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Introduction

There is increasing concern amongst public health professionals, environmental health
scientists, and medical organizations about exposures to synthetic chemicals (Deborah
Bennett et al., 2016; Bergman et al., 2013a; Di Renzo et al., 2015; Gore et al., 2015; Persson
et al., 2022; Trasande et al., 2018) via polluted air and water, consumer products such as
cosmetics, fabrics and upholstery, and food and packaging. These organizations’ concerns
are based on the overwhelming evidence showing associations between chemical exposures
and adverse health outcomes in human populations.

Some of the strongest evidence has come from persistent organic pollutants that
bioaccumulate in the bodies of animals and people and bio magnify in the food chain. For
example, per- and polyfluorinated alkyl substances, aka PFAS, have received significant
attention following the C8 Health Project which was created after communities in
Parkersburg, West Virginia (US) were affected by contamination of drinking water
from the manufacturer of perfluorooctanoic acid (PFOA). People in these communities
sued the manufacturer and, through a settlement agreement, medical monitoring of the
population was developed (Frisbee Stephanie et al., 2009). The C8 Health Project and
subsequent studies have revealed associations between PFOA exposures and human health
effects including cardiometabolic issues, thyroid disorders, kidney and testicular cancer, and
ulcerative colitis (Steenland et al., 2020).

Evidence accumulated over several decades also showed adverse effects associated with
exposures to non-persistent chemicals including chemicals used in plastics, personal care
products, solvents, detergents, food dyes, and pesticide ingredients (Zoeller et al., 2014;
Skakkebaek et al., 2016; La Merrill et al., 2020; Vom Saal and Vandenberg, 2021;
Matouskova and Vandenberg, 2022; Stacy et al., 2024). These chemicals are widely used
in consumer products, and are so ubiquitous that they are considered pseudo-persistent,
i.e., producing continuous exposures from external sources (Barceló and Petrovic, 2007).
There are now thousands of studies showing associations between these chemicals and
adverse health effects in humans including neurological disorders and learning disabilities,
metabolic outcomes, infertility, thyroid dysfunction, and cancers (Bergman et al., 2013b; de
Graaf et al., 2022; Gore et al., 2015; Hamed et al., 2023; Heindel et al., 2017; Miller et al.,
2022; Muncke et al., 2020; Onyije et al., 2024; Patisaul, 2021; Rancière et al., 2015; Ribeiro
et al., 2020; Wu et al., 2023; Zoeller et al., 2012).

The growing evidence linking chemical exposures to chronic diseases has led experts to
deem the testing approaches recommended by regulatory agencies for risk assessment
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(EPA, 2023; FDA, 2000) insufficient to protect human health
(Bergman et al., 2013a; Bennett et al., 2016; Anderko, 2017; Prins
et al., 2019; Vandenberg, 2019; Vom Saal, 2019; Vandenberg, 2021b;
Kassotis et al., 2022). Many endpoints such as developmental
neurotoxicity, immunotoxicity, endocrine disruption and non-
genotoxic carcinogenicity lack appropriate assays to protect
human health. Testing that relies on more sensitive and health-
relevant endpoints would reduce or eliminate exposures to
hazardous chemicals before they enter the marketplace
(Zimmermann et al., 2022).

In this commentary, we describe what better testing approaches
for use in risk assessment would look like and how improvements in
these tests would positively impact human health. We also discuss
how inadequate risk management approaches lead to insufficient
protections of human health. Although our focus is mostly on the
United States, our conclusions are generally applicable to
other countries.

What does better testing look like?

Although the exact number of chemicals remains unknown,
scientists estimate there are 140,000–300,000 chemicals on the
global market (Wang et al., 2020). In the US more than
42,000 chemicals listed on the US Environmental Protection
Agency’s Toxic Substances Control Act (TSCA) inventory are
currently in use in consumer products or in industrial processes.
Furthermore, worldwide there are more than 12,000 chemicals
authorized to use in the manufacturing of materials in contact
with food (Groh et al., 2021) and the US Food and Drug
Administration (FDA) has authorized more than
10,000 chemicals to be directly used in food or in food
packaging and processing equipment (Neltner et al., 2011).
The identity of many of these chemicals remains unknown
because they are shielded as “confidential business
information” or because they are registered in other countries
without public disclosures (Vandenberg et al., 2023). One
problem with the current approach to chemical testing in the
US is that the data gaps for these chemicals are extensive. For
instance, evaluations of ingredients added to food indicate that
less than 25% have a feeding study that can be used to calculate
safe levels of exposure and less than 10% have either
reproductive or developmental toxicity data available (Neltner
et al., 2013). Others have also reported on the lack of data for
food ingredients (Faustman et al., 2021; Matouskova
et al., 2023).

