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The control of ergot alkaloids in biotechnological processes is important in the
context of obtaining new strain producers and studying the mechanisms of the
biosynthesis, accumulation and secretion of alkaloids and the manufacturing of
alkaloids. In pharmaceuticals, it is important to analyze the purity of raw materials,
especially those capable of racemization, quality control of dosage forms and bulk
drugs, stability during storage, etc. This review describes the methods used for
qualitative and quantitative chemical analysis of ergot alkaloids in tablets and
pharmaceutic forms, liquid cultural media and mycelia from submerged cultures
of ergot and other organisms producing ergoalkaloid, sclerotias of industrial
Claviceps spp. parasitic strains. We reviewed analytical approaches for the
determination of ergopeptines (including their dihydro- and bromine derivatives)
and semisynthetic ergot-derived medicines such as cabergoline, necergoline and
pergolide, including precursors for their synthesis. Over the last few decades,
strategies and approaches for the analysis of ergoalkaloids for medical use have
changed, but the general principles and objectives have remained the same as
before. These changes are related to the development of new genetically improved
strains producing ergoalkaloids and the development of technologies for the online
control of biotechnological processes and pharmaceutical manufacturing (“process
analytical technologies,” PAT). Overall, the industry is moving toward “smart
manufacturing.” The development of approaches to production cost estimation
and product quality management, manufacturing management, increasing
profitability and reducing the negative impact on personnel and the environment
are integral components of sustainable development. Analytical approaches for the
analysis of ergot alkaloids in pharmaceutical rawmaterials should have high enough
specificity for the separation of dihydro derivatives, enantiomers and R-S epimers of
alkaloids, but low values of the quantitative detection limit are less frequently
needed. In terms of methodology, detection methods based on mass
spectrometry have become more developed and widespread, but NMR analysis
remains in demand because of its high accuracy and specificity. Both rapidmethods
and liquid chromatography remain in demand in routine practice, with rapid analysis
evolving toward higher accuracy owing to improved analytical performance and
new equipment. New composite electrochemical sensors (including disposable
sensors) have demonstrated potential for real-time process control.
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Introduction

Ergot Claviceps purpurea (Fries) Tulasne is of critical economic
importance because it is a producer of many biologically active
compounds (alkaloids) for the pharmaceutical industry, a unique
model of the parasite-host system, and a mycotoxin-associated
pathogen that causes significant economic damage to agriculture
around the world (Volnin and Savin, 2022). To meet the global
demand for ergot alkaloids, 8 tons of ergopeptines and up to
10–15 tons of D-lysergic acid are produced each year.
Approximately 60% of these strains are produced by the
submerged fermentation of specially developed strains of C.
purpurea, whereas the rest are obtained from field cultivation
(Wong et al., 2022).

The analysis of ergot alkaloids is an important topic in safety
programs for food, animal feed and other agricultural products. The
European Food Safety Authority (EFSA) conducts monitoring to
assess its presence in food and animal feed (Holderied et al., 2019).
In the Russian Federation, the Federal Service for Veterinary and
Phytosanitary Surveillance (Rosselkhoznadzor of the Russian
Federation) is responsible for regulatory procedures and
monitoring ergot in agricultural products (Pankin et al., 2023).

Rapid methods used for the determination of ergot alkaloids in
agricultural products include spectrophotometric determination of
alkaloid sum (Sheshegova et al., 2019, 2021), hydrazinolysis with
determination of the total precursor content (Kuner et al., 2021),
thin-layer chromatography (TLC) (Sheshegova et al., 2019, 2021),
high-performance thin-layer chromatography with fluorescence
detection (HPTLC-FLD) (Oellig, 2017), planar solid-phase
extraction with fluorescence detection (Oellig and Melde, 2016;
Chung, 2021), enzyme-linked immunoassay (ELISA) (Gross
et al., 2018; Kodisch et al., 2020; Boško et al., 2024),
immunoassays with magnetic beads and amperometric detection
(Soraya et al., 2023; Silva et al., 2023), and capillary electrophoresis
(Felici et al., 2015).

