Murray et al., 2018; Talbot et al., 2022; Valine
et al., 2020; Torres et al., 2023). There are no published studies on AP
occurrence in the edible tissues of finfish and crustaceans in Oregon,
yet such studies are important to catalyze policy-making. Across
many of these studies performed in Oregon, the majority of particles
identified were microfibers (Baechler et al., 2020; Lasdin et al., 2023;
Torres et al., 2023).

This study aims to inform AP policy decisions by contributing to
the research on AP contamination in Oregon finfish and shellfish
and understand variation across trophic levels and feeding modes, as
well as whether AP contamination differs across points in their
pathway to consumers. Black rockfish, lingcod, Chinook salmon,
Pacific herring, Pacific lamprey, and pink shrimp were selected
based on their economic importance to Oregon’s commercial
fisheries, their historical and cultural significance to indigenous
cultures and other people in Oregon, and their variability in
trophic position and feeding modes (Table 1). We examined AP
contamination in individuals harvested from Oregon coastal waters,
assessing differences between those obtained directly after being
caught on National Oceanic and Atmospheric Administration
(NOAA) or Oregon Department of Fish and Wildlife (ODFW)
vessels and those caught on commercial vessels but purchased at
retail markets to understand AP contamination entry. We
hypothesized higher AP concentrations in riverine than oceanic
stages of lamprey and in retail-purchased rather than vessel-caught
individuals due to their increased exposure to plastic during seafood
processing. We also predicted higher concentrations of APs in lower
trophic level organisms based on the existing literature (Walkinshaw
et al., 2020a).

2 Materials and methods

2.1 Sample collection

Five finfish and one shellfish species (Table 1) were collected
from one or two sources: vessel-retrieved or/and retail-purchased
from Oregon waters (see Supplementary Appendix SA1); the
numbers from each source, categorized by species, are provided
in Table 1. “Vessel-retrieved individuals” were whole-body fish or
crustaceans caught by a fishing vessel in Oregon waters, the majority
by the National Oceanic and Atmospheric Administration’s
Northwest Fisheries Science Center Observers program during
the 2021–2022 collection season, with the exception of riverine
and ocean-phase Pacific lamprey that were collected during the
2017–2018 season (due to constraints imposed by the COVID-19
pandemic). Retail-purchased individuals were either fish fillets
(finfish) or gutted shrimp purchased from a supermarket or
seafood vendor. For one finfish species, lingcod, and the
crustacean species, pink shrimp, samples were acquired from
both fishing vessels (NOAA) and retail market (seafood counters
at grocery stores), the source most accessible to the general public,
and analyzed. Pacific lamprey species, listed on Oregon’s threatened
and endangered species list, were acquired from ODFW and
collected under permit.
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TABLE 1 (Panel A) Species names (common and scientific), rationale for sampling, 2020 commercial landings inOregon, and number of individuals collected
per species by source. One individual equated to one sample. (Panel B) Study species clockwise from top left: Chinook salmon (Oncorhynchus
tshawytscha), lingcod (Ophiodon elongatus), black rockfish (Sebastesmelanops), pink shrimp (Pandalus jordani), Pacific lamprey (Entosphenus tridentatus),
and Pacific herring (Clupea pallasii).

(A)

Species Scientific
name

Rationale 2020 landings in lbs from
Oregon (data source)

Retail Vessel-
retrieved

Pink Shrimp Pandalus jordani • Feeding mode (filter-feeding near surface)
• Largest fishery hosted in Oregon
• Low trophic level

7,000,000 (ODFW) 30 30

Black rockfish Sebastes melanops • Habitat and proximity to pollution sources
(near-shore bottom feeding fish)

• Popularity among consumers
• Accessibility for consumers
• Mid-trophic level

222,667 (NOAA Fisheries) 30 12

Lingcod Ophiodon elongatus • Feeding mode (large range of prey)
• Popularity among sport fishers and
consumers

• Non-migratory
• Mid-trophic level

596,350 (NOAA Fisheries) 30 N/A

Riverine juvenile
lamprey

Entosphenus
tridentatus

• Culturally important to indigenous people
of West Coast

• Population pressures
• Feeding mode (host feeding and filter
feeding)

• Mid-trophic level

N/A 15

Adult ocean-phase
lamprey

98 (ODFW) 10

Pacific herring Clupea pallasii • Popularity among consumers
• Habitat and proximity to pollution sources
(near-shore shoaling fish)