With the number of chemicals currently on the market, the
problem is not only that we have failed to test a large number of
them prior to their authorization, but that often the hazards of
these chemicals are revealed years after they enter commerce,
and in the US, there are very few options to restrict the use of
chemicals once they have been allowed in products. With the
exception of pesticide ingredients which are routinely
reevaluated by the US EPA, chemicals used in food
packaging, consumer products, and industrial processes do
not undergo post-market re-evaluation, so even when studies
reveal harmful effects of exposures to these chemicals, the
options to restrict their uses are limited. This means that

pre-market testing is critical to protect the health of humans
and the environment.

To address these problems collectively, we need reliable
assays that can be used for risk assessment and regulatory
purposes (Cediel-Ulloa et al., 2022; Legler et al., 2020; Schug
et al., 2013a; Schug et al., 2013b; Street et al., 2021; Vandenberg
et al., 2019; Vandenberg, 2021a; b). It is not sufficient to develop
in vitro screening tests like those identified as new approach
methodologies (NAMs), it is also necessary to demonstrate that
those NAMs are as good, if not better, than modern mammalian
tests at identifying hazards (Kortenkamp et al., 2020; De
Castelbajac et al., 2023; Tal et al., 2024). NAMs also need to
go through validation processes to show that they are
reproducible in other groups. Also, assays should accurately
identify exposure levels where adverse effects do not occur.
Lastly, regulators are expected to use data from assays,
including NAMs, to protect the public’s health rather than
protecting chemicals from further scrutiny. None of these has
been done successfully to date.

Better testing would also use class-based approaches, like those
that are required of the FDA but that have not been implemented
(Maffini et al., 2023); with this approach, data from a few chemicals
can be used to regulate others in the same class before they reach the
market. As there is increasing evidence that chemicals in the food
supply and in consumer products cause harm (Maffini and
Vandenberg, 2017; Groh et al., 2019; Muncke, 2021), there needs
to be evidence-based periodic post-market reevaluations and
updated risk management decisions to remove the bad actors
without introducing regrettable replacements (Woodruff
et al., 2023).

Another issue is that many of the standard assays used to
evaluate some hazards (often described in internationally-
recognized test guidelines) focus on signs of acute toxicity rather
than outcomes that are relevant to chronic diseases and conditions
that are increasing in human populations (Lupu et al., 2020;
Vandenberg, 2021a; b). For example, there are limited
approaches to determine if chemicals affect the breast, even
though there is increasing evidence that girls are experiencing
premature breast development, increasing reports of shortened
duration of breastfeeding in women that want to nurse, and
increasing rates of premenopausal breast cancers (Kay et al.,
2022). Although mammary glands are collected in some rodent
toxicity tests, mammary gland development and function remains
understudied in toxicity tests (Matouskova et al., 2022). To date,
relatively few high-throughput in vitro approaches, including
NAMs, have been developed that focus on chronic
noncommunicable diseases, but this is critical considering these
conditions are the most important challenges to the health of
modern human populations (Groh and Muncke, 2017; Muncke
et al., 2023).

Human studies finding associations between early life
exposure to chemicals indicate that toxicity testing should
focus on health-related outcomes rather than overt signs of
toxicity. Examples of concerning early-life exposures from
epidemiology studies are dichlorodiphenyltrichloroethane
(DDT) and later life breast cancer risk (Cohn et al., 2015;
Cohn et al., 2019), perchlorate and diminished IQ levels in
children (Steinmaus et al., 2010; Brent, 2014; Taylor et al.,
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2014), and bisphenol A (BPA) and increased risk of asthma in
children (Xie et al., 2016; Wu et al., 2021; Abellan et al., 2022).
Good testing approaches should expand the endpoints to include
human-health relevant outcomes. If this can be done within the
context of NAMs, it will help to speed up the evaluation process,
but many of these outcomes are complex and will be challenging
to assess outside of whole animals.

