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For many industrial chemicals toxicological data is sparse regarding several
regulatory endpoints, so there is a high and often unmet demand for NAMs
that allow for screening and prioritization of these chemicals. In this proof of
concept case study we propose multi-gene biomarkers of compounds’ ability to
induce lung fibrosis and demonstrate their application in vitro. For deriving these
biomarkers we used weighted gene co-expression network analysis to reanalyze
a study where the time-dependent pulmonary gene-expression in mice treated
with bleomycin had been documented. We identified eight modules of 58 to 273
genes each which were particularly activated during the different phases
(inflammatory; acute and late fibrotic) of the developing fibrosis. The modules’
relation to lung fibrosis was substantiated by comparison to known markers of
lung fibrosis from DisGenet. Finally, we show the modules’ application as
biomarkers of chemical inducers of lung fibrosis based on an in vitro study of
four diketones. Clear differences could be found between the lung fibrosis
inducing diketones and other compounds with regard to their tendency to
induce dose-dependent increases of module activation as determined using a
previously proposed differential activation score and the fraction of differentially
expressed genes in the modules. Accordingly, this study highlights the potential
use of composite biomarkers mechanistic screening for compound-induced
lung fibrosis.
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Introduction

To date, risk assessment of industrial chemicals in the EU is regulated by the REACH
legislation. Accordingly, compounds marketed at a very high tonnage have undergone full
risk assessment, while for around 70% of the chemicals on the EU market hardly any
toxicological data relating to hazards or exposure is available (European Environment
Agency, 2019). Further, the mechanisms underlying adverse effects which have been
detected in vivo remain often unknown for complex regulatory endpoints such as
chronic toxicity after repeated exposure. There is therefore an unmet need to develop
new approach methods that allow the testing and assessment of a wide range of chemicals,
ideally with human relevant methods. New approach methodologies (NAMs), based on
human in vitro and in silico models, offer this opportunity. In the context of the 3R
paradigm shift, NAMs and integrated approaches to testing and assessment (IATAs) or
defined approaches are under development in several European initiatives such as
RISKHUNT3R (Pallocca et al., 2022) and the European Partnership for the Assessment
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of Risks from Chemicals (PARC) (Marx-Stoelting et al., 2023).
Nevertheless, they are not yet implemented into regulatory
decision making (ECHA, 2022; ECHA, 2023).

Read-across (RAx) is an often applied alternative method in
which the data of one to several data rich compound (s) are used to
predict the toxic properties of data poor target compounds (ECHA,
2022). RAx is also one area in which NAMs can already today be
used to support the assessment of shared toxicodynamic and kinetic
properties (ECHA, 2023; Escher et al., 2019; van der Stel et al., 2021).
Read-across approaches offer some of the most regulatorily accepted
opportunities to apply NAMs in a regulatory context (Ball et al.,
2016; Schultz and Cronin, 2017). Omics (e.g., transcriptomics) read-
outs provide useful information, because they can indicate adverse
or adaptive response of a biological system to chemical stressors
(Ganesan et al., 2021; European Commission: Directorate-General
for Health and Food Safety, 2022; Johnson et al., 2022). ECHA
(ECHA, 2023) as well as the recently published EFSA NAM
roadmap report (Escher et al., 2022a) both highlight that
regulatory acceptance of NAM methods requires a good
understanding of their relevance, performance and remaining
uncertainties and that case studies are an excellent tool to gain
more confidence into them.

Case studies have shown the use of NAMs including (Q) SAR
(Patlewicz et al., 2013), in vitro transcriptomics (Drake et al., 2023;
Escher et al., 2022b; Vrijenhoek et al., 2022) and in vivo
metabolomics (Kamp et al., 2024; van Ravenzwaay et al., 2016)
to explore the mechanistic similarity of compounds and thereby add
to the mechanistic evidence underpinning a potential read-
across case.

The weighted gene co-expression network analysis (WGCNA) is
a tool for transcriptome analysis which uses a network-based
approach to evaluate genes’ joint activities. It has widely been
applied to characterize gene involvement in disesases like
idiopathic pulmonary fibrosis (Ghandikota, Sharma, Ediga,
Madala and Jegga, 2022) or Alzheimer’s Disease (Liang et al.,
2018). It has also been successfully applied to characterise the
effects of chemical exposure on gene expression and to relate it
to adverse outcomes (Callegaro et al., 2021). WGCNA enables the
discovery of new biomarkers of adverse outcomes, i.e., both
individual genes and sets of co-expressed genes that are
associated with harmful chemical effects. It does not rely on pre-
existing biological pathway information and is not limited or biased
by this knowledge, which renders it a favorable alternative to
enrichment analysis.

Biomarkers of pulmonary fibrosis have been identified using
mainly transcriptomics data (including microarray, RNA-Seq and
single-cell RNA-Seq) from lung tissue of humans found to suffer
ideopathic pulmonary fibrosis (IPF). Data from IPF lungs describes
the final state of lung fibrosis, but does not help us to understand the
development of the disease (Vukmirovic and Kaminski, 2018). A
WGCNA of IPF data identified modules for immune response,
extracellular matrix or contractile fibres, developmental pathways of
specific lung structures, cell division, DNA replication and DNA
repair, cellular metabolic and catabolic processes, and surfactant
metabolism (Mayr et al., 2021).

