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Chemical risk assessment plays a pivotal role in safeguarding public health and
environmental safety by evaluating the potential hazards and risks associated with
chemical exposures. In recent years, the convergence of artificial intelligence (AI),
machine learning (ML), and omics technologies has revolutionized the field of
chemical risk assessment, offering new insights into toxicity mechanisms,
predictive modeling, and risk management strategies. This perspective review
explores the synergistic potential of AI/ML and omics in deciphering clastogen-
induced genomic instability for carcinogenic risk prediction. We provide an
overview of key findings, challenges, and opportunities in integrating AI/ML
and omics technologies for chemical risk assessment, highlighting successful
applications and case studies across diverse sectors. From predicting
genotoxicity and mutagenicity to elucidating molecular pathways underlying
carcinogenesis, integrative approaches offer a comprehensive framework for
understanding chemical exposures and mitigating associated health risks. Future
perspectives for advancing chemical risk assessment and cancer prevention
through data integration, advanced machine learning techniques, translational
research, and policy implementation are discussed. By implementing the
predictive capabilities of AI/ML and omics technologies, researchers and
policymakers can enhance public health protection, inform regulatory
decisions, and promote sustainable development for a healthier future.
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1 Introduction

Chemical exposure is ubiquitous in modern society, arising from various sources such
as industrial processes, consumer products, agriculture, and environmental pollutant (Rai
et al., 2023b). While many chemicals serve essential purposes in daily life, some possess
inherent toxic properties that can pose significant risks to human health. Among these are
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chemical clastogens, substances capable of inducing DNA damage
and genomic instability (Goel et al., 2023). Chemical clastogens exert
their deleterious effects by disrupting the integrity of the genome,
the complete set of an organism’s genetic material encoded in DNA.
These substances can induce a wide range of DNA lesions, including
single and double-strand breaks, DNA adducts, chromosomal
rearrangements, and point mutations (Bignold, 2009). Genomic
instability, characterized by an increased frequency of such
genetic aberrations, is a hallmark feature of cancer and other
genetic diseases4. Understanding the mechanisms by which
chemical clastogens cause genomic instability is crucial for
elucidating their carcinogenic potential and devising effective
strategies for risk assessment and mitigation (Singh et al., 2020a).
By unraveling the complex interplay between chemical exposures
and DNA damage response pathways, researchers can identify
biomarkers of exposure, predict carcinogenic outcomes, and
develop targeted interventions to reduce cancer risk (Bolzán, 2020).

1.1 Importance of chemical risk assessment
for potential carcinogen classification

Chemical risk assessment plays a pivotal role in cancer
prevention efforts by identifying and characterizing the hazards
associated with exposure to potentially carcinogenic substances.
Regulatory agencies worldwide rely on risk assessment
frameworks to evaluate the safety of chemicals used in consumer
products, food additives, industrial processes, and environmental
contaminants (Jovanović et al., 2023). Through rigorous
toxicological testing and epidemiological studies, risk assessors
determine the likelihood and severity of adverse health effects
posed by specific chemicals and establish exposure limits and
regulatory standards to protect public health (Goodman et al., 2020).

Effective chemical risk assessment requires a multidisciplinary
approach that integrates data from diverse scientific disciplines,
including toxicology, epidemiology, molecular biology, and
computational modeling (Nayar). By systematically evaluating the
hazards, exposures, and risks associated with chemical substances,
risk assessors can inform regulatory decisions, guide risk
management strategies, and prioritize resources for further
research and monitoring (Butnariu and Bonciu, 2022).

1.2 Role of AI/ML and omics technologies in
enhancing risk assessment

Advances in artificial intelligence (AI), machine learning (ML),
and omics technologies are revolutionizing the field of chemical risk
assessment by providing powerful tools for data analysis, predictive
modeling, and biomarker discovery (Ojji, 2024). AI/ML algorithms
can analyze vast datasets comprising chemical structures, toxicity
profiles, and biological responses to identify patterns, correlations,
and predictive relationships that may not be apparent through
traditional statistical methods (Khadela et al., 2023).

Omics technologies, including genomics, transcriptomics,
proteomics, metabolomics and cytomics, enable comprehensive
molecular profiling of biological systems in response to chemical
exposures (Del Giudice et al., 2023). By capturing global changes in

gene expression, protein abundance, and metabolite levels, omics
approaches provide insights into the molecular mechanisms
underlying chemical toxicity and facilitate the identification of
biomarkers indicative of adverse health effects (Singh et al.,
2021a). The integration of AI/ML and omics technologies holds
immense promise for enhancing the predictive accuracy, efficiency,
and scalability of chemical risk assessment. By leveraging
computational models trained on large-scale omics datasets,
researchers can predict the toxicological properties of chemical
compounds, prioritize compounds for further testing, and
extrapolate toxicity data across chemical classes and species
(Yang et al., 2018). Additionally, AI-driven approaches can
facilitate the identification of novel biomarkers and molecular
signatures of chemical exposure that may serve as early
indicators of adverse health outcomes (Scott et al., 2023).

The convergence of AI/ML and omics technologies represents a
paradigm shift in chemical risk assessment, enabling a more holistic
and data-driven approach to understanding chemical toxicity,
identifying hazards, and safeguarding public health. By
harnessing the power of computational modeling, high-
throughput screening, and molecular profiling, researchers can
accelerate the pace of discovery, improve risk prediction
accuracy, and ultimately reduce the burden of cancer and other
diseases associated with chemical exposures (Vindman et al., 2024).
This perspective review provides a detailed overview on chemical
clastogens and their role in genomic instability, the importance of
chemical risk assessment in cancer prevention, and the potential of
AI/ML and omics technologies in enhancing risk assessment.

1.3 AI applications in cancer research:
Insights from TCGA and EPA’s OncoLogic
AI tool

The application of artificial intelligence (AI) in cancer research
has revolutionized the way we interpret large-scale genomic data,
with The Cancer Genome Atlas (TCGA) serving as a cornerstone for
such efforts. AI algorithms, including machine learning (ML) and
deep learning models, have been successfully applied to TCGA
datasets, leading to significant advancements in cancer subtype
classification, biomarker discovery, and the understanding of
cancer progression (Deepa et al., 2023; Deepa et al., 2023).

For example, AI-based approaches have been instrumental in
integrating multi-omics data from TCGA to identify novel cancer
subtypes, such as in glioblastoma and breast cancer, where
molecular subtyping has led to more personalized therapeutic
strategies (He et al., 2023). Additionally, AI has enhanced the
prediction of patient outcomes by identifying prognostic
biomarkers that are often missed by traditional statistical
methods (Huang et al., 2020). While the application of AI to
TCGA has yielded many successes, it is not without limitations.
One key challenge is the heterogeneity of cancer, both within a
tumor and across patients. AI models trained on TCGA data
sometimes struggle with this variability, which can affect the
generalizability of findings. Moreover, while AI excels at
identifying correlations and patterns in large datasets,
establishing causal relationships between molecular alterations
and clinical outcomes remains challenging. Nonetheless,
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continued advancements in AI and the integration of more
comprehensive datasets will further enhance our ability to
uncover actionable insights from TCGA (Davis et al., 2018).

The EPA’s OncoLogic® is one of the most established predictive
tools for regulatory applications in carcinogenic risk assessment.
Developed to estimate the carcinogenic potential of chemical
compounds, OncoLogic® employs a structured approach that
integrates expert judgment with encoded empirical data.
According to Benigni et al. (2012), the system assesses multiple
factors, primarily focusing on chemical structure and known
biological activity, and uses structural alerts based on extensive
toxicological knowledge (Benigni et al., 2012). However, it does not
inherently incorporate epidemiological evidence unless this has been
specifically encoded within its rules. OncoLogic® functions primarily
as a class-based system, and while it excels in pre-manufacture
notifications (PMN) for novel chemical substances, it is not designed
for pesticide registrations, which require empirical testing. The
system has been validated for its predictive accuracy in various
chemical classes, highlighting its utility in evaluating industrial
chemicals and its evolving role in regulatory risk assessments
(Benigni et al., 2012). This highlights OncoLogic® as a key tool in

informing regulatory decisions, with continued advancements
enhancing its effectiveness and transparency in carcinogenicity
prediction.