High-precision methods for the determination of ergoalkaloids
in agricultural products include liquid chromatography with UV or
fluorometric detection (LC-UV, LC-FLD) (Chung, 2021; Crews,
2015); mass spectrometry-based methods (Bryła et al., 2015;
Carbonell-Rozas et al., 2022), including liquid chromatography
with tandem mass spectrometric detection (LC‒MS/MS)
(Carbonell-Rozas et al., 2021a,b; Arroyo-Manzanares et al., 2021;
Veršilovskis et al., 2020; Poapolathepet al., 2021); and gas
chromatography‒mass spectrometry (Crews, 2015). Although
LC‒MS/MS has dominated in practice in recent years, LC-FLD is
still more common (Holderied et al., 2019).

Methods for the determination of ergoalkaloids in tablets should
be rapid and specific, with low values of the quantitative detection
limit being less frequently required (Crews, 2015).

The control of ergot alkaloids in biotechnological processes is
important in the context of obtaining new strain producers and
studying the mechanisms of the biosynthesis, accumulation and
secretion of alkaloids and the manufacturing of alkaloids. In
pharmaceuticals, it is important to analyze the purity of raw
materials, especially those capable of racemization, quality control
of dosage forms and bulk drugs, stability during storage, etc.

This paper characterizes methods of qualitative and quantitative
chemical analysis of ergoalkaloids in tablets and pharmaceutic

forms, sclerotia of industrial parasitic strains of Claviceps
spp. and liquid cultural media or mycelia of ergot submerged
cultures and other microorganisms used for ergoalkaloid
production. Practical examples of the use of rapid methods,
process analytical technology and high-precision analysis,
including mass spectrometry-based methods, NMR and
crystallography, are given. Analytical approaches for quality
control of medicinal raw materials are considered, taking into
account factors such as the epimerization of alkaloids and others.

Isomerization, epimerization and
dihydro derivatives of ergoalkaloids

Molecules of ergoalkaloids can epimerize relative to the center of
symmetry at the C8 position (R- and S- epimers), and these forms
can interconvert under the action of UV, temperature, pH and
chemical reagents (Chung, 2021; Silva et al., 2023; Crews, 2015). The
epimerization of alkaloids is important because of the different
biological activities and toxicity of the R and S forms (however,
recent studies have suggested the opposite (Cherewyk et al., 2020;
2024)), the possibility of epimerization during sample preparation
and storage (Chung, 2021; Silva et al., 2023; Crews, 2015), and the
influence of epimerization on the technological processes of
obtaining drug raw materials (presence of impurities and
quantitative yield of target alkaloids) (Komarova and Tolkachev,
2001a; Komarova and Tolkachev, 2001b; Zvonkova et al., 2000).

Ergotamine and ergosine are very stable ergot alkaloids, and
neither their concentrations, nor their respective R/S ratios, are
significantly influenced by heat, protic solvents or UV light
(Schummer et al., 2020). In contrast, for ergocristine,
ergokryptine, ergocornine and ergometrine, heat can decrease the
concentrations of these alkaloids, and heat, protic solvents and UV
light influence the R/S ratio toward the S-form, although the
respective influences on the epimerization of these compounds
are variable (Schummer et al., 2020).

Liquid chromatography-fluorescence (Holderied et al., 2019) or
UV- (Zvonkova et al., 2000) detection, capillary electrophoresis,
liquid chromatography‒mass spectrometry (Cherewyk et al., 2024),
and ion mobility mass spectrometry (Carbonell-Rozas et al., 2022)
can be used to quantify both R- and S-epimers of ergot alkaloids
(Cherewyk et al., 2024).

The synthesis of pharmaceutical substances such as modified
ergoalkaloids (in particular bromine derivatives) is markedly
complicated by their lability and susceptibility to epimerization.
The epimerization process is in equilibrium, proceeds with heating,
and is catalyzed by acids and bases. The formation of epimers at
C8 results in the loss of the target compound with a noncrystallizable
reaction mixture and with the head fractions during
chromatographic purification involved in parent substance
synthesis (Zvonkova et al., 2000). Methods for reverse
epimerization have been developed and presented (Zvonkova
et al., 2000).

For the manufacturing of semisynthetic ergoalkaloids, such as
cabergoline, nicergoline and pergolide, an important aspect is the
presence of a branch point associated with the isomerization of
paspalic acid to lysergic acid [Liu and Jia, 2017; Himmelsbach et al.,
2014). Since this process does not tend toward chemical balance, the
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racemized products were carefully purified. This continuous
improvement of strains to increase productivity and optimize
fermentation parameters related to biotechnological processes
implies the need to develop methods for analyzing samples at
different stages of alkaloid manufacturing (Himmelsbach
et al., 2014).