This study investigates a WGCNA of transcriptome data of the
pulmonary fibrosis inducer bleomycin with the aim of identifying
groups of genes with correlated expression patterns (modules). For

this purpose, transcriptome data from an in vivo mouse study in
which bleomycin was administered intratracheally for 35 days were
used. The WGCNA analysis determined modules for different
phases of disease progression starting from inflammation and
progressing to acute and late fibrosis. The obtained eight
modules were found to include 161 genes not previously
associated with pulmonary fibrosis. These genes, as well as the
entire identified modules represent novel biomarkers, which can
be used to predict pulmonary fibrosis. To test this hypothesis, the
modules were used to detect known fibrosis-causing compounds
using in vitro derived transcriptome datasets.

Materials und methods

Lung fibrosis related gene expression data: WGCNA analysis
was applied to a publicly available in vivo pulmonary
transcriptomics dataset for exposure to bleomycin, which is
known to cause lung fibrosis (Peng et al., 2013). In this study,
male C57BL6/J mice (n = 8 per group) were treated intratracheally
with a dose of Bleomycin 2U/kg body weight. The whole lungs were
extracted, homogenized and sampled at 7 time points on day 1, 2, 7,
14, 21, 28, 35 and after exposure. Based on histological findings, days
1 and 2 were classified as inflammentory phase, 7 and 14 as acute
fibrotic phase and from day 21 onwards as late fibrotic phase. Whole
transcriptome analysis was carried out using Affymetrix GeneChip
Mouse Genome 430 2.0 arrays (GSE40151 (NCBI), Peng
et al., 2013).

A recently published in vitro dataset on alpha-diketones ((Drake
et al., 2023); biostudies dataset IDs S-TOXR1814, S-TOXR1825,
S-TOXR1829 and S-TOXR1824; see https://www.ebi.ac.uk/
biostudies/) was used for validation. In brief, (Drake et al., 2023),
exposed primary bronchiolar epithelial cells (PBECs) to known and
potential inducers of lung fibrosis for 1 hour using an air-liquid-
interface. Test compounds included diacetyl and 2,3 pentanedione,
which are known inducers of lung fibrosis (Zaccone et al., 2013), as
well as the structural analogue 2,3-hexanedione, which is proposed
by (Drake et al., 2023) to have the same mode of action. In addition,
Drake et al. (2023) exposed the cells to negative and compound with
another mode of action. Aceton served as negative control, as it did
not induce any adverse effects in lungs in repeated dose toxicity
studies (Bruckner and Peterson, 1981; Cavender, Casey, Salem,
Swenberg and Gralla, 1983). Tunicamycin was tested as a
compound with a different mode of action, which is disruption
of protein folding (Wang et al., 2015). After 24 h, the cells were lysed
and analysed with targeted transcriptome sequencing applying the
S1500+ panel of the Templated Oligo-Sequencing (TempOSeq)
technology (Drake et al., 2023). The S1500+ gene panel
comprises 3,565 genes, which have been ensured to occur
frequently in toxicological experiments and to cover known
pathways (Mav et al., 2018).

Differential gene expression analysis

Differential gene expression analysis of the bleomycin
Affymetrix dataset was performed using the Genealyzer tool
(Lietz, Saremi and Wiese, 2023), which is based on the R
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package limma (Ritchie et al., 2015). The quality control analysis did
not show any gene or sample outliers with low read counts and/or
batch effects in the Affymetrix dataset. The terms “transcript” and
“gene” were used synonymously throughout this study.

The in vitro TempOSeq data was available in preprocessed form
as counts per million (CPM) normalised read counts in text files
(Drake et al., 2023) and analysed using DESeq2 (version 1.32.0;
(Love, Huber and Anders, 2014)) in R. Genes were considered
differentially expressed (DEG) if the adjusted p-value (padj)
was <0.05 based on the Benjamini-Hochberg method and the
absolute log2 foldchange was ≥1. (Bruckner and Peterson, 1981;
Cavender et al., 1983; Drake et al., 2023; Wang et al., 2015; Zaccone
et al., 2013).

Weighted gene co-expression network
analysis (WGCNA)

The analysis of the co-regulated genes was carried out
specifically for gene expression in lung tissue using the R
package WGCNA (Langfelder and Horvath, 2008). In a
WGCNA, genes with similar expression patterns are grouped
into modules (gensets). A module can be described using its so
called eigengene and hubgene. The eigengene is a vector
corresponding to the first principal (Sutherland et al., 2016)
and therefore represents the largest changes in the expression
profile. In contrast, the hub gene is an actual gene that
corresponds most closely to the eigengene.

The samples were normalised with the count per million read
(CPM) and log-transformed. The optimal soft threshold for the
adjacency calculation was then determined graphically (power = 4).
The cutreeDynamic function was used for tree pruning of the
dendrograms of the hierarchical gene cluster, resulting in co-
expression modules; correlated modules (r > 0.75) were then
merged. The minimum module size was set to 30, as a pragmatic
default value.