1.4 Chemical clastogens and their
mechanisms of carcinogenesis

Chemical clastogens encompass a diverse array of substances
that possess the ability to induce DNA damage and genomic
instability, thereby increasing the risk of cancer and other genetic
disorders changing fate of normal cell division to uncontrolled
cancerous growth as shown below in Figure 1 (Singh A. K. et al.,
2024). Understanding the various types of chemical clastogens, their
mechanisms of action, and the specific mutations they induce is
essential for elucidating their carcinogenic potential and devising
effective strategies for risk assessment and mitigation (Bashetti et al.,
2024). Chemical clastogens can be broadly classified into several
categories based on their chemical structure, mode of action, and
biological effects (Zeliger, 2022). Some of the most common types of
chemical clastogens include:

FIGURE 1
Comparison of Normal Cell Division and Cancerous Cell Division Following Clastogen Exposure. The diagram contrasts normal cell division with
malignant cell division triggered by clastogen exposure. In normal cells, the cell cycle is regulated by functioning tumor-suppressor genes and proto-
oncogenes, maintaining controlled cell growth. Exposure to clastogens can lead to mutations in tumor-suppressor genes and proto-oncogenes.
Mutated tumor-suppressor genes lose their function, while mutated proto-oncogenes gain oncogenic functions, resulting in an abnormal cell
cycle. This dysregulation promotes the proliferation of cancer cells.
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1. Benzene Derivatives: Benzene and its derivatives, such as
toluene and xylene, are organic solvents widely used in
industrial processes, fuel production, and consumer
products. These compounds can undergo metabolic
activation to form reactive intermediates that covalently
bind to DNA, leading to the formation of DNA adducts
and chromosomal aberrations (Barton, 2023).

2. Polycyclic Aromatic Hydrocarbons (PAHs): PAHs are a group
of environmental pollutants formed during incomplete
combustion of organic materials, such as fossil fuels,
tobacco smoke, and grilled meats. Benzo [a]pyrene, a
prototypical PAH, can intercalate into DNA and undergo
metabolic activation to form reactive metabolites that
induce DNA adducts and cause chromosomal damage
(Beland et al., 2001).

3. Formaldehyde: formaldehyde is a ubiquitous industrial
chemical used in the production of resins, plastics, and
disinfectants. It can react with DNA and proteins to form
crosslinks, DNA-protein adducts, and DNA single-strand
breaks, leading to chromosomal instability and genotoxicity
(Singh et al., 2021b; Rai et al., 2023a).

4. Alkylating Agents: Alkylating agents, such as nitrogen
mustards and ethyl methanesulfonate (EMS), are chemical
compounds that alkylate DNA bases, leading to the
formation of DNA adducts and DNA crosslinks. These
compounds can induce a wide range of genetic mutations,
including point mutations, deletions, and insertions (Kim
et al., 2016).

5. Aflatoxins: Aflatoxins are fungal metabolites produced by
Aspergillus species that contaminate food crops such as
peanuts, corn, and grains. Aflatoxin B1 (AFB1), the most
potent aflatoxin, can undergo metabolic activation to form
DNA adducts that lead to the formation of G to T transversions
and hepatocellular carcinoma (HCC) (Zahra et al., 2023).

1.5 Mechanisms of action leading to
genomic instability

The mechanisms by which chemical clastogens induce genomic
instability are diverse and complex, involving multiple pathways and
molecular targets within the cell. Some of the key mechanisms of
action leading to genomic instability include:

1. DNA Damage: Chemical clastogens can directly damage DNA
molecules by inducing single and double-strand breaks, DNA
adduct formation, crosslinking, and base modifications. These
DNA lesions can interfere with DNA replication, transcription,
and repair processes, leading to genomic instability and
mutagenesis (Shukla et al., 2021).

2. Cellular Metabolism: Many chemical clastogens require
metabolic activation by cellular enzymes to exert their
genotoxic effects. Metabolic activation can lead to the
formation of reactive intermediates that covalently bind to
DNA, proteins, and other cellular macromolecules, disrupting
their normal functions and inducing DNA damage (de Oliveira
et al., 2021).

3. Oxidative Stress: Some chemical clastogens, such as ionizing
radiation and certain chemicals, can generate reactive oxygen
species (ROS) within the cell. ROS can oxidize DNA bases,
induce DNA strand breaks, and alter cellular signaling
pathways involved in DNA repair and apoptosis,
contributing to genomic instability and carcinogenesis
(Jomova et al., 2023).

1.6 Specific mutations and their
consequences

The genotoxic effects of chemical clastogens can manifest as
specific types of mutations in the genome, each with distinct
consequences for cellular function and organismal health (Singh
et al., 2020b). Some of the most common types of mutations induced
by chemical clastogens include:

1. Point Mutations: Chemical clastogens can induce point
mutations by altering the nucleotide sequence of DNA. This
can result in the substitution of one nucleotide for another (e.g.,
G to T transversions), insertion or deletion of nucleotides
(indels), or other base-pair substitutions, leading to changes
in protein structure and function (Beal et al., 2020).

2. Chromosomal Aberrations: Chemical clastogens can cause
structural changes in chromosomes, such as chromosomal
translocations, inversions, deletions, and duplications. These
chromosomal aberrations can disrupt normal gene expression
patterns, alter cellular signaling pathways, and contribute to
oncogenic transformation (Bignold, 2009; Mishima, 2017).

3. Aneuploidy: Aneuploidy, the gain or loss of whole
chromosomes, can result from errors in chromosome
segregation during cell division induced by chemical
clastogens. Aneuploidy can disrupt cellular homeostasis,
impair cell viability, and promote tumorigenesis by altering
gene dosage and expression levels (Xu and Adler, 1990).

4. Activation of proto-oncogenes: Mutations in proto-oncogenes,
such as ras, myc, and erbB2, can lead to their constitutive
activation, converting them into oncogenes that promote
uncontrolled cell proliferation and cancer (Botezatu
et al., 2016).

5. Inactivation of tumor suppressor genes: Mutations in tumor
suppressor genes, like p53, Rb, BRCA1/2, and PTEN, can result
in the loss of their normal function, allowing cells with
damaged DNA to continue dividing and evade apoptosis
(Wang et al., 2019).

6. Genomic instability and chromosomal abnormalities:
Chromosomal aberrations, such as gains, losses, and
rearrangements, can lead to aneuploidy and further genomic
instability, which are hallmarks of cancer development
(Sansregret et al., 2018).

Understanding the specific mutations induced by chemical
clastogens and their downstream consequences is essential for
elucidating the mechanisms of carcinogenesis and designing
effective strategies for cancer prevention and intervention (Singh
et al., 2020b). The DNA damage and chromosomal aberrations
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induced by chemical clastogens can result in significant
consequences for cellular function (Barnes et al., 2018).

1.7 Activation and deactivation of genes by
clastogens: fate of proto-oncogenes and
tumor suppressor genes

Chemical clastogens have the potential to modulate the
expression and activity of genes involved in cell growth,
differentiation, and survival, thereby influencing carcinogenesis
and disease progression. Understanding how clastogens interact
with proto-oncogenes and tumor suppressor genes, as well as the
molecular mechanisms underlying gene regulation, is crucial for
deciphering their oncogenic effects and developing targeted
therapeutic strategies. Proto-oncogenes are a class of genes that
regulate cell proliferation, survival, and differentiation under normal
physiological conditions (Shortt and Johnstone, 2012). However,
dysregulation or aberrant activation of proto-oncogenes can
promote uncontrolled cell growth and contribute to
tumorigenesis (Okabe and Kaneda, 2021). Chemical clastogens
can activate proto-oncogenes through various mechanisms (Lo,
2002), including:

1. Chromosomal Translocations: Clastogens can induce
chromosomal translocations that juxtapose proto-oncogenes
with highly active regulatory elements, leading to their
constitutive activation. For example, the t (8; 14)
translocation involving the c-Myc proto-oncogene is
commonly associated with lymphoid malignancies such as
Burkitt lymphoma (O’Connor, 2008).