An intermediate process for the semisynthesis of cabergoline
and pergolide is hydrogenation [Liu and Jia, 2017). In addition,
dihydroalkaloids are also the active substances of some drugs (e.g.,
dihydroergotamine). (Schiff, 2006). Analytical approaches for the
analysis of ergot alkaloid raw pharmaceutical materials should have
high enough specificity for the separation of dihydro derivatives,
enantiomers and R-S epimers of alkaloids.

Methods of analyses

Spectrofluorimetry and spectrophotometry

Many ergoat alkaloids, including the most common, are
naturally fluorescent. The method of fluorescence spectroscopy
(spectrofluorimetry) possesses high sensitivity, being capable of
detecting about 1 ng of lysergic acid derivatives (Komarova and
Tolkachev 2001b).

The spectrophotometric technique used for the quantitative
determination of ergot alkaloids offers high sensitivity. However,
the method is insufficiently selective (Komarova and Tolkachev
2001b). Nonselective spectrophotometric determination of total
alkaloid content with van Urk reagent is used for rapid analysis
of sclerotia of ergot industrial parasitic strains. The disadvantage of
this method is its sensitivity to all substances containing indole
groups, including tryptophan (Volnin et al., 2022).

Thin-layer chromatography

Thin layer chromatography (TLC) is a qualitative, selective
method but can be used both separately and in combination with
spectrophotometric, spectrofluorimetric quantitative (Komarova
and Tolkachev 2001b) or densitometric semiquantitative analysis
(Komarova and Tolkachev 2001b; Volnin et al., 2022,2023).

Thin-layer chromatography can be used for studying the
stability and degradation pathways of related drugs during
storage and determining the content of impurities in parent
substances (Komarova and Tolkachev 2001b). The disadvantages
of this method are different selectivities for different groups of
alkaloids, different sensitivities to eluent composition and different
conditions of analysis (Volnin et al., 2022).

Voltammetry

Electrochemistry has many benefits, making it an appealing
choice for clinical, food, pharmaceutical and environmental studies.
Electrochemistry has provided analytical techniques characterized
by instrumental moderate cost, simplicity, and portability
(Mohammadi et al., 2019).

Capillary electrophoresis

Capillary electrophoresis has been used for the determination of
ergoalkaloids and some epimers. Good separation was achieved but
for a limited number of alkaloids (Crews, 2015).

HPLC

HPLC is widely used for both the qualitative and quantitative
analysis of ergot alkaloids, for the characterization of raw materials
(ergot sclerotias and saprophytic cultures), and for the investigation
of technological products and medicinal preparations containing
ergot alkaloids (Komarova and Tolkachev, 2001b).

Reversed-phase chromatography is always used for the
separation of ergoalkaloids. Most methods use solvent systems of
methanol–water or acetonitrile–water mixtures with ammonium
hydroxide, ammonium carbonate, ammonium carbamate or
triethylamine to provide alkaline pH conditions. Separation can
be achieved with both isocratic and gradient mobile phases. Alkaline
mobile phases are preferred to maintain the stability of both
epimers, avoid protonation and improve separation. (Crews, 2015).

Both ultraviolet (UV) and fluorescence (FLD) have been coupled
with LC for ergot alkaloids analysing. Since many ergot alkaloids,
including the most common, are naturally fluorescent (Komarova
and Tolkachev, 2001b) and FLD offers better sensitivity and
specificity than UV, detection with UV has become less common
(Chung, 2021; Crews, 2015; Komarova and Tolkachev, 2001b). With
LC separation, ergopeptines and ergopeptinines can be measured
with an ultraviolet (LC-UV) detector set to a wavelength maxima of
310 nm for ergopeptines and ergopeptinines and at 280 nm for
dihydroergopeptines, although other wavelengths have been
included (Crews, 2015; Blaney et al., 2009; Komarova and
Tolkachev, 2001b).

Mass spectrometry

Mass spectrometry is used for identifying ergot alkaloids,
determining their structures, and characterizing the peptide
fragments of molecules (Komarova and Tolkachev, 2001b).
Determination by high-performance liquid chromatography
(HPLC) coupled with tandem mass spectrometry (LC‒MS/MS)
has become a standard approach for trace quantification and
identification (Crews, 2015).