Modules were classified as relevant for the development of
pulmonary fibrosis using a correlation score, for which the
average of the absolute eigenvalues per phase (inflammation
(days 1 and 2), acute fibrotic phase (days 7 and 14), late fibrotic
phase (days 21 to 35) and controls) was determined. Also control
samples achieved non-zero activity scores, therefore module
selection was based on the ratio between the activities achieved
in the three fibrotic phases and in controls, termed differential
activity (DA). Modules with a DA greater than 2.5 were considered
particularly active in the corresponding phase and were selected for
further analyses.

The selected modules were then characterised using known
biomarkers in the Disgent database (Piñero et al., 2015) and the
hub genes. The hub gene is the gene that correlates most strongly
with the eigengene.

For further characterisation of the modules, the R package
gProfiler2 was used to perform a gene enrichment analysis of the
genes in the modules. Enrichment of biological processes incuded in
the Gene Ontology (GO) knowledgebase was determinedapplying
Fisher exact test with adjustment for multiple testing through
gProfiler2’s default method (padj <0.05) GO terms (biological
processes) (Kolberg et al., 2020).

To apply the modules to the in vitro dataset as a proof-of-
concept, mouse gene Ensembl IDs from the bleomycin dataset were
mapped to human gene Ensembl IDs using Biomart. To compare the
modules based on in vivo data with RNA data from in vitro
experiments, the DEGs are compared with the genes in the
module and an eigengene score is calculated per module and per
DEG set of the in vitro experiment. For this purpose, a module score
is calculated from the eigengene, which consists of the average
absolute eigengene score across the co-expression modules
(Sutherland et al., 2016). The module score thus describes how
high the activation or repression of a module is on average. The
activity scores were derived according to the method of (Callegaro
et al., 2021).

Results

DEG analysis of the in vivo study
on bleomycin

Peng et al. (2013) showed that bleomycin is a model substance
which induces pulmonary fibrosis in mice. Based on
histopathological findings, the authors described the progression
of fibrosis in three phases after a single intratracheal exposure of
2U/kg body weight: an initial inflammatory phase (up to day 2), a
subsequent acute fibrotic phase characterised by fibroblast
infiltration and collagen formation (day 7 to 14), and a late
fibrotic phase characterised by extracellular matrix remodelling
(day 21 to 34). In the first 2 weeks after bleomycin exposure, the
mice develop alveolar as well as interstitial fibrosis (Peng
et al., 2013).

Gene expression at days 1 or 2 (inflammation); 7 or 14 (acute
fibrosis) and 21 or 28 or 35 (late fibrosis) included a total of 937 of
differentially expressed genes (DEGs). The number of DEGs
(p-adj = q < 0.05, |log2FC| > 1) shows a time-dependent
pattern (Figure 1). While only few DEGs (N = 274) are
present in the inflammatory phase, the number of DEGs
increases during the acute fibrotic phase to 720 up and
150 downregulated genes at day 7. These DEGs are
characterized by particularly high fold changes. In the late
fibrotic phase, the number of DEGs decreases again to less
than 145 up or 61 downregulated genes (Figure 1).

Weighted gene co-expression network
analysis (WGCNA)

WGCNA was applied to the whole dataset including all
measurements at all timepoints of exposed and control
animals (Peng et al., 2013). Thereby, a total of 54 modules
(MEs) of genes with highly positively or negatively correlated
gene-expression were identified, including a total of
19,258 measured genes. ME size ranged from 33 to
5448 genes. For each module, an eigengene score was
calculated for the expression of included genes in each of the
histopathologically determined phases of the developing disease.

Eigengene scores (EG scores) are based on absolute values,
higher values indicates higher activity. The EG scores per module
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in the inflammatory, acute fibrotic, and late fibrotic phases as well
as in control animals shows highest activity levels in the
inflammatory and acute fibrotic phase, while the activity
decrease in the late fibrotic phase. Also control samples
achieved non-zero activity scores, therefore ME selection
employed DA, which is the ratio of the module to control EG
scores (Table 1). Eight MEs have high DA (DA >2.5), namely
modules 14, 20, 22, 28, 32, 37, 39, and 43. In total, these 8 MEs
include 1039 mouse ensemble IDs of which 951 genes could be
mapped to the human genome. The number of human genes in
each of the individual modules ranged from 58 to 273. As
expected, for all 8 selected MEs very little activity was found
in control samples. DA values ranged across the eight selected
modules from 1.02 to 4.76, 1.03 to 3.1 and 1.08 to 3.13 for the
inflammatory, acute fibrotic and late fibrotic phases, respectively
(Fehler! Verweisquelle konnte nicht gefunden werden).

Modules 14, 37, 39, and 43 particularly differentially activated
during the initial inflammatory phase. This finding is in line with the
observation that the hub genes in ME 14 and 39 (OAS1 and SPRR3)
are known to play a role in inflammation. No information is known
about the ME 37s hub gene (ZC3H18). Module 43 is also relatively
active in the late fibrotic phase. It’s hub gene (HPN) is involved in
cleavage of extracellular substrates and maintenance of cell
morphology, which is in line with the module’s association with
fibrotic processes.

Module 32 and 20 are particularly differentially activated during
the acute and late fibrotic phases, respectively. The ME32 hub gene
(ENSMUSG00000032397,Tipin) is a check point gene, which is part
of the DNA replication cycle (Gotter et al., 2007).