2. Point Mutations: Chemical clastogens can introduce specific
point mutations in proto-oncogenes that enhance their
oncogenic activity. For instance, mutations in the RAS
family of proto-oncogenes can lead to constitutive activation
of RAS signaling pathways, promoting cell proliferation and
survival (Prior et al., 2012).

Tumor suppressor genes, on the other hand, encode proteins
that inhibit cell growth and proliferation or promote apoptosis in
response to cellular stress or DNA damage. Loss or inactivation of
tumor suppressor genes can retract these growth inhibitory signals
and predispose cells to malignant transformation (Chow, 2010).
Chemical clastogens can deactivate tumor suppressor genes through
mechanisms such as point mutations and seletions (Langie et al.,
2015). Clastogens can introduce mutations or deletions in tumor
suppressor genes, compromising their function and abrogating their
tumor suppressive activities. For example, inactivating mutations in
the TP53 tumor suppressor gene are commonly observed in various
human cancers, allowing cells to evade apoptosis and proliferate
uncontrollably (Rivlin et al., 2011). Epigenetic silencing is further
linked with ON/OFF mechanism induced by clastogens. Chemical
clastogens can induce epigenetic modifications, such as DNA
methylation and histone modifications, that silence the
expression of tumor suppressor genes (Sabarwal et al., 2018).
This epigenetic silencing can occur through aberrant recruitment
of chromatin-modifying enzymes or alterations in DNA
methylation patterns, leading to transcriptional repression of

tumor suppressor genes (Spatari et al., 2021). Understanding the
interplay between chemical clastogens and proto-oncogenes/tumor
suppressor genes is essential for elucidating their role in
carcinogenesis and identifying potential targets for therapeutic
intervention.

1.8 Epigenetic hallmarks of cancer

Recent research has highlighted the critical role of epigenetic
mechanisms in cancer development, with growing evidence
suggesting that alterations in the epigenome can drive cancer
independently of genetic mutations. The updated hallmarks of
cancer, as outlined by the AACR, emphasize how disruptions in
normal epigenetic regulation contribute to carcinogenesis. These
include DNA methylation, histone modification, and chromatin
remodeling, which collectively alter gene expression patterns without
changing the DNA sequence itself (Gibney and Nolan, 2010). Epigenetic
modifications can lead to the silencing of tumor suppressor genes or the
activation of oncogenes, thus promoting tumor growth and metastasis.
For instance, hypermethylation of promoter regions in key tumor
suppressor genes such as p16INK4a and BRCA1 has been observed
in various cancers, leading to their functional inactivation. Furthermore,
global hypomethylation can result in chromosomal instability, another
hallmark of cancer (Kawano et al., 2014).

Importantly, epigenetic mechanisms alone have been shown to
induce cancer. Several studies, including recent work on
hematological malignancies, have demonstrated that aberrant
epigenetic regulation can be sufficient to initiate and drive
tumorigenesis (Sharma et al., 2010). Understanding these
epigenetic hallmarks offers new avenues for cancer prevention
and treatment, as epigenetic alterations are reversible, making
them attractive targets for therapeutic intervention using agents
such as DNA methyltransferase inhibitors (e.g., decitabine) and
histone deacetylase inhibitors (e.g., vorinostat) (Cheng et al., 2019).

1.9 Molecular mechanisms of gene
regulation by clastogens

The regulation of gene expression by chemical clastogens
involves intricate molecular mechanisms that govern
transcriptional activation, repression, and epigenetic
modifications. Clastogens can influence gene expression through
direct interactions with DNA, as well as through modulation of
signaling pathways and transcription factors (Beyersmann and
Hechtenberg, 1997). As shown in Figure 2 below, some of the
key molecular mechanisms of gene regulation by clastogens include:

1. Direct DNA damage: Clastogens can directly induce DNA
lesions, such as base oxidation, nitration, methylation, and
single-strand or double-strand breaks. These DNA damages, if
not properly repaired, can lead to mutations in the coding
sequences of proto-oncogenes and tumor suppressor genes
(Levin and Lilis, 2008).

2. DNA Damage Response: Clastogens induce DNA damage and
activate cellular DNA damage response pathways, including
the ATM/ATR-mediated DNA damage checkpoint and the
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p53 tumor suppressor pathway (Alhmoud et al., 2020). These
signaling cascades can lead to the activation or repression of
specific target genes involved in cell cycle control, DNA repair,
and apoptosis (Fernandez, 2017).

3. Transcription Factor Activation: Clastogens can modulate the
activity of transcription factors involved in gene regulation by
altering their post-translational modifications, subcellular
localization, or DNA-binding affinity (Dwarakanath et al.,
2008). For example, clastogens can activate transcription
factors such as NF-κB and AP-1, which regulate the
expression of genes involved in inflammation, cell
proliferation, and survival (Valko et al., 2006).

4. Epigenetic Modifications: Chemical clastogens can induce
epigenetic modifications, such as DNA methylation and
histone acetylation, that alter chromatin structure and gene
expression patterns. These epigenetic changes can lead to long-
lasting alterations in gene expression profiles and contribute to the
development of cancer and other diseases (Kobets et al., 2019).

5. Non-coding RNA Regulation: Clastogens can influence gene
expression through the regulation of non-coding RNAs,
including microRNAs (miRNAs) and long non-coding RNAs
(lncRNAs) (Shvedova et al., 2016). These non-coding RNAs can
act as post-transcriptional regulators of gene expression by
targeting mRNAs for degradation or translational repression,
thereby modulating cellular responses to clastogen-induced
stress (Statello et al., 2021).

6. Disruption of cell cycle checkpoints: Clastogens can impair the
function of cell cycle checkpoint proteins, such as Chk1, Chk2,
and the spindle assembly checkpoint proteins (Mad, Bub). This
can allow cells with damaged DNA to continue dividing, leading
to the propagation of genetic alterations (Reshmi, 2005).

7. Oxidative stress and signaling pathway dysregulation:
Clastogens can induce oxidative stress and disrupt cellular
signaling pathways, which can indirectly contribute to the
activation of proto-oncogenes and the inactivation of tumor
suppressor genes (Rani and Gupta, 2015).

By understanding the specific mechanisms by which chemical
clastogens can activate proto-oncogenes and deactivate tumor
suppressor genes, researchers and regulatory bodies can better
assess the potential carcinogenic risks associated with chemical
exposures and develop strategies for mitigating these risks (Singh
et al., 2024b).

2 Impact of genomic instability on
carcinogenesis

Genomic instability, characterized by an increased frequency of
DNA damage, mutations, and chromosomal aberrations, is a
hallmark feature of cancer. Understanding the link between
clastogen-induced genomic instability and cancer development, as
well as the epidemiological evidence supporting carcinogenic risk, is
essential for elucidating the role of chemical exposures in cancer
etiology and guiding public health interventions (Singh et al., 2021c).

2.1 Link between clastogen-induced
genomic instability and cancer development

Chemical clastogens exert their carcinogenic effects by inducing
DNA damage and genomic instability, which can promote

FIGURE 2
Methods of Oncogene Activation in Cancer. The diagram illustrates four mechanisms by which proto-oncogenes transform into oncogenes,
contributing to cancer development. Translocation places a proto-oncogene under a new promoter, gene amplification creates multiple gene copies,
and point mutations either within control elements or within the gene itself lead to excessive or hyperactive protein production. These changes result in
unregulated cell growth, driving cancer progression.
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tumorigenesis through several mechanisms. Clastogen-induced DNA
damage can lead to the accumulation of mutations in oncogenes, tumor
suppressor genes, and other cancer-related genes, altering their function
and promoting oncogenic transformation (Basu, 2018). For example,
chromosomal translocations involving proto-oncogenes such as c-Myc
and Bcl-2 can result in constitutive activation of oncogenic signaling
pathways, driving uncontrolled cell proliferation and survival (Shortt
and Johnstone, 2012). Clastogen-induced chromosomal instability and
aneuploidy can disrupt normal cell division processes, leading to the
generation of genetically heterogeneous cell populations with altered
karyotypes (Garribba et al., 2023). This genomic chaos can facilitate the
acquisition of additional mutations and chromosomal rearrangements,
fueling tumor evolution and progression (Kjeldsen, 2022). Clastogen-
induced genomic instability can generate diverse genetic alterations
within tumors, contributing to intra-tumoral heterogeneity and
therapeutic resistance (Kumar, 2020). Tumor cells with distinct
genomic profiles may exhibit differential responses to treatment
modalities, leading to treatment failure and disease relapse (De
Palma and Hanahan, 2012). Clastogens can impair DNA repair
pathways, including base excision repair, nucleotide excision repair,
and homologous recombination, compromising the cell’s ability to
repair DNA damage and maintain genomic integrity (Fu et al., 2012).
Persistent DNA lesions and unrepaired DNA breaks can accumulate
over time, promoting the accumulation of mutations and genomic
instability (Asaithamby et al., 2011). Understanding the mechanistic
link between clastogen-induced genomic instability and cancer
development is critical for identifying potential targets for cancer
prevention and intervention strategies (Lin and Yan, 2008). By
elucidating the molecular pathways through which clastogens exert
their carcinogenic effects, researchers can develop novel therapeutic
approaches aimed at mitigating the adverse health effects of chemical
exposures (Hartwig et al., 2020).