• Low-mid trophic level

72,532 (NOAA Fisheries) N/A 15

Chinook Oncorhynchus
tshawytscha

• Popularity among consumers
• Culturally important to indigenous people
of West Coast

• Population pressures
• High trophic level

1,140,009 (ODFW) N/A 10

(B)

Photo credits: Chinook salmon, lingcod, pink shrimp, Pacific herring (NOAA Fisheries), black rockfish (ODFW), and lamprey (North Carolina Wildlife Resource Commission).
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Vessel-retrieved individuals were humanely euthanized by
placing them in ice water baths, then double-wrapped in
aluminum foil, and placed whole in plastic bags (IACUC-37,
2022). These individuals were kept frozen during transport to the
Applied Coastal Ecology (ACE) Laboratory at Portland State
University. Retail-purchased individuals (fillets and shelled
shrimp) were purchased and transported to the ACE Laboratory
as packaged by the retail store for a typical consumer. The packaging
material included plastic-lined butcher paper, plastic takeout
containers, and plastic freezer bags.

2.2 Sample processing

A total of 182 samples (122 finfish and 60 crustaceans) were
collected from the Oregon coast and Oregon retail markets in 2021,
while Pacific lamprey samples, collected in 2017, were frozen for
later analysis.

For vessel-retrieved individuals, biological measurements, including
full body length (in) and weight (g), and, if available, muscle tissue length
(in) and weight (g) were recorded for all individuals. Whole-body
individuals were dissected from behind the pectoral fin to the caudal
fin to extract a filet of tissue corresponding to the parts of the animal
typically consumed by humans.

For vessel-retrieved lingcod and Chinook salmon,
approximately 220 g of muscle tissue (but ranging from
71–702 g) were randomly dissected from the front, middle, and
end of the muscle tissue; for retail-purchased black rockfish and
lingcod, filets were rinsed and then 32–133 (mean = 88) g of tissue
were randomly dissected from the fillet. For shrimp (vessel and
retail) and herring, individuals were rinsed and gutted; then all
muscle tissue was dissected as all individuals sampled (75) were
under 125 g (range 0.1–28 g). On average, vessel pink shrimp were
2 g (0.18–5.4 g), retail pink shrimp were 3.7 g (0.16–28 g), and vessel
pacific herring were 10.77 g (3.5–19). For lamprey, riverine juveniles
were defined and headed, and a small amount of muscle tissue was
digested; for ocean-phase adult lamprey, we received and digested
sections of muscle tissue (range 3–21 g) (see Supplementary
Appendix Table SA1).

Dissected tissue from each individual was placed in its own
250 mL beaker and covered with a watch glass. Each sample was
digested using a 10% potassium hydroxide (KOH) solution heated
for 24–48 h at 40 C (except lamprey = 60 C), as outlined by Baechler
et al. (2020), although density separation was not needed. A second
digestion was needed for all lamprey samples. After digestion, the
samples were vacuum-filtered through a 20-micron brass sieve
(Hogentogler) to collect APs and remove the remaining liquefied
tissue. The samples were then rinsed from the sieve into a vacuum
filtration apparatus (Millipore Sigma) using a 47 mm diameter x 10-
micron polycarbonate filter (10 μm, Millipore Sigma). Filters were
then enclosed in PetriSlides (47 mm, Millipore Sigma).

2.3 Anthropogenic particle enumeration

Filters were examined to enumerate and measure APs using a
Leica ICC50 HD with LAS V4.13 software and a ZEISS Primostar
3 with Labscope v3.3 software. Filters were examined

under ×40 and ×10 magnification (depending on AP size) and
photographed. Suspected APs were counted following the method
outlined by Lusher et al. (2020) and classified based on their
morphology, color, maximum width, and maximum length. Fiber
bundles were separated into individual fibers when possible and
classified accordingly. When fiber bundles could not be separated,
the ends of fibers were used to count the total number of fibers in
the bundle.

2.4 Particle characterization

A subsample of suspected plastics (n = 209, 10% of total
suspected APs encountered) was sent to the Ecotox and
Environmental Stress Laboratory at Oregon State University to
undergo micro-Fourier transform infrared (μFTIR) spectroscopy
analysis to identify specific polymers and validate total counts. Six to
fifteen suspected APs (depending on the number of individuals per
species) were randomly selected from each species group and
analyzed via FTIR spectroscopy. OpenSpecy (Cowger et al., 2021)
was used to calibrate and confirm sample material types, following
methods described by Caldwell et al. (2022), Talbot et al. (2022), and
Lasdin et al. (2023).