Current hazard identification approaches continue to rely on
outdated principles and expectations. For example, common
testing approaches assume that chemicals are quickly eliminated
from the body, something that many PFAS and other persistent
organic pollutants have disproven, even considering species-
specific differences in their half-lives (Olsen et al., 2007). In
fact, this assumption continues to create problems in the testing
(and risk management) of shorter-chain PFAS, which were
assumed to be less bioaccumulative, and thus less hazardous,
than the long-chain PFAS. Unfortunately, this was revealed to
be untrue (Kabadi et al., 2018; Rice et al., 2020; Rice et al., 2023).
Another long-held assumption is that chemical metabolites are less
hazardous than the parent compounds. Phthalates, which have
several metabolites that are more biologically active than the
parent compounds, have disproven this assumption as well
(Zhang et al., 2021).

Current approaches also rely on the assumption that testing
chemicals one at a time is appropriate to understand how chemicals
act under real-world conditions. Numerous mixture studies,
including ones that demonstrated cumulative effects, have
disproven this assumption (Christiansen et al., 2020; Martin
et al., 2021; Caporale et al., 2022). For example, studies
combining chemicals at concentrations that were 80-fold lower
than their individual lowest-observed-adverse-effect-levels can act
together to induce malformations of the male reproductive tract
(Conley et al., 2018). Human mixture studies focused on real-world
mixtures from human biomonitoring have revealed that some
chemicals drive disease risk more than others (Escher et al.,
2022; Luijten et al., 2023). Importantly, these chemicals are used
in different kinds of products (e.g., consumer products, cosmetics,
industrial products, food packaging) and thus are regulated very
differently.

Lastly, testing on adult animals (or in cultured cells) has been
assumed to predict effects on developing animals. Numerous
examples of environmental chemicals including many endocrine
disrupting chemicals have shown this to be false (Balbus et al., 2013;
Grandjean et al., 2015; Heindel and Vandenberg, 2015; Treviño and
Katz, 2018). Rather, significant evidence suggests that early life
exposures to chemicals can have profound, unique, and lasting
effects on individuals (Bourguignon et al., 2013; Di Pietro et al.,
2023) and future generations (Sargis et al., 2019).

To address these challenges, long-held assumptions that have
driven risk assessment and regulations for more than half a century
should be complemented—if not completely replaced—with
modern scientific principles of toxicology including mixture
toxicology, endocrinology, physiology, and immunology
(Vandenberg et al., 2013). Testing needs to be nimbler to
account for the growth in knowledge of these fields over the last
three decades and the new knowledge that is yet to come as well as
the complexity of chemical exposures and new chemistries (Arthur
et al., 2015a; Arthur et al., 2015b).

Improved testing leads to better risk
management

The results of testing for hazard identification, like those
described above, are used for risk assessment (Beronius et al.,
2009). The National Academies (National Academies of Science,
1983) define risk assessment as “the use of the factual base to define
the health effects of exposure of individuals or populations to
hazardous materials and situations.” Risk assessment involves the
combination of hazard, exposure, and dose response data to quantify
the probability of an adverse effect at a specific level of exposure.
After a risk assessment is performed, the next step is to decide
whether the risk to health is substantial enough that it must be
managed. Risk management is defined as “the process of weighing
policy alternatives and selecting the most appropriate regulatory
action, integrating the results of risk assessment with engineering
data and with social, economic, and political concerns to reach
a decision.”

Regulation is a common tool to manage risk. Regulations should
allow chemicals to be used safely and appropriately through use
limitations and restrictions. Regulations are bound by jurisdictional
laws which means that the same chemical is regulated differently if it
is used in toys than in food, even though the hazards remain the
same. The legislative bodies writing these laws (e.g., at federal or
state level in the US) are often slow to act, putting the public’s health
at risk. But even when laws regulating chemicals are available,
regulatory agencies then interpret and implement those laws
through rules and regulations that can take broad or narrow
approaches to protect the public. For example, chemical
restrictions themselves can vary in severity, with bans as the
most protective measure. A ban can include a total restriction in
use of individual chemicals (methylene chloride in paint strippers
(EPA, 2024); an entire class of chemicals (e.g., PFAS in food
packaging (FDA, 2016; State, 2018); or groups of chemicals with
similar adverse effects (e.g., anti-androgenic phthalates in children’s
toys (Consumer Product Safety Commission, 2017). The least
protective risk management is based on good manufacturing
practice, which means that a chemical is permitted to be used at
concentrations needed for the final article to perform properly, but
no more (FDA, 1977). In general, the amounts that are actually used
in the product are only known to the manufacturer. Other
restrictions include specific migration limits (e.g., the amount of
a chemical or mixture of chemicals that is allowed to be released
from the product into food); restrictions that are focused on specific
vulnerable populations (e.g., the restriction of a chemical in infant
formula (FDA 2024a); consumption limits per day or per week that
will not increase health risks (EFSA Panel on Food Contact
Materials et al., 2023); and limits to the amount of a chemical
added to the final article expressed by weight (FDA, 2005).