2.2 Epidemiological evidence supporting
carcinogenic risk

Epidemiological studies provide compelling evidence linking
chemical exposures to increased cancer risk in human
populations. These studies utilize various study designs, including
cohort studies, case-control studies, and meta-analyses, to assess the
association between chemical exposures and cancer incidence
(Council et al., 2012). Some key findings from epidemiological
research supporting the carcinogenic risk of clastogens include:

1. Occupational Exposures: Epidemiological studies have
identified occupational exposures to chemical clastogens,
such as benzene, formaldehyde, and ionizing radiation, as
significant risk factors for various types of cancer, including
leukemia, lymphoma, and solid tumors (Petric, 2021).Workers
in industries such as petroleum refining, chemical
manufacturing, and healthcare are particularly at risk of
exposure to carcinogenic chemicals (Edokpolo et al., 2015).

2. Environmental Exposures: Environmental pollutants, including
polycyclic aromatic hydrocarbons (PAHs), aflatoxins, and heavy
metals, have been implicated in the development of cancer in
exposed populations (Boffetta and Nyberg, 2003).
Epidemiological studies have demonstrated associations

between environmental exposures to these chemicals and
increased cancer incidence, particularly in communities located
near industrial facilities or hazardous waste sites (Boffetta, 2004).

3. Cancer Clusters: Epidemiological investigations of cancer
clusters, defined as an unusual aggregation of cancer cases
in a specific geographic area or community, have provided
valuable insights into the potential carcinogenic effects of
environmental exposures (Council et al., 2012). Clusters of
cancer cases associated with chemical contamination of air,
water, or soil have been documented in several regions
worldwide, highlighting the importance of environmental
monitoring and regulatory oversight (Lu et al., 2015).

4. Genetic Susceptibility: Epidemiological studies have also
examined the role of genetic susceptibility factors in modifying
individual susceptibility to chemical carcinogens (Caporaso,
1991). Genetic polymorphisms in genes involved in DNA
repair, metabolism, and detoxification pathways can influence
an individual’s ability to metabolize and eliminate carcinogenic
chemicals, thereby modulating cancer risk (Gemmati et al., 2012).

2.3 Advances in AI/ML for chemical risk
assessment

Recent advancements in artificial intelligence (AI) and machine
learning (ML) have revolutionized the field of chemical risk
assessment, offering powerful tools for predicting carcinogenic
risk and identifying clastogen-induced genomic signatures
(Wittwehr et al., 2020). Understanding the role of AI/ML in
predicting carcinogenic risk and its applications in genomic
signature identification is essential for harnessing the full
potential of these technologies to enhance chemical risk
assessment and protect public health (Kourou et al., 2015).

2.4 Role of artificial intelligence andmachine
learning in predicting carcinogenic risk

As depicted in Figure 3, AI andML techniques play a crucial role
in predicting carcinogenic risk by leveraging computational models
trained on large-scale datasets comprising chemical structures,
toxicity profiles, and biological responses (Lin and Chou, 2022).
These techniques enable the integration of diverse data sources and
the identification of complex patterns and relationships that may not
be discernible through traditional statistical methods (Cavasotto and
Scardino, 2022). Some key applications of AI/ML in predicting
carcinogenic risk include:

1. Quantitative Structure-Activity Relationship (QSAR) Modeling:
QSAR models use computational algorithms to predict the
biological activity of chemical compounds based on their
structural features (Vilar and Costanzi, 2012). ML techniques
such as random forest, support vector machines, and neural
networks are commonly employed to develop QSARmodels for
predicting carcinogenicity and other toxicological endpoints
(Chung et al., 2023). These models can prioritize chemicals
for further testing, inform regulatory decisions, and guide risk
management strategies (Krewski et al., 2014).
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2. Toxicogenomics and Transcriptomics: AI/ML algorithms can
analyze high-throughput genomic and transcriptomic data to
identify molecular signatures associated with chemical exposure
and toxicity (Kleinstreuer et al., 2021). By integrating gene
expression profiles with toxicological endpoints, such as
carcinogenicity and genotoxicity, researchers can elucidate the
mechanisms of chemical-induced toxicity and identify
biomarkers indicative of adverse health effects (Fan, 2014).

3. High-Throughput Screening (HTS) Assays: HTS assays
generate large datasets comprising chemical screening
results and biological responses across diverse cellular and
molecular endpoints. AI/ML approaches can analyze HTS data
to prioritize chemicals for further testing, identify structure-
activity relationships, and predict potential hazards and risks.
These predictive models can accelerate the chemical risk
assessment process and reduce the need for costly and time-
consuming animal testing (Borrel et al., 2020).

4. Data Integration and Decision Support Systems: AI/ML
technologies facilitate the integration of heterogeneous data
sources, including chemical databases, toxicological assays, and
omics datasets, to generate comprehensive risk assessment

frameworks (Martínez-García and Hernández-Lemus, 2022).
Decision support systems powered by AI/ML algorithms can
assist regulatory agencies, industry stakeholders, and public
health officials in evaluating chemical hazards, establishing
exposure limits, and implementing risk management measures
(Ganesh and Kalpana, 2022).

By connecting the predictive capabilities of AI and ML,
researchers can enhance the efficiency, accuracy, and scalability
of chemical risk assessment, ultimately improving public health
outcomes and reducing the burden of chemical-related diseases (Oki
et al., 2017).

2.5 Applications of AI/ML in identifying
clastogen-induced genomic signatures

AI and ML techniques are increasingly being employed to
identify clastogen-induced genomic signatures, molecular
markers, and biomarkers associated with DNA damage and
genomic instability. These approaches enable the discovery of

FIGURE 3
AI-ML-OMICS based Circular Toxicology Prediction Paradigm. The figure illustrates the integration of AI and machine learning (AI-ML) into the
circular toxicology paradigm, showcasing significant advancements over traditional methods. It highlights how predictive AI models and robotics reduce
false positives/negatives in toxicological assessments, enable personalized exposure treatments, and expedite medical imaging processing by
120–240 times. Additionally, it contrasts themanual, labor-intensive bioinformatics workflowswith faster, resource-efficient AI/ML-based analyses,
underscoring the transformative impact of AI-ML on improving accuracy, speed, and personalization in toxicology.
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novel biomarkers indicative of clastogen exposure, elucidation of
underlying mechanisms of genotoxicity, and development of
predictive models for assessing carcinogenic risk. Some key
applications of AI/ML in identifying clastogen-induced genomic
signatures include:

1. Genomic Profiling and Molecular Signatures: AI/ML
algorithms can analyze high-dimensional genomic datasets,
such as DNA sequencing, gene expression, and epigenetic
profiles, to identify characteristic patterns and signatures
associated with clastogen exposure (Vilhekar and Rawekar,
2024). These molecular signatures may include gene
expression changes, DNA methylation patterns, and
chromosomal aberrations indicative of genotoxicity and
carcinogenic risk (Rauschert et al., 2020).

2. Integration of Multi-Omics Data: AI/ML approaches facilitate
the integration of multi-omics data, including genomics,
transcriptomics, proteomics, and metabolomics, to provide a
comprehensive view of clastogen-induced genomic alterations
and molecular responses (Cai et al., 2022). Integrative analyses
enable the identification of molecular networks, pathways, and
biological processes perturbed by clastogen exposure, aiding in
the elucidation of underlying mechanisms of genotoxicity
(Eisenbrand et al., 2002).