2.5 QA/QC

Quality control protocols were adapted from Baechler et al. (2020)
and Brander et al. (2020). Pink 100% cotton laboratory coats and
facemasks were used during all processing steps. Pink material was
chosen to easily identify AP input from researchers in samples and
controls. In addition, 100% cotton clothing was worn at all times
throughout sample processing. All containers, glassware, sieves, and
beakers were triple-rinsed with DI water, inverted, covered with
aluminum foil, and then air-dried to minimize paper towel fibers on
glass surfaces. Three DI water procedural blanks were run in conjunction
with each species batch (a total of 18 blanks; 3 per every 30 samples
processed) and subjected to the same digestion, sieving, and filtering
protocols. Air control blanks (total of 18, three for every species batch
regardless of batch size), consisting of a clean polycarbonate filter inside a
clean PetriSlide, followed each species batch through the process. A 1:
1 sample-to-blank ratiowas used to quantifyAPs entering samples during
microscopy. Additionally, a snorkel hood was positioned over the sample
on the microscope to minimize airborne contamination.

2.6 Statistical analysis

Using R-studio (version 4.1.2.) statistical software, analysis of
variance (ANOVA) (alpha = 0.05) was performed to test for
differences in AP load among species. A Tukey honestly
significant difference post hoc test was used to confirm significant
findings. ANOVA and Welch’s two-sample t-tests were performed
to test for differences between source types of the same species (pink
shrimp, lingcod, and Pacific lamprey). Spearman correlation
coefficients were used to evaluate relationships between the total
body weight or total filet weight and overall AP tissue burden. Plots
were generated using the ggplot2 and vegan packages in R.
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3 Results

3.1 Anthropogenic particle characteristics

In organisms: Through microscope search, 1,806 suspected APs
were identified across 180 of 182 individuals (averages varied
drastically among species; Table 2). Fibers (1,466; 81.17%) were
the most abundant, followed by fragments (332; 18.38%) and films
(8; 0.44%) (see Supplementary Appendix Figure SA3B). The most
common colors were blue (234; 12.95%), black (234; 12.95%), and
clear or white (1,297; 71.81%) (see Supplementary Appendix
Figure SA3C). The maximum length of APs ranged from
2.00–3,619 μm (mean = 911.78 μm ± 633.01), and the maximum
width ranged from 0.477–1757.5 μm (mean = 26.56 μm ± 71.35)
(Table 3; Supplementary Appendix Figure SA1).

In controls: Through visual search, a total of 190 suspected APs
were identified in procedural, air, and microscopy controls (see
Table 4 and Supplementary Appendix Table SA2 for additional
details). Fibers (160; 84.21%) were the most abundant shape found,
followed by fragments (25, 13.15%) (Supplementary Appendix
Figure SA3A). The most common colors were clear (132;
69.74%), blue (26; 13.68%), and black (32; 16.84%). The
maximum length of all APs found in controls ranged from
29.75 to 2,969.18 μm (mean of 744.05 μm ± 515.64), and the
maximum width ranged from 3.59 to 367.33 μm (mean of
29.91 μm ± 44.12) (Supplementary Appendix Figure SA1).

3.2 Anthropogenic particles in finfish
and shellfish

APs were found in the muscle tissue of all species of finfish and
shellfish sampled; of the 182 individuals sampled, only two
individuals (1%) had no APs in the section of tissue sampled
(one vessel-retrieved lingcod and one vessel-retrieved herring).

Among the species sampled, pink shrimp contained the most APs
per individual, regardless of source type (retail: 25 (12.6 ± 1.67) per
individual; vessel: 36 (11.9 ± 1.22) per individual) (Figure 1), with the
most particles (36) found in a single pink shrimp weighing 4.9 g
(7.35 AP/g of tissue; Tables 2, 3). Vessel-retrieved Chinook contained
the smallest abundance and concentration of APs (1–11 per individual
and 0.028 AP/g; Table 3). AP ranges by species and source type varied
(Figure 1; Table 3). Muscle tissue weight and AP burden were
inversely correlated (Spearman rank = −0.23), indicating that
smaller individuals are more likely to contain APs (ANOVA: f =
9.2 and p = 0.0028). Biological measurements were not obtainable for
retail-purchased individuals.