NMR

NMR spectroscopy is one of the main methods used for
identifying ergot alkaloids; studying the stereoconfiguration,
structure, and lability of molecules; and solving problems related
to changes in the configuration and structure of these compounds.
Using this method, it is possible to determine the ratio of alkaloids in
a mixture while simultaneously confirming the component
structures, which facilitates the solution of many technological
problems (Komarova and Tolkachev, 2001b).
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Operational control of bioprocesses

A current trend in the pharmaceutical and biotechnology
industry is noninvasive real-time operational control of
technological processes (“process analytical technology”, PAT)
(Gillespie et al., 2022).

This approach can potentially be realized by combining
spectroscopic measurements (UV/visible spectroscopy, IR
spectroscopy, fluorescence spectroscopy and Raman
spectroscopy) with multivariate data analysis (Claßen et al., 2017;
Esmonde-White et al., 2017; Schlembach et al., 2021).
Electroanalytical methods are characterized by instrumental
simplicity, moderate cost, reasonable accuracy, precision, and
speed (Hasanpour et al., 2017). Currently, improving novel
sensing materials such as graphene, nanoparticles, and carbon
nanotubes that are capable of enhancing the analytical properties
of electrode surfaces is vital. Disposable sensors based on screen-
printed electrodes have led to innovative possibilities for analytic
quantitation (Mohammadi et al., 2019).

With advances in production processes, especially in the
biopharmaceutical and nutraceutical industries, monitoring and
control of bioprocesses such as fermentation with GMO
organisms and downstream processing has become increasingly
complex, and the inadequacies of classical and some modern
control system techniques are becoming apparent. Therefore,
with increasing research complexity, nonlinearity, and
digitization in the process, there has been a critical need for
advanced process control that is more effective, and easier
process intensification and product yield (both by quality and
quantity) can be achieved (Mitra and Murthy, 2022).

Bioprocess control involves more than just automation and
includes aspects such as system architecture, software
applications, hardware, and interfaces, all of which are
optimized and compiled per demand. This needs to be
accomplished while maintaining process requirements,
production costs, the market value of products, regulatory
constraints, and data acquisition requirements (Rathore et al.,
2021). Expansion of the Process Analytical Technology toolbox
could lead to “smart manufacturing” (Isoko et al., 2024). However,
several unique and dominant features of biobased processes call
for methods and methodologies that differ from those that have
been successfully applied to large-scale continuous chemical
processes or discrete-parts manufacturing processes (Bähner
et al., 2021).

Ergot alkaloid production and control
in biotechnological processes

The literature indicates possible problems with the
identification of alkaloids by HPLC when analyzing wild ergot.
Blaney et al. reported several problems with the identification of
alkaloids from the ergotoxin group (in C. purperea sclerotias from
grain samples) (Blaney et al., 2009). The same problems may arise
in the determination of ergotoxin alkaloids in industrial parasitic
strains. More careful selection of conditions for chromatographic
separation or additional control by NMR may solve this problem
(Komarova and Tolkachev, 2001b). NMR spectra of the

ergototoxin alkaloids (ergocryptines, ergocristine, ergocornine)
present in the sclerotia of industrial parasitic ergot strains were
obtained. These data may be useful for identifying the α and β
forms of ergocryptine and estimating the impurity content in the
pharmaceutical manufacturing of alkaloids (Komarova and
Tolkachev, 2001b).

NMR and crystallographic methods have been used for the
characterization of intermediates in full chemical synthesis methods
of ergot alkaloids (Jastrzębski et al., 2022; Brauer et al., 2024). Ergot
alkaloids obtained from platforms based on Saccharomyces
cerevisiae (Nielsen et al., 2014) and Aspergillus nidulans (Qiao
et al., 2022) were characterized via NMR.

Capillary zone electrophoresis was used for analysis of paspalic,
lysergic and iso-lysergic acids in combination with UV and
quadrupole mass spectrometric detection [Himmelsbach
et al., 2014).

In the study of a submerged culture of a C. paspali strain with an
inactivated gene cluster for the synthesis of indolediterpenes (which
are toxic byproducts in the production of ergoalkaloids), a complex
problem was solved by combining HPLC MS/MS for the
determination of paspaline, paspalinine, paxiline and
paspalitremes and two HPLC-UV modes for ergot alkaloids (two
elution modes and two wavelengths of 310 and 230 nm). Since
lysergic acid and paspalic acid co-eluted under standard conditions,
the separation of these compounds was achieved via a different
HPLC method with a new elution mode and UV detection at λ =
230 nm (Kozák et al., 2018).