3. Predictive Modeling and Risk Assessment: AI/ML algorithms
can develop predictive models for assessing the carcinogenic
risk of chemical clastogens based on genomic signatures and
molecular endpoints (Limbu and Dakshanamurthy, 2022).
These models can prioritize chemicals for further testing,
predict carcinogenic outcomes, and inform regulatory
decisions regarding chemical safety and exposure limits
(Hartung, 2023a). By leveraging computational modeling
and machine learning techniques, researchers can accelerate
the identification of clastogen-induced genomic signatures and
improve risk assessment accuracy (Staff, 2021).

4. Biomarker Discovery and Validation: AI/ML approaches
enable the discovery and validation of biomarkers indicative
of clastogen exposure and genotoxicity. By analyzing large-
scale omics datasets from exposed populations and
experimental models, researchers can identify candidate
biomarkers associated with DNA damage, chromosomal
instability, and carcinogenic risk. These biomarkers can
serve as early indicators of clastogen-induced genotoxicity
and facilitate early intervention and preventive measures
(Demir Karaman and Işık, 2023).

AI and ML technologies offer powerful tools for identifying
clastogen-induced genomic signatures and predicting carcinogenic
risk (Singh et al., 2023b). By leveraging computational modeling,
high-throughput data analysis, and integrative omics approaches,
researchers can enhance our understanding of clastogen-induced
genotoxicity, improve chemical risk assessment methodologies,
and ultimately safeguard public health (Wei et al., 2023). These AI/
ML-driven approaches can help researchers and regulatory bodies
to develop predictive models for identifying chemicals with a high
likelihood of inducing genomic instability and carcinogenic
potential (Kourou et al., 2021; Cavasotto and Scardino, 2022).
Computational approaches further elucidate the molecular

mechanisms by which chemical clastogens contribute to the
development of cancer, enabling the design of targeted
interventions and preventive strategies (Kourou et al., 2015).
For oncologist, AI can establish biomarkers and signatures that
can be used for early detection, risk assessment, and monitoring of
the health impacts associated with chemical exposures (Cavasotto
and Scardino, 2022; Yang and Kar, 2023). Computational field may
accelerate the screening and prioritization of chemicals for further
toxicological evaluation, optimizing the use of resources and
reducing the reliance on animal testing (Vatansever et al., 2021;
Cavasotto and Scardino, 2022). Table 1 summarizes various tools
available for toxicity prediction, detailing their type, unique features,
prediction principles, reliability pointers, and URLs for further
information. The tools range from free to commercial and utilize
diverse methodologies, including machine learning models, QSAR,
read-across, and expert rule-based systems. They are designed for
different purposes, such as screening-level assessments and regulatory
submissions, with validated performance metrics ensuring reliability.

Based on recent studies and evaluations, the accuracy of the
tools listed in Table One varies based on their underlying
methodologies and the quality of data used for training. For
instance, while tools like CarcinoPred-EL and Ames
Mutagenicity Predictor have demonstrated robust predictive
performance in external validation studies (with AUC values
exceeding 0.75 and accuracy rates above 80%, respectively),
limitations exist in their application. These limitations include a
reliance on specific chemical classes or structural features, which
may not generalize well across diverse datasets (Honma et al., 2019;
Zhang et al., 2017).

Rule-based or expert-based systems, such as Derek Nexus, utilize
established toxicological knowledge and structural alerts to predict
toxicity, offering transparency in their reasoning. This approach can
be particularly beneficial in regulatory contexts where
understanding the rationale behind predictions is crucial. In
contrast, purely data-driven models, like those based on machine
learning techniques, can capture complex patterns but often lack
interpretability, which poses challenges in regulatory acceptance
(Cronin et al., 2022).

Furthermore, the integration of both methodologies—expert
knowledge with data-driven approaches—can yield improved
predictive accuracy and reduce the likelihood of errors. Recent
studies have suggested that hybrid models that combine the
strengths of both systems can enhance performance in toxicity
predictions while maintaining interpretability (Link et al., 2022).

2.6 Computational tools based on OMICS

Computational tools based onOMICS are crucial for uncovering
the molecular mechanisms of carcinogenicity by integrating large-
scale biological data, enabling more accurate predictions of chemical
toxicity and enhancing risk assessment, and several computational
approaches and tools currently utilize OMICS datasets (e.g.,
genomics, transcriptomics, proteomics, metabolomics) for
predicting carcinogenicity. These tools leverage the power of AI/
ML models to handle the complexity and scale of OMICS data,
providing more accurate and biologically informed predictions
(Toussaint et al., 2024). Below are some key advancements to the
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OMICS section widening the horizon of chemical carcinogenic
assessment:

1. Integration of Multi-Omics Data: Tools that integrate multiple
OMICS layers (genomics, transcriptomics, proteomics) to
provide a systems biology view of carcinogenicity, offering
deeper insights into the molecular mechanisms driving
genomic instability and cancer risk. Examples include
platforms like MetaboAnalyst and multi-omics AI platforms
that enable the integration of diverse datasets for toxicity
prediction (Badwan et al., 2023).

2. AI/ML Models for OMICS-Based Toxicity Prediction: AI-
driven models such as Deep Neural Networks (DNNs) and

Random Forest (RF) classifiers that utilize OMICS datasets
(e.g., gene expression, methylation data) to predict chemical-
induced carcinogenicity. These models have demonstrated
high predictive accuracy for classifying chemicals based on
carcinogenic potential by integrating molecular-level
information from OMICS data (Sahu et al., 2022).

3. Toxicogenomics Data Interpretation Tools: Tools like TG-
GATEs (Toxicogenomics Project-Genomics Assisted
Toxicity Evaluation System) and ToxCast that combine
transcriptomics data with machine learning models for
evaluating gene expression changes upon chemical exposure,
facilitating the identification of biomarkers and pathways
associated with cancer risk (Jia et al., 2023).

TABLE 1 An Overview of Toxicity Prediction Tools for Carcinogenicity, Genotoxicity and Mutagenicity assessment.

Tool name Type Unique features Prediction principles Reliability pointers URL

CarcinoPred-EL Free Ensemble of 3 ML models
(SVM, RF, XGB)

Uses 7 types of molecular
fingerprints and 3 types of
physicochemical descriptors

Validated on external test set,
AUC-ROC >0.75

https://ccsb.scripps.edu/
carcinopred-el/

Ames Mutagenicity
Predictor

Free Naïve Bayes classification
models

Utilizes molecular descriptors and
fingerprints

Validated on external test set,
accuracy >80%

https://github.com/zhanghuiyi/
Ames-Mutagenicity-Predictor

QSAR Toolbox Free Integrated platform for
toxicity prediction

Combines QSAR, read-across, and
expert rule-based systems

Follows OECD principles for
QSAR model development

https://www.oecd.org/
chemicalsafety/risk-
assessment/oecd-qsar-
toolbox.htm

Derek Nexus Commercial Knowledge-based expert
system for toxicity
prediction

Uses structural alerts and expert
rules

Transparent reasoning,
suitable for regulatory
submissions

https://www.lhasalimited.org/
products/derek-nexus.htm

Leadscope Model
Applier

Commercial Comprehensive suite of
QSAR models

Utilizes molecular descriptors,
fingerprints, and structural alerts

Validated on diverse datasets,
transparent model
explanations

https://www.leadscope.com/
model_applier/

ADMET Predictor Commercial Integrates QSAR, expert
rules, and ML models

Predicts various ADMET
endpoints including genotoxicity

Robust model development
following regulatory guidelines

https://www.simulations-plus.
com/software/admetpredictor/

ToxGPS Commercial Combines QSAR, read-
across, and expert
knowledge

Predicts various toxicity endpoints
including carcinogenicity

Transparent model
interpretability, suitable for
regulatory use

https://www.lhasalimited.org/
products/toxgps.htm

EPA Toxicity
Estimation Software
Tool (TEST)

Free QSAR-based tool for
toxicity prediction

Utilizes multiple QSAR
methodologies (e.g., hierarchical
clustering, FDA)