3.3 Retail-purchased and vessel-retrieved
comparison

Differences in average AP/g of tissue were inconsistent between
retail and vessel-caught individuals across species (lingcod and pink
shrimp). Retail lingcod contained more AP/individual and more
APs/g of tissue (7.33 AP/individual, 0.091 AP/g) than vessel-
retrieved lingcod (3.91 AP/individual, 0.022 AP/g; Welch’s t-test
for AP/g tissue: t = −5.1, p = 8.79–5) (Figure 1). However, retail pink
shrimp contained slightly more APs/individual but fewer APs/g of
tissue (12.6 AP/individual, 7.62 AP/g) than vessel-retrieved pink
shrimp (11.9 AP/individual, 10.67 AP/g; Welch’s t-test for AP/g
tissue: t = −1.2, p = 0.227) although the difference was not
significant. An individual retail pink shrimp contained the most
particles across all species and source types in a single individual
(36 particles) (Figures 1C, D).

Comparing late-stage riverine juveniles and ocean phase-adult
Pacific lamprey, the adults had marginally higher AP loads
(15.9 versus 8.13 particles per individual) but marginally lower
concentrations (0.6 AP/g versus 0.99 AP/g; Welch’s t-test for AP/
g tissue: t = −1.32, p = 0.08) than juveniles (Figure 1B).

TABLE 2 Mean particle count andmean number of particles per gram of tissue per individual (with standard error in parentheses) and the range of particles
found across individuals by species.

Species Average particle count/
individual

Average # of particle/gram of tissue
(AP/g) (SE)

Range of particles per individual
by species

Retail

Pink shrimp 12.6 7.6 (1.62) 1–36

Black rockfish 10 0.11 (0.02) 1–28

Lingcod 7.6 0.09 (0.009) 1–20

Vessel

Pink shrimp 11.9 10.67 (2.26) 1–25

Riverine juvenile
lamprey

8.13 1 (0.15) 3–17

Pacific herring 9.3 1.08 (0.2) 0–17

Ocean phase adult
lamprey

15.9 0.60 (.25) 5–31

Lingcod 3.91 0.02 (0.006) 0–19

Chinook salmon 5.3 0.03 (0.008) 1–11
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TABLE 3 Breakdown of material color, shape, length, and material categories identified via FTIR across species and sample collection types.

Color Type Length FTIR-type (subset of total)
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3.4 FTIR results

Of the 270 (~10%) suspected APs tested using FTIR,
230 suspected APs were from individuals and 40 were from
controls (detailed FTIR results in Supplementary Appendix Table
SA3). OpenSpecy (Cowger et al., 2021) was used to calibrate and
confirm sample material types according to methods described by
Caldwell et al. (2022), Talbot et al. (2022), and Lasdin et al. (2023). In
addition, 17.06% of suspected APs were fully synthetic materials,
9.47% were semi-synthetic, 8.05% were natural materials, and the
overwhelming majority, 65.40%, were identified as
anthropogenically modified (Supplementary Appendix Figures
SA3A, SA3C). Synthetic and semi-synthetic material types
included polyethylene terephthalate (PET; n = 33), polypropylene
(PP; n = 3), high-density polyethene (HDPE; n = 1), low-density
polyethylene (LDPE; n = 4), polyethylene vinyl acetate (PEVA; n =
1), fiberglass (n = 16), and semi-synthetic cardboard (n = 22). There
was a single aramid fiber, a common material used in marine rope,
flame-retardant fabrics, and military applications (Gong and Chen,
2016). Cellulose (n = 52), cotton fiber (n = 41), and cellulose acetate
filter (n = 55) were the most common anthropogenically modified
particles found.

3.5 Quality control

AP contamination in procedural controls (average:
4.80 particles), fume hood blanks (average: 2.51 particles), and
microscope blanks (0.82 particles) (Table 4) was averaged for
each species batch, as per previous studies (Li et al., 2015;
Rochman et al., 2015; Abbasi et al., 2018), and reported in
Table 4 to provide an estimate of total contamination at each
sample processing step. Pink MF contamination from laboratory

clothing ranged from 0.41 to 1.25 particles per sample and was
excluded from all counts. Supplementary Appendix Table SA1
details AP contamination across individuals.