As stated above, risk assessment informs risk management
(National Research Council, Division on Earth, Life Studies,
Board on Environmental Studies, and Committee on Improving
Risk Analysis Approaches Used by the US EPA, 2009) which may
also consider economic cost to the regulated industry, availability of
safer substitutes, societal values, political will and the precautionary
principle. In an ideal world, risk assessment and risk management
should be performed by different groups of experts (Maffini and
Birnbaum, 2024) to ensure that the risk assessment is solely based on
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scientific evidence and is not influenced by the “costs” of taking
action. This separation of risk assessment and risk management is
certainly feasible, since this is the approach taken in the EU; for
example, risk assessment for chemicals used in food and food
packaging is conducted by the European Food Safety Authority
whereas risk management decisions are the task of the European
Commission. The subjective nature of risk management lends itself
to criticism especially when it dismisses or disregards the risk
assessment conclusions, and challenging a management decision
usually causes delays in public health protection. Examples of delays
include pesticides such as chlorpyrifos (Trasande, 2017) and
glyphosate (Vandenberg et al., 2017), as well as chemicals in
consumer products such as phthalates in food contact materials
(Edwards, 2023) and building materials (asbestos) (Järvholm and
Burdorf, 2024; Phillips, 2024). Unfortunately, risk management is
often dependent on the strength of political will.

A role for civil society

When testing is insufficient to identify the most concerning
hazards associated with a chemical, and risk management strategies
fail to protect vulnerable populations from concerning exposures,
the public is left to act. Commonly used tools include educational
campaigns to move consumers away from products that have
chemicals of concern (Defend Our Health, 2017). Another option
is to submit petitions to the relevant agency arguing the there is
strong evidence a chemical presents a high risk to health, the lack of
a risk assessment or the use of the chemical not meeting the standard
of safety (FDA 2024b). An example of this is a petition that require
FDA to demonstrate the safety of long-chain PFAS in food
packaging, which the agency responded to by removing approval
of three types of long-chain PFAS (FDA, 2016). Members of civil
society can also sue a regulatory agency for not implementing a
protective law (Center for Food Safety, 2022) or product
manufacturers when experts have assembled sufficient evidence,
meeting a legal burden of proof, that a chemical causes serious harm.
For example, repeated lawsuits against manufacturers of herbicides
containing glyphosate have been successful because of strong
evidence these products increase the risk of Non-Hodgkin’s
Lymphoma (Zhang et al., 2019), even though the EPA maintains
that glyphosate does not cause cancer (Benbrook, 2019).

These examples show that the public is a powerful force to push
regulators and the regulated community to address problematic
chemicals. The role of civil society is especially critical when risk
management decisions lag for years or lack sufficient teeth to protect
the public’s health. Similarly, citizens have been willing to take
action when academic studies and epidemiology findings reveal
harmful effects of chemicals, even if those outcomes are not
evaluated in traditional test guidelines or accounted for in an
agency’s risk assessment and risk management decisions.

Conclusion

We must be able to live with risk; nothing in our world is absent
of risk. The problems we describe here illustrate a common paradox
in US regulatory agencies: they are mandated to make safety
decisions based on science that is constantly evolving while the
risk management is commonly static. In other words, periodic
reassessment of decisions based on new scientific evidence is not
common in the US, with the exception of pesticides.

We argue that better testing will result in better risk assessments,
and with better risk assessment, there is an opportunity for better
risk management. Better testing, and better use of testing data, can
protect the public’s health. However, this is not a given. Risk
management involves numerous subjective factors including
political will, which is often lacking.
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