Modules 22 and 28 are differentially activated throughout the
entire investigated time span. The hub gene of ME22 (LGI3) has
been observed in patients suffering from ideopathic pulmonary
fibrosis (IPF) and is particularly active across all three phases in
this module. The hub gene ofME28 (VWA1) codes for a protein that

is involved in the storage of collagen in the extracellular matrix,
which is one of the main processes of fibrosis (Gebauer et al., 2016).

In order to get a broader and more robust impression of the
association between highly activated modules and disease
progression towards lung fibrosis, 924 known biomarkers of lung
fibrosis from DisGenet (Piñero et al., 2015) were mapped to the
genes included in the eight modules (Table 2). DisGenet is currently
the largest database of human gene-disease associations.

On top of that, enriched biological processes (GO; padj <0.05)
were determined (Table 2). Statistically significantly enriched
biological processes included inflammation-related processes such
as innate immune response, regulation of cellular extravasation, as
well as fibrogenesis-related processes such as epithelial development,
cellular catabolism, cell differentiatiation and cell (projection)
morphogenesis, establishment of (macromolecule) localization
and system development (Dörr and Herrmann, 2003).

Module 20, which shows particularly high DA during the late
phase of lung fibrosis development, comprises the highest number of
known biomarkers for lung fibrosis, with 14 of a total of 167 genes.
The number of biomarkers included in the remaining selected
modules ranged from 14 to 3, except for module 39, which does
not include any known biomarker of lung fibrosis listed in DisGenet.

Application of the eight biomarker modules

The eight modules were tested for their applicability as potential
biomarkers to identify fibrosis inducing chemicals. For this purpose,
a recently published dataset (Drake et al., 2023) on human primary
bronchiolar epithelial cells (PBECs) exposed to known induncers of
lung fibrosis was used.

Since Drake et al. (2023) measured a small panel of genes, this
proof-of-concept analysis could only take into account 42 to 4 genes
per module (see Table 2). Based on these genes, module activation

FIGURE 1
(A) Number of differentially expressed genes (DEG) (p-adj = q < 0.05, |log2FC| > 1) in mouse lung tissue per timepoint in days after start of the
exposure period. Up, increased expressing; down, decreased expression. (B)Hierarchical clustering based on log2 fold change for all genes that are DEG
at least at one time point (N = 937).
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was assessed in two ways. The number of DEGs in a given module as
determined by Drake et al. (2023) at each test compound
concentration was shown as a fraction of the total number of
measured genes in the module (Figure 2). Second, differentially
expressed genes at more than one test compound concentration
were listed in Table 3. Additionally, dose-responsiveness of
eigengene scores was assessed per module and test
compound (Figure 3).

Diacetyl induced pronounced differential expression in all of the
8 MEs. More than 20% of measured genes were differentially
expressed at two to three diactyl concentration levels for the
modules strongest associated with the inflammatory phase of
bleomycin-induced lung-fibrosis, one concentration level for
module 32 (association with the acute fibrotic phase), and at two
concentration levels for module 20 (late fibrotic phase association)
and modules 22 and 28 (generally high differential activation by
bleomycin across phases, Figure 2). However, fractions of
differentially expressed genes were generally not concentration
responsive. In contrast, EG scores showed a concentration-
responsive tendency for ME 14 (inflammatory phase) as well as

ME 22 and ME 28 (high DA across phases, Figure 3). Further, EG
scores for ME 43 (inflammatory phase) and ME 32 (acute fibrotic
phase) indicated a concentration-dependent response with only the
highest tested concentration.

2,3-pentanedione and 2,3-hexanedione, which have been shown
to trigger lung fibrosis based on a similar mechanism of action as
diacetyl, induced differential expression of >20% of the measured
genes at least at one concentration level for all modules
but–again–without concentration responsiveness comparable to
diacetyl (Figure 2). Cells treated with 2,3-pentanedione and 2,3-
hexanedione showed concentration-dependent response in the EG
scores of modules 14, 32 and 22 and of modules 14, 43, 32, 22 and 28,
respectively.

Tunicamycin, a substance with a known different mode of action
causing protein missfolding activated two modules associated with
the inflammatory phase (14 and 39), but none of the modules
associated with the fibrotic phases (Figure 2). A dose responsive
tendency of the EG score can only be found for module 14 (Figure 3).

Acetone, which had been found not to be toxic when
inhaled, induced little differential expression overall and it

TABLE 1 Characterisation of modules highly activated by bleomycine treatment in vivo (N = 8; differential activity >2.5). DA, differential activation.

Module ID DAinflamm DAacute DAlate Hub
gene

Hub gene short description References

14 4.76 1.03 1.51 OAS1 Interferon-induced, dsRNA-activated antiviral
enzyme which plays a critical role in cellular
innate antiviral response. In addition, it may
also play a role in other cellular processes such
as apoptosis, cell growth, differentiation and
gene regulation. (UniProt) past, human
evidence

Chen, et al. (2017), Wickenhagen et al.
(2021)

37 2.54 0.72 1.08 ZC3H18 No relevant information available.