4 Discussion

4.1 Anthropogenic contamination
characteristics

The array of AP types and colors found across the six taxa
highlights the complexity of identifying AP pollution sources in
aquatic environments. Li et al. (2021) described using “microplastic
communities”—APs of various colors, shapes, and polymer types
that accumulate together in the environment—to elicit a potential
number of AP pollution sources (Li et al., 2021). Of the published
studies on APs in muscle tissue that share size categories,
translocation into the muscle tissue is facilitated by shape
(most frequently fibers) and size although this study found
slightly larger fibers and fragments than those in fish muscle
tissue of other studies (Barboza et al., 2020; McIlwraith et al.,
2021). This may be due to differences in protocols, AP presence
in the environment at each study area, or other factors not
measured in these studies. While some organisms have a
tendency to ingest APs of certain colors, shapes, and sizes
(Q. Chen et al., 2020; Okamoto et al., 2022), further research
is needed to understand how these variables affect translocation
into the muscle tissue and toxicity to organisms (Mehito et al.,
2022). A recent synthesis indicated that particles <80 μm could
translocate in aquatic organisms (Mehinto et al., 2022), and
given that the diameter of the typical microfiber is 10–15 μm,
indications are that these particles could translocate if in the
proper orientation.

TABLE 4 APs in procedural controls, fume hood blanks, and microscope blanks, including number of pink fibers found in samples by species. Pink fibers
were excluded from AP sample counts as they were presumed contamination from researcher clothing.

Species Procedural
controls (average)
1 per 10 samples

Fume hood blanks
(average); 1 per
10 samples

Microscope blanks
(average); 1 per
1 sample

Pink fibers in
samples (total)

Pink fibers per
sample
(average)

Retail

Pink shrimp 10.33 3 0.96 (n = 29) 16 (n = 0.55)

Black
rockfish

3.66 2.33 0.93 (n = 23) 38 (n = 1.27)

Lingcod 5.66 3.33 0.46 (n = 14) 37 (n = 1.41)

Vessel

Pink shrimp 9.6 4 1.13 (n = 34) 8 (n = 0.29)

Riverine juvenile
lamprey

1.33 1.66 0.8 (n = 12) 2 (n = 0.13)

Pacific herring 4.66 1.33 0.6 (n = 9) 5 (n = 0.35)

Ocean phase
adult lamprey

3.66 1 1.1 (n = 11) 1 (n = 0.1)

Lingcod 3 3.33 0.41 (n = 5) 3 (n = 0.27)

Chinook 1.33 2.66 1.1 (n = 11) 3 (n = 0.3)
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Of the 182 individuals sampled, only two (one vessel-retrieved
Pacific herring and one vessel-retrieved lingcod) had no detected
APs in their tissue although these were smaller samples 0.18–19 g of
muscle (Lingcod) or full tissue (herring) sampled. The study results
mirror those of Akoueson et al. (2020) and Barboza et al. (2020) and
provide evidence of thewidespread presence ofAPs in the edible tissues of
Oregon’s marine and freshwater species across trophic levels and feeding
modes. Pink shrimp, which filter-feed in the upper water column which
contains 8–9200 AP particles/m3, had the highest concentrations of APs
(ODFW, 2019; Curren et al., 2020; Dawson et al., 2021; Yang et al., 2021).
On the other hand, Chinook salmon had the lowest concentrations,
followed by black rockfish and lingcod.

Across different life stages of lamprey, we hypothesized riverine-
phase juvenile lamprey, which follow the filter-feeding phase, would
contain more APs than the parasitic-feeding ocean-phase adult
lamprey; on an AP/g of fish basis, this hypothesis proved true,
with ocean-phase adults containing 0.604 AP/g compared to riverine
juveniles with 0.999 AP/g; however, since adult lamprey are larger

than juveniles, they had a higher total number of APs per individual.
As adults attach to a host with their mouthparts and feed primarily
on the bodily fluids of host organisms (Goodman and Reid, 2017),
they may inherit a portion of their APs from the bloodstream of the
host organisms they feed on.