Freely available, suitable for
screening-level assessments

https://www.epa.gov/chemical-
research/toxicity-estimation-
software-tool-test

VEGA Free Integrated platform for
toxicity prediction

Combines QSAR, read-across, and
expert rule-based systems

Follows OECD principles,
provides model performance
metrics

https://www.vegahub.eu/

OCHEM Free Web-based platform for
QSAR modeling

Allows users to build, validate, and
apply QSAR models

Supports various ML
algorithms, provides model
performance metrics

https://ochem.eu/

ChemTunes + TOX Commercial Integrates QSAR, read-
across, and expert
knowledge

Predicts various toxicity endpoints
including genotoxicity

Robust model development,
transparent model
explanations

https://www.compudrug.com/
chemtunes-tox

ToxEval Free Screening-level tool for
toxicity assessment

Utilizes structure-activity
relationship rules and read-across

Freely available, suitable for
initial hazard identification

https://www.epa.gov/chemical-
research/toxevaluator-
software-application

TIMES-SS QSAR Free Statistical model, ensemble
learning

Predicts genotoxicity and
carcinogenicity based on

https://pubs.acs.org/doi/10.
1021/ci050150r

Chembench QSAR Free, web-based Integrates various QSAR models Offers model validation and
comparison tools

http://chembench.mml.unc.
edu/
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4. Pathway-Based Analysis Tools: Platforms such as
Pathway Studio and IPA (Ingenuity Pathway Analysis),
which enable the integration of OMICS data with AI/ML
for pathway and network analysis. These tools predict
carcinogenic risk by identifying disrupted pathways and
molecular signatures linked to chemical exposure (Nagasaki
et al., 2009).

5. Proteomics-Based Predictive Models: Advances in proteomics
have enabled the use of computational tools that predict
chemical toxicity based on protein expression profiles. Tools
like ProTox-II utilize AI to analyze protein-level changes to
assess chemical carcinogenicity, focusing on post-translational
modifications and protein-protein interaction networks
(Banerjee et al., 2018).

6. Epigenetic Modulation and Carcinogenicity: Current models
also include AI/ML models that incorporate epigenomic data
(such as DNAmethylation patterns and histone modifications)
to predict carcinogenic outcomes. These models offer an
additional layer of predictive power by accounting for
epigenetic changes that influence gene expression and
genomic instability (Arslan et al., 2021).

7. Challenges and opportunities: Navigating the landscape of
chemical risk assessment involves addressing various challenges
while leveraging opportunities to enhance methodologies and
technologies. Understanding the limitations of current
approaches and envisioning future directions for integrating AI/
ML and omics technologies can guide efforts towardmore effective
and comprehensive risk assessment strategies (Hartung, 2023a).

FIGURE 4
Distribution of Radiology Doses Across Different Imaging Modalities This figure shows the comparative radiation doses received by patients from
different radiological procedures, such as X-rays, CT scans, MRI scans, and PET scans. The bar chart details the average dose inmillisieverts (mSv) for each
modality, emphasizing the variability in radiation exposure and its implications for patient safety. It also highlights guidelines and thresholds for safe
exposure levels to inform clinical decision-making and minimize radiation risks.
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2.7 Limitations of current approaches in
chemical risk assessment: an overview of
dose-exposure data significance

Figure 4 below illustrates the critical role of data in
understanding and managing DSE (Digital Systems Exposure)
scenarios (Singh et al., 2020b). It highlights various data sources,
including environmental monitoring, personal exposure records,
and health outcomes, and their integration into a comprehensive
risk assessment framework. The diagram underscores the
importance of accurate and timely data collection to enhance
predictive modeling, policy-making, and public health
interventions in exposure scenarios.

1. Dose Exposure Data Availability and Quality: One of the
primary limitations in chemical risk assessment is the
availability and quality of data, particularly for assessing
long-term health effects and low-dose exposures. Limited
datasets and inconsistencies in data quality hinder the
development of robust predictive models and risk
assessment frameworks (Whaley et al., 2016).

2. Complexity of Toxicity Mechanisms: Chemical toxicity involves
complex interactions between xenobiotics and biological systems,
encompassing diverse molecular pathways and cellular responses.
Current approaches often struggle to capture the multifaceted
nature of toxicity mechanisms, leading to oversimplified models
and inaccurate predictions (Rieger et al., 2002).

3. Species Extrapolation and Uncertainty: Extrapolating toxicity
data from animal models to humans poses challenges due to
species-specific differences in metabolism, physiology, and
sensitivity to chemical exposures. Uncertainties in
extrapolation methods and reliance on default assumptions
contribute to uncertainty in risk assessment outcomes (Van
Beugen, 2019).

4. Regulatory Compliance and Resource Constraints: Regulatory
requirements for chemical risk assessment often necessitate
extensive data generation, testing, and evaluation, imposing
significant time and resource burdens on regulatory agencies,
industry stakeholders, and researchers. Compliance with
regulatory standards may be challenging, particularly for
emerging chemicals and novel compounds lacking sufficient
toxicological data (Lewis et al., 2007).

4 Future directions and opportunities
for integration of AI/ML and omics

1. Data Integration and Multi-Omics Approaches: Future
directions in chemical risk assessment involve integrating
diverse omics datasets, including genomics, transcriptomics,
proteomics, and metabolomics, to provide a comprehensive
view of molecular responses to chemical exposures. Multi-
omics approaches enable the identification of molecular
signatures, pathways, and networks associated with toxicity
mechanisms, enhancing the predictive power of risk
assessment models (Buesen et al., 2017).

2. Advanced Machine Learning and AI Techniques: Leveraging
advanced machine learning algorithms, such as deep learning,

reinforcement learning, and Bayesian networks, holds promise
for enhancing predictive modeling and risk assessment
capabilities (Adeoye, 2023). These techniques enable the
extraction of complex patterns and relationships from large-
scale omics datasets, facilitating the development of more
accurate and interpretable predictive models for chemical
toxicity (Cavasotto and Scardino, 2022).

3. Toxicity Pathway Analysis and Systems Biology: Future
directions in chemical risk assessment involve adopting
systems biology approaches to elucidate toxicity pathways
and molecular mechanisms underlying adverse health effects
(Cote et al., 2016). Integrating omics data with pathway
analysis tools enables the reconstruction of molecular
networks and pathways affected by chemical exposures,
providing insights into mode of action, dosedosdosedose-
response relationships, and biological relevance (Aguayo-
Orozco et al., 2019).

4. Predictive Toxicology and Computational Models:
Advancements in predictive toxicology and computational
modeling offer opportunities for developing mechanistically
informed models of chemical toxicity (Kavlock et al., 2008).
Integrating omics data with computational models allows for
the refinement of toxicity predictions, identification of key
biomarkers, and prioritization of chemicals for further testing,
validation, and regulatory decision-making (Wang et al., 2021).

By addressing the limitations of current approaches and
embracing opportunities for integration of AI/ML and omics
technologies, researchers and stakeholders can advance the field
of chemical risk assessment, improve public health protection, and
promote sustainable development.

4.1 Case studies and applications
highlighting successful applications of ai/ml
and omics in chemical risk assessment

Illustrating successful applications of AI/ML and omics in
chemical risk assessment provides valuable insights into the
practical utility and efficacy of integrative approaches. Case
studies demonstrating the synergy between AI/ML and omics
technologies offer tangible examples of how these methodologies
can enhance predictive modeling, toxicity assessment, and risk
management strategies.