HPLC with fluorescence detection and LC‒MSwere used for the
determination of alkaloids synthesized by modified strains of
Metarhizium brunneum [Davis et al., 2020, 2023) and C. paspali
(Hu et al., 2023); lysergic acid; ergometrine produced by C. paspali
(Qiao et al., 2022); and clavine alkaloids and dihydroderivatives
produced in a heterologous system based on A. nidulans (Yao et al.,
2022). High-performance liquid chromatography‒tandem mass
spectrometry (HPLC‒MS/MS) was used for the determination of
lysergic acid produced by transgenic yeast (Lim et al., 2023; Wong
et al., 2022).

Reversed-phase HPLC with elution in gradient mode with
formic acid solutions in acetonitrile and water can also be used for
the analysis of ergoalkaloids [Doi et al., 2022; Ma et al., 2022),
including mass spectrometric detection (Ma et al., 2022). In
addition, aqueous ammonium formate solution and acetonitrile
can be used as solvents (Chen et al., 2019). HPLC in gradient
mode with elution of aqueous solutions of acetic acid and
acetonitrile was used for the determination of ergopeptines
produced in submerged culture by genetically modified ergot
strains (Králová et al., 2021).

The van Urk reaction has been used for the determination of
ergoalkaloids produced in vitro by mutant strains of Penicillium
citrinum [Shahid et al., 2020) and C. purpurea (Bobyleva and Savin,
2021; Bobyleva and Tsybulko, 2021). Thin layer chromatography is
used for rapid and selective confirmation of alkaloid synthesis for
saprophytic strain selection and rapid identification of parasitic
strains through simple chemotaxonomic markers (Volnin et al.,
2022, 2023).

Fluorescence spectroscopy is a convenient method for real-
time on-line monitoring of microbial fermentation processes and
allows the measurement of substrate and product concentrations
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and the evaluation of process status (Faassen and Hitzmann, 2015;
Alemneh et al., 2022,2023). In particular, the application of two-
dimensional fluorescence spectroscopy and chemometric models
(biomass, protein, and alkaloid concentrations) for real-time
analysis (online monitoring) of bioprocesses in a bioreactor
during cultivation of C. purpurea via a BioView® sensor
(DELTA Light and Optics, Denmark) was described (Boehl
et al., 2003).

Pharmaceutical applications

Control of ergot alkaloids is necessary for the analysis of tablet
and injectable dosage forms as well as bulk drugs. In
pharmaceuticals, it is important to analyze the purity of raw
materials; the contents of active ingredients, impurities and
additives; the quality control of finished dosage forms; and the
stability during storage. Quality-control procedures need selective,

TABLE 1 Determination of ergot alkaloids in pharmaceutical dosage form and bulk drugs.

No Alkaloid Method Characteristics References

Express methods

1 Bromocriptine mesylate Spectrofluorimetry Sensitive, precise, quick, and affordable Abdulrazik et al. (2023)

2 Cabergoline Spectrofluorimetry Simple, economic, and selective Rizk et al. (2022)

3 Cabergoline Spectrophotometry Simple, selective and accurate Rambabu et al. (2012)

4 Nicergoline and its degradation
products

Spectrophotometry The first method was based on measurement of the first
derivative of ratio spectra amplitude of nicergoline at
291 nm

Ahmad et al. (2002)

5 Nicergoline and its degradation
products

HPTLC Separation of nicergoline from its degradation product
followed by densitometric measurement of the spots at
287 nm

Ahmad et al. (2002)

6 Cabergoline Thin layer chromatographic
(TLC) with fluorescence detection

Stability-indicating method Rizk et al. (2022)

7 Ergotamine High-performance thin-layer
chromatography (HPTLC)

Determined simultaneously with caffeine and
metamizole

Crews (2015)

8 Cabergoline and its degradation
products

HPTLC Quick determination of quantificate and stability Farid and Abdelwahab (2019)

9 Bromocriptine Voltammetry Verification the uniformity content of bromocriptine in
commercial tablets

Radi et al. (2005)

10 Ergotamine tartrate Capillary electrophoresis Long analysis time Sultan et al., 2013; Crews, 2015

High-precision methods

11 Cabergoline HPLC Simple, specific Farid and Abdelwahab 2019;
Jyothirmayee and Raju, 2014

12 Cabergoline HPLC Mobile phase containing Acetonitrile, phosphoric acid,
triethylamine

Önal et al. (2007)