39 2.70 0.74 0.55 SPRR3 Inflammation (including inflammation in the
lung) in human and mice

Zhu et al. (2021)

43 2.66 1.11 2.34 HPN Serine protease that cleaves extracellular
substrates, and contributes to the proteolytic
processing of growth factors, such as HGF and
MST1/HGFL. It plays a role in cell growth and
maintenance of cell morphology as well as in
the proteolytic processing of ACE2. Further, it
mediates the proteolytic cleavage of urinary
UMOD that is required for UMOD
polymerization.

Ganesan et al. (2021), Herter et al. (2005),
Heurich et al. (2014), Laidler et al. (1989),
Torres-Rosado, et al. (1993)

32 1.02 2.89 1.50 TIPIN Plays an important role in the control of DNA
replication and the maintenance of replication
fork stability. Important for cell survival after
DNA damage or replication stress. May be
specifically required for the ATR-CHEK1
pathway in the replication checkpoint induced
by hydroxyurea or ultraviolet light. Forms a
complex with TIMELESS and this complex
regulates DNA replication processes under
both normal and stress conditions, stabilizes
replication forks and influences both
CHEK1 phosphorylation and the intra-S phase
checkpoint in response to genotoxic stress.

Baris et al. (2022), Cho et al. (2013),
Unsal-Kacmaz et al. (2007),
Yoshizawa-Sugata and Masai (2007)

20 2.37 1.43 3.02 CUTALP Involved in resistance toward heavy metals,
derived from mouse studies.

Adams et al. (2024)

22 3.68 3.10 2.50 LGI3 Suggested to relate to idiopatic pulmonary
fibrosis (IPF), human evidence

Vastrad and Vastrad (2023)

28 2.99 2.02 3.13 VWA1 Extracellular matrix protein Schupp et al. (2021)

DA values ≥2.5 are presented in bold font.
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TABLE 2 Characterisation of modules that are highly activated by bleomycine treatment in vivo (N = 8; differential activity >2.5). Number of human genes in
themodule (thereof included in the S1500+ gene panel) as well as lists of Ensembl gene IDs of genes considered to be biomarkers of lung fibrosis [according
to DisGenet (Piñero et al., 2015)] and the top ten most significantly enriched (padj <0.05) GO terms (biological processes) per module. Bold Ensembl gene
IDs are part of the S1500+ gene panel.

Module ID #Genes: total (in S1500+) Biomarker genes fromDisGenet (bold
- genes in the S1500+ panel)

Enrichment analysis: GO biological
process

14 273 (42) ENSG00000184371 (CSF1)
ENSG00000115415 (STAT1)
ENSG00000172183 (ISG20)
ENSG00000172156 (CCL11)
ENSG00000178209 (KDELC2)
ENSG00000138496 (PARP9)
ENSG00000115267 (IFIH1)
ENSG00000164808 (SPIDR)
ENSG00000111537 (IFNG)
ENSG00000147099 (HDAC8)

response to virus
defense response to other organism
response to biotic stimulus
response to other organism
response to external biotic stimulus
biological process involved in interspecies interaction
between organisms
defense response to symbiont
defense response to virus
innate immune response
defense response

37 86 (9) ENSG00000134046 (MBD2)
ENSG00000143543 (JTB)
ENSG00000182220 (ATP6AP2)
ENSG00000117298 (ECE1)

primary metabolic process
organic substance metabolic process
nitrogen compound metabolic process
metabolic process
organic substance biosynthetic process
ncRNA metabolic process
biosynthetic process
cellular biosynthetic process
cellular metabolic process
organonitrogen compound metabolic process

39 83 (4) No information keratinization
keratinocyte differentiation
skin development
epidermis development
epidermal cell differentiation
tissue development
epithelial cell differentiation
epithelium development
animal organ development
muscle system process

43 58 (12) ENSG00000132170 (PPARG)
ENSG00000167468 (GPX4)
ENSG00000162733 (DDR2)
ENSG00000187848 (P2RX2)

-

32 100 (17) ENSG00000100311 (PDGFB)
ENSG00000130816 (DNMT1)
ENSG00000145147 (SLIT2)
ENSG00000087494 (PTHLH)

regulation of nitrogen compound metabolic process
regulation of primary metabolic process
vascular associated smooth muscle cell differentiation
regulation of vascular associated smooth muscle cell
differentiation
regulation of macromolecule metabolic process

20 167 (29) ENSG00000168036 (CTNNB1)
ENSG00000160179 (ABCG1)
ENSG00000169710 (FASN)
ENSG00000164111 (ANXA5)
ENSG00000135318 (NT5E)
ENSG00000150782 (IL18)
ENSG00000185499 (MUC1)
ENSG00000004142 (POLDIP2)
ENSG00000164690 (SHH)
ENSG00000140092 (FBLN5)
ENSG00000164251 (F2RL1)
ENSG00000172270 (BSG)
ENSG00000137648 (TMPRSS4)
ENSG00000085063 (CD59)

positive regulation of biological process
regulation of cellular localization
macromolecule localization
organic substance transport
positive regulation of cellular process
regulation of localization
regulation of protein localization
biological regulation
nitrogen compound transport
establishment of protein localization

22 149 (25) ENSG00000185303 (SFTPA2)
ENSG00000122852 (SFTPA1)
ENSG00000253729 (PRKDC)
ENSG00000245848 (CEBPA)
ENSG00000204305 (AGER)
ENSG00000167972 (ABCA3)

cell morphogenesis
organonitrogen compound metabolic process
neuron projection morphogenesis
plasma membrane bounded cell projection
morphogenesis
cell projection morphogenesis
cellular catabolic process

(Continued on following page)
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was well below the threshold of 20% of measured genes for all
modules, at all tested concentrations (Figure 2). EG scores
showed some tendency to increase concentration-
dependently for module 14, but not for any other or the
selected modules (Figure 3).