In toxicity prediction for environmental chemicals, AI/ML-
based predictive models, integrated with omics data, have been
successfully applied to assess the toxicity of environmental
chemicals (Jeong and Choi, 2022). For example, researchers have
developed QSAR models combining chemical descriptors with
transcriptomics data to predict the toxicity of industrial
chemicals, pesticides, and pharmaceuticals, enabling rapid
screening and prioritization of chemicals for regulatory
evaluation (Ghosh et al., 2020). In drug safety assessment in
pharmaceutical industry, Pharmaceutical companies leverage AI/
ML and omics technologies for drug safety assessment and toxicity
profiling during drug development (Niazi, 2023). Integrated omics
approaches, such as toxicogenomics and metabolomics, enable the
identification of drug-induced adverse effects, elucidation of toxicity
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mechanisms, and early detection of potential safety concerns,
leading to informed decision-making and optimization of drug
candidates (Beilmann et al., 2019). The environmental
monitoring and biomonitoring programs utilize AI/ML
algorithms and omics-based biomarkers to assess chemical
exposures and environmental health risks (Scott et al., 2023). For
instance, transcriptomics and proteomics profiling of aquatic
organisms exposed to pollutants enable the identification of
molecular biomarkers indicative of environmental stress and
contaminant effects, informing regulatory decisions and
ecosystem management strategies (Hampel et al., 2016). In
precision toxicology and personalized risk assessment, AI/ML-
driven precision toxicology approaches integrate omics data with
individual-level exposure information to tailor risk assessment and
management strategies to specific populations or subgroups (Singh
et al., 2023a). By accounting for inter-individual variability in
genetic susceptibility, metabolic phenotype, and environmental
factors, personalized risk assessment frameworks enhance the
accuracy and relevance of toxicity predictions, supporting
targeted intervention and prevention efforts (Pedrete et al., 2016).

4.2 Case studies demonstrating the utility of
integrative approaches

1. Integrative Toxicity Assessment of Nanomaterials: Researchers
employed a multi-omics approach combining genomics,
transcriptomics, and proteomics to evaluate the toxicity of
engineered nanomaterials (ENMs) (Smythers, 2023). By
integrating omics data with computational modeling and
toxicological assays, the study elucidated the mechanisms of
ENM-induced cytotoxicity, oxidative stress, and inflammation,
providing insights into nanomaterial safety and regulatory
implications (Panagiotou and Taboureau, 2012).

2. Development of Predictive Models for Chemical
Carcinogenicity: A collaborative effort between academia,
industry, and regulatory agencies utilized AI/ML-based
QSAR models integrated with genomics and transcriptomics
data to predict the carcinogenic potential of industrial
chemicals and environmental contaminants (Anklam et al.,
2022). The predictive models, validated using in vitro and in
vivo assays, demonstrated high accuracy in identifying
chemical carcinogens and non-carcinogens, enabling
informed risk assessment and regulatory decision-making
(Tcheremenskaia et al., 2019).

3. Environmental Exposure Assessment Using Biomarkers:
Biomonitoring studies in occupational and environmental
settings employed omics-based biomarkers, such as gene
expression signatures, protein profiles, and metabolite patterns,
to assess chemical exposures and health risks (Ge et al., 2013). By
correlating omics data with exposure levels and health outcomes,
these studies identified molecular indicators of exposure, effect,
and susceptibility, supporting evidence-based risk assessment and
intervention strategies (DeBord et al., 2015).

4. Translational Applications in Public Health: Integrative
approaches combining AI/ML and omics technologies have
translational applications in public health surveillance, disease
prevention, and regulatory policy (Barghash et al., 2021; Rai

et al., 2023b). For example, population-based studies
incorporating omics-based biomarkers and exposure data
enable the identification of environmental health disparities,
assessment of chemical-related disease burden, and
development of targeted interventions to protect vulnerable
populations (Everson and Marsit, 2018).

By showcasing successful case studies and applications of AI/ML
and omics in chemical risk assessment, researchers and stakeholders
can demonstrate the real-world impact and transformative potential
of integrative approaches for advancing public health protection and
environmental stewardship (Amiri et al., 2023).

5 Ethical and regulatory implications

Addressing the ethical considerations and regulatory
perspectives surrounding the use of AI/ML in risk assessment, as
well as the integration of omics data into risk assessment
frameworks, is crucial for ensuring the responsible and
transparent application of these technologies in safeguarding
public health and environmental safety.

5.1 Ethical considerations surrounding the
use of AI/ML in risk assessment

By addressing ethical considerations surrounding the use of AI/
ML in risk assessment and regulatory perspectives on incorporating
omics data into risk assessment frameworks, policymakers,
researchers, and stakeholders can promote responsible
innovation, transparency, and accountability in chemical risk
assessment practices, ultimately advancing public health and
environmental safety (Bruschi and Diomede, 2023). The storage
and use of whole-genome sequencing (WGS) tumor data present
significant ethical challenges, particularly in terms of privacy,
consent, and data security. One key example is the ongoing
debate over the ethical management of genomic data within
large-scale cancer research initiatives like The Cancer Genome
Atlas (TCGA). While TCGA has enabled groundbreaking
discoveries in cancer genomics, it has also raised concerns about
the potential for re-identification of patients, despite anonymization
efforts (Horton and Lucassen, 2023).

Regulatory frameworks such as the European General Data
Protection Regulation (GDPR) have sought to address these
issues by enforcing strict guidelines on the collection, storage,
and use of personal genomic data. GDPR mandates explicit
informed consent for the use of such data in research and
imposes penalties for breaches, making it a critical reference
point for ensuring ethical compliance in WGS data handling
(Shabani and Borry, 2018). Additionally, the Health Insurance
Portability and Accountability Act (HIPAA) in the U.S. governs
the secure storage of health data, including WGS data, providing
further safeguards against unauthorized access and ensuring patient
privacy (Thompson, 2020).

1. Data Privacy and Confidentiality: Ethical concerns arise
regarding the collection, storage, and sharing of sensitive
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biological and health data in AI/ML-based risk assessment
(Federico and Trotsyuk, 2024). Ensuring data privacy,
confidentiality, and informed consent is essential to protect
individuals’ rights and mitigate the risk of unauthorized access,
misuse, or discrimination based on personal information
(Hlávka, 2020).

2. Bias and Fairness: AI/ML algorithms may inadvertently
perpetuate biases and inequities present in training data,
leading to biased predictions and discriminatory outcomes.
Ethical considerations include addressing algorithmic bias,
ensuring fairness and transparency in decision-making
processes, and promoting equity and inclusivity in risk
assessment practices (Leslie et al., 2024; Shuford, 2024).

3. Accountability and Transparency: Transparency and
accountability are essential principles in AI/ML-based risk
assessment to enable scrutiny, validation, and
reproducibility of predictive models and decisions. Ethical
guidelines advocate for transparent reporting of
methodologies, data sources, model assumptions, and
limitations to foster trust, accountability, and responsible
use of AI/ML technologies (Drabiak et al., 2023).

4. Human Oversight and Interpretability: Maintaining human
oversight and interpretability in AI/ML-driven risk assessment
is critical to ensure that algorithmic predictions align with
domain expertise, ethical principles, and societal values. Ethical
frameworks emphasize the importance of human judgment,
critical reasoning, and ethical reasoning in guiding decision-
making processes and mitigating the potential for unintended
consequences or harm (Lo Piano, 2020).

5.2 Regulatory perspectives on
incorporating omics data into risk
assessment frameworks

• Regulatory bodies have begun incorporating AI models into
their chemical risk assessment workflows. For instance, the
U.S. Environmental Protection Agency (EPA) has
implemented the Toxicity Estimation Software Tool
(TEST), which uses machine learning algorithms to predict
toxicity endpoints, including carcinogenicity, based on
chemical structure data (Hartung, 2023b). Similarly, the
OECD’s QSAR Toolbox facilitates regulatory compliance by
allowing member countries to use AI-driven models for
hazard identification and risk assessments. These tools are
designed to reduce the need for animal testing by providing
robust in silico predictions for regulatory submissions
(Dimitrov et al., 2016).

Moreover, the European Food Safety Authority (EFSA) has
utilized AI-based models in its food safety assessments,
particularly for prioritizing chemicals in terms of potential health
risks. EFSA’s work in developing AI-enhanced approaches for
pesticide risk assessments represents a significant step toward
automating and refining regulatory toxicology processes
(Blümmel et al., 2023). The primary challenge faced by these
agencies in adopting AI is ensuring the transparency,
reproducibility, and validation of AI models, which remain key

factors in regulatory decision-making (Cavalli et al., 2019). Below
are some key points addressing adaption to in silico approaches to
regulatory perspectives-

1. Data Quality and Standardization: Regulatory agencies
emphasize the importance of data quality, reliability, and
standardization in incorporating omics data into risk
assessment frameworks. Guidelines for omics-based
biomarker validation, assay reproducibility, and data quality
control aim to ensure the integrity and validity of experimental
results and facilitate regulatory acceptance and decision-
making (Marx-Stoelting et al., 2015).