13 Nicergoline HPLC Mobile phase containing methanol, acetonitrile and
ortho phosphoric acid

Kumar and Nadh (2011)

14 Nicergoline HPLC Mobile phase of methanol-water-glacial acetic acid Ahmad et al. (2002)

15 Pergolide Ion-pair chromatography Stability indicating Kotzagiorgis et al. (2007)

16 Pergolide HPLC Stability indicating Shank and Ofner (2010)

17 Dihydroergotamine Ion-pair UPLC Quantify the related substances for injection drug
product

Basappa et al. (2024)

18 Ergotamine tartrate HPLC Isocratic mode with methanol/formic acid solvents and
UV detection

Ashour and Omar (2013)

19 Bromocriptine mesylate HPLC Elution by methanol solution of formic acid Ashour and Kattan (2013)

20 Bromocriptine mesylate HPLC Elution by methanol solution of sodium acetate Pukngam and Burana-osot
(2013)

21 Dihydroergocristine HPLC Fluorescence detection and elution by potassium
dihydrogen phosphate buffer -acetonitrile

Dousa and Dubovská (2010)

22 Dihydroergocristine mesylate mixed
with clopamide and reserpine

HPLC The mobile phase consists of a mixture of ammonium
acetate, acetonitrile and methanol

Al-Akraa and Kabaweh (2015)
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accurate, economical, simple, rapid stability-indicating methods to
solve analytical problems (Farid and Abdelwahab 2019;
Jyothirmayee and Raju, 2014; Önal et al., 2007). Finished dosage
forms are multicomponent, and their analysis requires sensitive and
easy separation and simultaneous determination of components
without interference with the additives and excipients normally used
in tablet formulations (Al-Akraa and Kabaweh, 2015). The methods
used are summarized in Table 1.

Quality control procedures can have certain problems
depending on the substance being analyzed. For example,
cabergoline exhibits poor UV absorbance and fluorescence, as
well as little thermal stability and low volatility; as a result, some
analytical methods, such as high-performance liquid
chromatography with UV or fluorescence detectors and gas
chromatographic techniques, are not always convenient for
sensitive determination (Hasanpour et al., 2017).

A screen-printed electrode (SPE) modified with a La2O3/
Co3O4 nanocomposite (La2O3/Co3O4/SPE) has been developed
and employed for sensitive and selective quantification of the ergot
derivative drug cabergoline with exceptional accuracy and precision
in a phosphate buffer solution via different pulse voltammetry
techniques (Mohammadi et al., 2019). A novel maghemite
nanoparticle carbon paste-modified electrode was developed for
the determination of cabergoline. The modified electrode has an
outstanding catalytic effect on the oxidation current of cabergoline,
and the mechanism was studied via cyclic voltammetry. The
proposed method was examined as a selective, simple and precise
method for voltammetric determination of cabergoline in
pharmaceutical samples (Hasanpour et al., 2017).

NMR analysis was used for characterization of impurities in the
dihydroergotamine injection drug product (Basappa et al., 2024).
NMR studies of ergometrine, methylergometrine and their maleate
salts were carried out to determine their conformational parameters.
In addition, the stereochemistry and intermolecular interactions in
the solid-state of the two maleate salts were investigated via
monocrystal X-ray diffraction (Meneghetti et al., 2020).

Conclusion

Phytosanitary and toxicological analyses have certain
specificities and may differ from analytical control procedures for
biomedical ergot alkaloids in terms of several parameters. For
example, toxicological methods require low detection limits and
high sensitivity, low specificity of expression methods (e.g.,
immunoenzyme assays), additional sample preparation and
purification procedures, a large variety of alkaloids with limited
availability of standard solutions, and the presence of other indole-
containing mycotoxins in samples.

The content of ergoalkaloids in sclerotias of industrial parasitic
strains of Claviceps spp. and liquid cultural medias or mycelia of
submerged cultures of ergot and other microorganisms that produce

ergot alkaloids is generally greater than that of “wild” strains in
agricultural and food toxicology. However, analytical approaches for
the analysis of pharmaceutical rawmaterials should have sufficiently
high specificity and selectivity for separating dihydro derivatives,
enantiomers and epimers of ergoalkaloids. This directly affects the
quality of the obtained raw pharmaceutical substances (the presence
of impurities and the quantitative yield of the target alkaloid).
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