Interestingly, IRF7 (interferon regulatory factor 7,
ENSG00000185507; part of module 14) was differentially
expressed after treatment with the known fibrosis inducers
diacetyl and 2,3-pentanedione at two test compound
concentrations each (Table 3). This is a known inflammatory

gene, which is also discussed as a link between inflammation and
fibrosis (Wu et al., 2019). Further genes that were differentially
expressed at least at two test concentrations of more than one of the
inducers of lung-fibrosis include GNDF (ENSG00000168621,
module 22) and ALP1 (ENSG00000105290, module 28). GNDF
plays a role in various inflammatory processes, including lung
inflammation (Morel, Domingues et al., 2020). ALP1 belongs to
the APP gene family, which plays a role in cell growth, among other
things, as its protein products can bind particularly well to collagen
(Beher et al., 1996) (Table 3).

TABLE 2 (Continued) Characterisation of modules that are highly activated by bleomycine treatment in vivo (N = 8; differential activity >2.5). Number of
human genes in the module (thereof included in the S1500+ gene panel) as well as lists of Ensembl gene IDs of genes considered to be biomarkers of lung
fibrosis [according to DisGenet (Piñero et al., 2015)] and the top ten most significantly enriched (padj <0.05) GO terms (biological processes) per module.
Bold Ensembl gene IDs are part of the S1500+ gene panel.

Module ID #Genes: total (in S1500+) Biomarker genes fromDisGenet (bold
- genes in the S1500+ panel)

Enrichment analysis: GO biological
process

ENSG00000113578 (FGF1)
ENSG00000143507 (DUSP10)

cell morphogenesis involved in neuron differentiation
system development
multicellular organism development
establishment of localization

28 123 (19) ENSG00000119699 (TGFB3)
ENSG00000111087 (GLI1)
ENSG00000213694 (S1PR3)

positive regulation of myeloid dendritic cell chemotaxis
mesangial cell-matrix adhesion
regulation of myeloid dendritic cell chemotaxis
negative regulation of cellular extravasation
negative regulation of leukocyte tethering or rolling
negative regulation of leukocyte adhesion to vascular
endothelial cell
myeloid dendritic cell chemotaxis
negative regulation of dendritic cell apoptotic process
regulation of multicellular organismal development
regulation of cellular extravasation

FIGURE 2
Application of the proposed biomarker modules (ME) for compound induced lung-fibrosis to an external dataset. Module activation by three lung-
fiborisis inducing compounds (diacetyl, 2,3-pentanedione, 2,3-hexanedione) and two compounds with othermodes of action is expressed as the fraction
of the number of S1500+ genes in the module, which have been found to be differentially expressed (DEG) in human primary bronchial epithelial cells
after exposure for 24 h at 4 to 7 subcytotoxic concentration levels by (Drake et al., 2023). Module annotations point to the histopathologically
determined phase of bleomycin-induced development of fibrosis (inflammation, acute fibrotic, late fibrotic, or several (general)) which a given module
was found to be most differentially activated in. Dashed lines indicate the level where 20% of measured genes are differentially expressed.
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Discussion

To date transcriptome data are seldomly used in regulatory risk
assessment of chemicals and one challenge is the missing link of
chemically induced changes at the molecular level to their adverse
outcomes (AOs) (Brockmeier et al., 2017). A frequently applied

technology for interpretation of transcriptome data is a gene set
enrichment analysis, which applies a defined set of genes like a
molecular signaling pathway for data interpretation (Dean et al.,
2017). This approach is, however, dependent on prior knowledge
regarding pathways leading to adverse otucomes and it can be
assumed, that neither the pathway databases nor the current

TABLE 3 Ensembl gene IDs of DEGs in the proposed eight biomarker modules determined in an external in vitro validation dataset for three known lung-
fibrosis inducing compounds (Drake et al., 2023). DEGs are listed per module, when differentially expressed in at least two tesed concentrations per
compound. Bold ensemble gene IDs indicate DEGs found in more than one of the compounds.

Module ID
Diacetyl 2,3 Hexandione 2,3-Pentandione

ME14 ENSG00000185507 (IRF7) ENSG00000112249 (ASCC3) ENSG00000185507 (IRF7)
ENSG00000132530 (XAF1)
ENSG00000137628 (DDX60)
ENSG00000204209 (DAXX)
ENSG00000134326 (CMPK2)

ME37 ENSG00000160208 (RRP1B)

ME39 ENSG00000170477 (KRT4) ENSG00000181458 (TMEM45A)

ME43

ME32 ENSG00000139687 (RB1) ENSG00000116761 (CTH)

ME20 ENSG00000070731 (ST6GALNAC2) ENSG00000163686 (ABHD6) ENSG00000135480 (KRT7)

ME22 ENSG00000168621 (GDNF)
ENSG00000138085 (ATRAID)

ENSG00000168621 (GDNF)
ENSG00000245848 (CEBPA)

ME28 ENSG00000105290 (APLP1) ENSG00000105290 (APLP1)
ENSG00000006652 (IFRD1)
ENSG00000189056 (RELN)

Genes that are differentially expressed in more than one substance are labelled in bold.