2. Validation andQualification: Regulatory perspectives on omics
data integration prioritize the validation and qualification of
biomarkers and predictive models for risk assessment
purposes. Validation studies assess the sensitivity, specificity,
accuracy, and robustness of omics-based assays and algorithms
in predicting toxicity outcomes, informing regulatory decisions
on biomarker qualification and acceptance criteria (Omenn
et al., 2012).

3. Risk Characterization and Uncertainty Assessment: Regulatory
frameworks for integrating omics data into risk assessment
emphasize the importance of risk characterization, uncertainty
assessment, and evidence-based decision-making. Omics-
based biomarkers and predictive models should be evaluated
in the context of exposure assessment, hazard identification,
dose-response analysis, and risk characterization to inform risk
management strategies and regulatory actions (Van Aggelen
et al., 2010).

4. Translational Research and Application: Regulatory agencies
support translational research and application of omics
technologies in risk assessment to enhance public health
protection and regulatory decision-making. Collaborative
efforts between academia, industry, and regulatory
stakeholders facilitate the development, validation, and
implementation of omics-based assays, biomarkers, and
predictive models for regulatory use, promoting innovation
and scientific advancement in chemical safety assessment
(Matthews et al., 2016). One prominent example of
collaboration between academia, industry, and regulatory
stakeholders is the EU-ToxRisk project, a European
Commission-funded initiative aimed at advancing non-
animal testing strategies for chemical safety assessment. The
project integrates AI and OMICS technologies to develop
predictive models that assess the toxicological effects of
chemicals on human health. Regulatory bodies such as the
European Chemicals Agency (ECHA) and EFSA are actively
involved in validating these models for regulatory use.
Additionally, the U.S. FDA has partnered with several
academic institutions to apply AI in toxicogenomics,
particularly for drug safety assessments. This collaboration
has led to the development of AI tools that analyze gene
expression data from toxicogenomics studies to predict
adverse drug reactions, aiding regulatory agencies in early-
stage drug approval processes. These efforts have successfully
demonstrated how AI can streamline the assessment of
chemical safety while reducing reliance on animal testing
(Smirnova et al., 2018; Sillé et al., 2020).
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5.3 COSMIC signature database and causal
inference in carcinogenesis

The COSMIC (Catalogue Of Somatic Mutations In Cancer)
signature database is an invaluable resource for understanding
the mutational processes underlying cancer. It catalogs
mutational signatures—patterns of mutations associated with
specific carcinogenic processes—which can provide insights
into the etiology of different cancer types. These signatures,
derived from large-scale sequencing data, help infer causal
links between environmental exposures and cancer
(Alexandrov et al., 2020).

One notable example is the identification of signature 7, which
has been strongly linked to UV radiation exposure. This signature,
characterized by C > T transitions in dipyrimidine contexts, has
been instrumental in confirming UV radiation as a major driver of
skin cancer, particularly melanoma. A recent study utilizing the
COSMIC database demonstrated population-specific differences in
UV-induced mutational burden, further advancing our
understanding of how environmental factors like UV exposure
contribute to cancer risk in different populations (D’Orazio
et al., 2013).

Similarly, COSMIC signatures have been used to explore the
origins of liver cancer, revealing associations between specific
mutational patterns and aflatoxin exposure, a known risk factor
for hepatocellular carcinoma. The ability to pinpoint these
mutational signatures provides a powerful tool for causal
inference, enabling researchers to identify carcinogenic agents
and their impact on specific tissues. This approach not only
advances our knowledge of cancer etiology but also aids in the
development of targeted prevention strategies and therapeutic
interventions (Phillips, 2018).

By incorporating insights from COSMIC mutational signatures,
one can enhance the precision of carcinogenicity assessments and
further our understanding of the environmental and genetic factors
that contribute to cancer development (Bindal et al., 2011).

6 Summary of key findings, outlook and
conclusion

This review has explored the intersection of AI/ML and omics
technologies in chemical risk assessment, highlighting their
synergistic potential to revolutionize predictive modeling, toxicity
assessment, and risk management strategies. From elucidating
toxicity mechanisms to predicting adverse health outcomes,
integrating AI/ML and omics offers a comprehensive approach to
understanding chemical exposures and safeguarding public health
(Krause et al., 2021).

Throughout this review, several key findings have emerged:

1. Integration of AI/ML and Omics: Combining AI/ML
algorithms with omics technologies enables the analysis of
large-scale biological data, including genomics,
transcriptomics, proteomics, and metabolomics, to elucidate
molecular responses to chemical exposures. Integrative
approaches facilitate the identification of molecular
signatures, pathways, and networks associated with toxicity

mechanisms, enhancing the predictive power and accuracy of
risk assessment models.

2. Advancements in Predictive Modeling: AI/ML-driven
predictive modeling techniques, such as QSAR models, deep
learning algorithms, and ensemble methods, offer powerful
tools for predicting genotoxicity, mutagenicity, and
carcinogenicity of chemical compounds (Mone et al., 2023).
By leveraging omics data and computational modeling,
researchers can develop mechanistically informed models
that prioritize chemicals for testing, inform regulatory
decisions, and guide cancer prevention strategies (Singh
et al., 2018; Singh et al., 2024c).

3. Translational Applications and Case Studies: Successful
applications of AI/ML and omics in chemical risk
assessment have been demonstrated across various sectors,
including pharmaceuticals, environmental monitoring, and
public health. Case studies showcasing the utility of
integrative approaches provide tangible examples of how
these technologies can enhance predictive modeling, toxicity
assessment, and risk management practices in real-
world settings.

6.1 Future perspectives for advancing
chemical risk assessment and cancer
prevention

Looking ahead, several future perspectives emerge for advancing
chemical risk assessment and cancer prevention:

1. Data Integration and Multi-Omics Approaches: Further
integration of diverse omics datasets and development of
multi-omics approaches will enhance our understanding of
chemical toxicity mechanisms and enable more accurate
prediction of adverse health outcomesContinued efforts to
standardize data formats, improve data sharing practices,
and develop interoperable platforms will facilitate data
integration and cross-disciplinary collaboration (Del Giudice
et al., 2023; Shahrajabian and Sun, 2023).

2. Advanced Machine Learning Techniques: Continued
advancements in machine learning algorithms, including
deep learning, reinforcement learning, and Bayesian
networks, hold promise for improving predictive modeling
and toxicity assessment as shown in Figure 5. Future research
should focus on developing interpretable and explainable AI
models that provide insights into the biological relevance and
mechanistic underpinnings of predictive outcomes (Niazi and
Mariam, 2023).

3. Translational Research and Policy Implementation: Bridging
the gap between research and policy implementation is
essential for translating scientific advancements into
actionable interventions and regulatory decisions.
Collaborative efforts between academia, industry, regulatory
agencies, and public health stakeholders will facilitate the
adoption of AI/ML and omics technologies in risk
assessment practices, promoting evidence-based policy
development and cancer prevention strategies (Olswang and
Prelock, 2015).
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FIGURE 5
Application of IntegratedOmics Technologies in Environmental Exposure Studies. The diagram outlines the workflow and applications of integrated
omics technologies in analyzing environmental exposures. The process begins with sampling, data acquisition, and storage in public databases. Various
omics technologies, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, are then applied to analyze the data. These
analyses encompass genome-wide association studies (GWAS), epigenetic modifications, gene expression regulation, protein expression and
function, and metabolite profiling. The integrated omics data are utilized to study the bioaccumulation of heavy metals in cattle, soil pollution affecting
crops, and groundwater contamination impacting aquatic life. Ultimately, a secondary database based on multi-omics data is constructed, facilitating
comprehensive studies on genome, epigenome, transcriptome, proteome, and metabolome interactions.
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The integration of AI/ML and omics technologies offers
transformative opportunities for advancing chemical risk
assessment and cancer prevention efforts. By harnessing the
predictive capabilities of these technologies, researchers and
policymakers can enhance public health protection, mitigate
environmental risks, and promote sustainable development for
future generations.
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