This study aligns with other studies in that species across various
trophic levels are exposed to AP pollution (Talley et al., 2020; F;
Wang et al., 2021; Yıldız et al., 2022) and uptake and translocate
particles into their tissue (e.g., Akhbarizadeh et al., 2019; Bagheri
et al., 2020; Hossain et al., 2023; Nan et al., 2020; Figure 2,
Supplementary Appendix Table SA2 and references therein).
Furthermore, as evident from comparisons with other studies
(Figure 2), we found evidence of an inverse relationship between
muscle tissue AP concentration and trophic level, indicating a
potential relationship between AP presence and habitat or
feeding mode (see Figure 1A). Similar conclusions have been
drawn by others studying trophic transfer and habitat depth
(Aiguo et al., 2022; Carbery et al., 2018) and in comparisons of

FIGURE 1
Average number (and standard error) of particles per gram of tissue found (A) across all species, ranked by trophic position and source type; (B)
between riverine juvenile and ocean adult lamprey; (C) retail and vessel obtained lingcod; and (D) retail and vessel pink shrimp.
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shellfish muscle tissue to that of higher trophic level finfish
(Walkinshaw et al., 2020a).

Our study bolsters existing work on the AP muscle tissue
presence, but further studies are needed to understand the
mechanisms by which APs translocate into muscle tissue.
Barboza et al. (2020) hypothesized that APs may transit through
the bloodstream and into the muscle tissue (Barboza et al., 2020).
Others hypothesize that macrophages may scavenge particles,
leading to immune response and inflammation, which may
facilitate translocation into the muscle tissue via cells (Leslie
et al., 2022; Beijer et al., 2022).

4.2 Retail-purchased versus vessel-retrieved

Although other studies have found APs (MPs in the literature
referenced) in retail market seafood products (Ferrante et al., 2022;
Nalbone et al., 2021; Thiele et al., 2021), our results raise questions
about the extent to which the retail process is a source. Our source
type comparisons indicate ambiguity in retail processing as a source:
AP concentrations were greater for retail than vessel-retrieved
lingcod (after rinsing the surface flesh of fillets) but lower for
retail than vessel-retrieved pink shrimp (after rinsing). Our results
suggest that, in some cases, retail market individuals may be exposed
to additional APs through processing, resulting in the incorporation
of additional particles into the edible portions of seafood items. These
post-mortem APs could be introduced by plastic packaging meant to
preserve seafood (Dawson et al., 2021; Habib et al., 2022; Jadhav et al.,
2021; Kedzierski et al., 2020). It is unclear why the retail process did
not add microplastics to lingcod, as was observed for pink shrimp,

indicating a need for further investigation to understand where and
when AP contamination occurs post-catch.

4.3 Study limitations

Our sample size for the larger finfish was small, limiting the
generalizability of the findings for these species. Additionally, since
the study focused on species that span the US West Coast but only
collected organisms from the Oregon coast, the concentrations may
not represent coast-wide microplastic concentrations. However, a
comparison with other studies on muscle tissue microplastic
concentrations demonstrates that our results fall within the range
of microplastics per gram of edible fish tissue found globally
(Figure 2; Supplementary Appendix Table SA4). Future research
should consider collecting the same species at various points along
the West Coast to determine whether there is spatial variability in
microplastic contamination from northernWashington to Southern
California, particularly for the species that span the entire coast.

5 Implications for Oregon’s seafood
producers, consumers, and
threatened species

For producers and handlers of seafood, we recommend shifting
to alternative packaging methods such as natural materials made
from beeswax, starches, or sugars that will limit the introduction of
APs into retail seafood (Chen et al., 2022; Herrmann et al., 2022;
Rangaraj et al., 2021). Research and development may be needed to

FIGURE 2
Comparison of microplastics per gram of edible shrimp (dark orange) and fish (dark blue) tissue from this study (see Table 1 for common names)
compared with shrimp (orange) and fish (blue) from other studies around the world. v, vessel caught; r, retail; juv, juvenile; ad, adult. See Supplementary
Appendix Table SA4 for sample collection locations and data sources.
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provide economically viable alternative products that perform
similarly to plastic (Hurst-Mayr et al., in prep). For consumers,
we recommend buying whole, local fish whenever possible to
minimize APs introduced via plastic packaging. Regardless of the
source of seafood products, individuals containing APs were found
to have at least 0.3 AP/10 g of edible tissue, signaling the need for
policy and other interventions to regulate APs.