FIGURE 3
Application of the proposed biomarker modules (ME) for compound induced lung-fibrosis to an external dataset. Module activation by three lung-
fiborisis inducing compounds (diacetyl, 2,3-pentanedione, 2,3-hexanedione) and two compounds with other modes of action is expressed as eigengene
scores based on in vitro transcriptomics read-outs after exposure for 24 h at 4 to 7 subcytotoxic concentration levels presented by (Drake et al., 2023).
Blue lines and grey shapes depict linear regression models and the associated 95% confidence intervals, respectively. Module annotations point to
the histopathologically determined phase of bleomycin-induced development of fibrosis (inflammation, acute fibrotic, late fibrotic, or several (general))
which a given module was found to be most differentially activated in.
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AOPs are covering all relevant adverse outcomes for endpoints such
as systemic toxicity after repeated long-term exposure. Therefore,
case studies are needed to complement the annotation of genes to
adverse outcomes and to gain confidence into their application.

Lung fibrosis is a frequently observed adverse outcome in
humans and typically develops over a long period of time e.g.
after exposure at the work place (Zaccone et al., 2013), to
environmental pollutants (Harari et al., 2020) or most frequently
to smoking (Morse and Rosas, 2014). Therefore, human samples of
fibrotic lungs usually represent the final stage of this process (Prasse
et al., 2019). In order to follow the different phases from early
inflammatory responses to acute and late fibrosis, the present study
is based on a mouse dataset, in which the known fibrosis inducer
bleomycin has been applied. While interspecies differences and the
incomplete mapping of genes from mouse to humans are a
disadvantage of this approach, the evaluation of early changes are
a clear advantage for data interpretation.

A number of in vitro studies have demonstrated that short-term
exposure, like 4 h or 24 h, of cell models, such as bronchial epithelial
cells, results in transcriptional changes that are indicative of the
subsequent development of pulmonary fibrosis (Saarimäki et al.,
2020; Xu et al., 2019). As the majority of cellular models are unable
to capture the whole development of pulmonary fibrosis, the
identification of early biomarkers is of particular importance for
their interpretation and inference of pulmonary fibrosis.

Most DEGs in the mouse dataset utilized in this study belong to
the acute fibrotic phase. In this phase, the fraction of upregulated
DEGs is particularly high assumably indicating the induction of a
large number of cellular processes related to the remodelling of the
pulmonary tissue.

The WGCNA detected 54 modules of genes with correlated
expression patterns indicating an involvement in the same cellular
processes. Eight of these 54 modules constitute potential composite
biomarkers showing considerably increased activity in the
inflammatory or fibrotic phases as compared to controls.

Four modules were specifically activated in the inflammatory
phase (module 14, 37, 39 and 43), one in the acute (module 32) and
late fibrotic (module 20) phases each. Two further modules showed
high differential activity in more than one phase indicating that the
modules may represent cellular processes relevant to all stages of the
development towards lung fibrosis (module 22 and 28).

Overall, eight relevant modules seem to be a reasonable number
of modules with relevance to an AO, when comparing this result to
other studies. An in vivo rat study of silica-induced pulmonary
fibrosis appling RNA-Seq and a subsequent WGCNA found
17 modules, two of which were classified as relevant for
pulmonary fibrosis (Lv et al., 2022). Another study investigated
different stages of liver cirrhosis and considered seven modules to be
relevant (Lu et al., 2023). The authors of the TXG mapper detected,
in liver related datasets, 398 modules and grouped them into
8 clusters (the exact number of modules was not described)
(Callegaro et al., 2021).

To increase the confidence in the specific relation of modules to
the fibrotic mode of action and to specific subprocesses, the hub
genes (i.e. genes that are particularly representative of the module)
were examined.

The hub genes’ annotations to biological processes found in the
literature corresponded very well with the histopathologically

determined inflammatory as well as acute and late fibrotic
processes in the bleomycin study. Exceptions include
ZC3H18 and CL57BL6, the hub genes of modules 37 and 20, for
which no information about related biological processes was found
and only involvement in processes not related to fibrosis have been
described in the literature. Interestingly, for the proposed potential
biomarker modules not only the hub genes corresponded well with
histopathologically determined phase. Instead, all of these modules
included further genes that are known biomarkers of fibrosis. This
finding supports the notion that the described modules should be
used as composite biomarkers instead of proposing only e.g. hub
genes of interesting modules as biomarkers, as has been done in
biomedical studies such as (Tian et al., 2020; Wan et al., 2018; Yuan
et al., 2021). In comparison to considering single genes as
biomarkers, be it hub genes or genes with known relations to
fibrotic processes as listed in DisGenet, the 8 modules described
in this study may serve as much more robust biomarkers, because
they build on expression patterns of dozens of genes, not only of
single genes. In support of this theoretical argument, enrichment
analysis results indicate that the modules reflect processes involved
in inflammation and (fibrotic) remodelling of tissue.

The modules proposed in this study were detected without
building on prior knowledge from sources such as pathway
databases, which bear the possibility of bias towards already
studied mechanisms. Eradicating this potential source of bias is a
clear advantage. To our knowledge, a WGCNA analysis has not yet
been performed on an in vivo data set for lung fibrosis covering the
development of an adverse outcome over several phases, so modules
can be assigned to the individual phases.

The proposed modules can be used for interpretation of
mechanisms of action in applications such as read-across, where
the mechanistic similarity of compounds needs to be characterized
(Escher et al., 2019). Mechanistic similarity is difficult to assess based
on single gene changes, as expression patterns of single genes are
typically too variable (Escher et al., 2022b; Vrijenhoek et al., 2022).
In contrast, pathway analysis or modules reduce the noise in these
data and make it easier to detect compounds with similar
mechanisms of action, as recently demonstrated in several case
studies in the EUTOXRISK and RISK-HUNT3R projects (Drake
et al., 2023; Escher et al., 2022a; Vrijenhoek et al., 2022).

The eight proposed biomarker modules were applied to an
in vitro gene expression dataset for other known inducers of lung
fibrosis (Drake et al., 2023) to explore their applicability domain
(i.e., to which extent the modules reflect general responses to
inducers of lung fibrosis). (Drake et al., 2023). reported a dose-
dependent increase in the number of DEGs and DEGs’ fold change
values, both in cells exposed to any of the three tested alpha-
diketones and tunicamycin. The expression patterns induced by
alpha-diketones have been found to be very similar by the authors,
whereas both similarities and differences have been recognised in
the expression pattern of tunicamycin. Interestingly, even though
the total number of DEGs found for tunicamycin was comparable to
those of the alpha-diketones, tunicamycin induced differential
expression only in small fractions (<20%) of the genes within the
proposed biomarker modules except for two inflammation related
modules, where fractions reached or surpassed that level. This
finding is expected, as tunicamycin is known to induce
differential expression of genes involved in inflammation (Guo
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et al., 2017) but not in lung fibrosis. Further, this suggests that six of
the eight modules represent specifically lung-fibrosis
related processes.

One limitation of this case study is the small gene set (S1500+
panel) of the in vitro study, therefore a complete gene profile was not
analysed and should be investigated in further case studies.
Nevertheless, it could be shown that the fibrosis-inducing
substances activate all identified modules, whereas the substance
with different mode of action shows activity at most in the
inflammatory phase.

The WGCNA analysis was based on mice exposed at a single
dose level, so that dose-dependence could not be taken into account
in generating the eight biomarker modules. Further dose groups
would allow to compare low dose and high dose effects and focusing
on genes that are regulated in a dose-dependent manner could
minimise noise in the data.

As the in vitro dataset included only two to four concentrations,
benchmark dose analysis could not be applied to it. Nevertheless,
differential expression of genes and eigenvalues of the modules were
investigated to characterize the type and trends in the
concentration-responsiveness of the modules. The eigenescore
(EG) analysis considered the absolute log2 foldchange values of
all genes in a given module, regardless of whether they were
differentially expressed. Therefore, after mapping a module to the
gene expression, the EG serves as a measure of the overall activation
of the module. Modules with a concentration-responsive EG
(i.e., higher EG with increasing concentration) were considered
activated with high reliablilty.

Considering both the number of DEGs as a fraction of measured
genes in a given module and eigenvalues of the module has different
advantages. One advantage of analysing the relative number of
DEGs is that it is not biased when only a limited set of genes is
measured in an experiment where the modules are applied as
biomarkers. In contrast, eigenvalues can be biased by a reduced
coverage of the modules. In turn, eigenvalues are based on more
information about the activation of a module in a given experiment.

In the validation dataset both measures responded as expected.
Dose-responsiveness of module 43, 32, 20, 22 and 28 eigenvalues is
only visible for the fibrosis-inducing substances. The relative
number of DEGs induced by the fibrosis-triggering substances is
high for all modules whereas in tunicamycin treated cells it is only
high for two modules that represent the inflammatory phase.

Conclusion and outlook

The genemodules proposed as markers of lung fibrosis are based
not only on the final fibrotic phase, but also on earlier events. More
precisely, we can discern modules, which are particularly active at
particular stages in the development towards lung fibrosis and
others which are activated throughout the development. The
modules themselves can serve as markers of the potential
induction of lung fibrosis. Furthermore, they include genes,
which have previously not been associated with lung fibrosis. In
that sense, they are also a tool to generate new hypotheses regarding
mechanisms underlying compound induced lung fibrosis. Results of
hub gene characterization and mapping with information about
known biomarkers from DisGenet confirm, that modules with high

differential activity are indeed highly relevant for characterising
fibrotic processes. Relating modules’ activity specifically to
particular stages of the development of bleomycin-induced lung
fibrosis, opened up for the possibility of mapping the modules to
known AOPs and thus an opportunity to connect AOPs and
transcriptomics data.

In conclusion, new biomarkers correlated with the development
of compound-induced lung fibrosis were developed and applied in a
proof-of-concept case study.
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