Since the species we sampled are consumed by both humans and
marine predators, there is a potential for biomagnification (see Torres
et al., 2023). The presence of APs in edible tissues and the possibility that
they are translocated from the gut or gills highlight the need for further
research into the health effects of AP consumption for both aquatic
organisms and humans. To date, the majority of studies identifying
health effects of AP consumption by aquatic organisms, e.g., adverse
cellular responses, inflammation, oxidative stress, negative impacts on
growth and development, physical damage to organs, behavioral
changes, adverse reproductive responses, and decreased survivorship
(Lanctôt et al., 2020;Mallik et al., 2021; Qiao et al., 2019; Sharifinia et al.,
2020; Solomando et al., 2020; Trestrail et al., 2021; Siddiqui et al., 2022),
have focused on model species, which may under-represent the effects
on wild species or did not use environmentally relevant AP
concentrations, which may mis/over-represent effects.

In Oregon and the Western U.S., Pacific lamprey are listed as
endangered at the state level, affected by artificial barriers to migration,
poor water quality, loss of habitat, and changing ocean conditions.
Moreover, Pacific lamprey are a culturally important food source for
indigenous peoples of the Pacific Northwest, so consumption of Pacific
lamprey is a source of AP exposure for these communities specifically
(Monroe, 2013). Although APs have been found in a variety of food
items across trophic levels, people who depend upon subsistence
fisheries are likely ingesting fish-borne contaminants, highlighting
the environmental justice issue perpetuated by AP pollution in
Pacific lamprey (National Environmental Justice Advisory & Council
Fish Consumption and Environmental Justice, 2002). Further research
is needed to understand the baseline exposure of indigenous
communities from lamprey consumption, how lamprey internalize
APs relative to other seafood species, how APs may impact this
already endangered species in Oregon, and how to reduce lamprey
exposure. Due to the historical and systemic oppression of indigenous
tribes in the U.S., the state of Oregon has a responsibility to employ
larger-scale AP regulation methods to minimize exposure to AP
pollution through Pacific lamprey consumption (Duffield et al.,
2021). While Walkinshaw et al. (2020a) highlighted that seafood
most likely does not contribute more APs than consuming other
foods or drinking water, the high consumption of seafood by low
income and indigenous peoples and the continued prevalence of APs
detected in humans (Ibrahim et al., 2021; Jenner et al., 2022; Leslie et al.,
2022; Ragusa et al., 2021) necessitates further study of the long-term
exposure effects on human health (Lusher et al., 2017; Walkinshaw
et al., 2020b; Coffin et al., 2022).

6 Implications and next steps for
policymakers and researchers

Although the percentage of validated APs is only 10%, the
detection of APs across all six taxa spanning multiple trophic
levels and two sources confirms the need for actions to address

aquatic exposures. Four potential pathways for policymakers and
researchers to address APs include mitigation technology,
monitoring, long-term research, and legislation.

Current AP pollution loads in the environment have reached a
level irreversible by current technologies (Uzun et al., 2022).
Therefore, addressing AP pollution requires mitigative
approaches to reduce the flow of AP pollution into the
environment or “turning off the tap” on virgin plastic production
(Bergmann et al., 2022). A newer mitigative technology is laundry
machine MF catchment filters. Widespread implementation of this
mitigative technology or, at the very least, selective use at high-
emission sites, would reduce MF pollution entering waterways
(Erdle et al., 2021).

Government agencies should follow California’s lead and
pursue ambient monitoring of AP in drinking water, air, and
waterways (California S.B. 1,422, 2018) to inform large-scale
regional policy to effectively control AP pollution. Long-term
and multi-generational research studies on organismal health
following exposure to AP pollution are also needed. Both
anthropogenically modified and synthetic/semi-synthetic
materials should be tested as the abundance of both continues
to grow in the environment (Siddiqui et al., 2022; Walkinshaw
et al., 2023). Ambient monitoring along the West Coast would
inform concentrations for such long-term studies. Finally, the
Western states should work collaboratively to create a
standardized monitoring approach and, ultimately, coordinate
regulatory policy for AP pollution. However, since AP
environmental pollution is no longer the problem of one
country or government, global policies such as the ongoing
global plastics treaty negotiations and enforcement of an
eventual treaty are ultimately needed to address the problem of
AP pollution at its current magnitude. Unless we change our
relationship with plastic and significantly reduce plastic
production, we will continue to witness its negative impacts.
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