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Current methods for cancer risk assessment are resource-intensive and not
feasible for most of the thousands of untested chemicals. In earlier studies,
we developed a new approach methodology (NAM) to identify liver tumorigens
using gene expression biomarkers and associated tumorigenic activation levels
(TALs) after short-term exposures in rats. The biomarkers are used to predict the
six most common rodent liver cancer molecular initiating events. In the present
study, we wished to confirm that our approach could be used to identify liver
tumorigens at only one time point/dose and if the approach could be applied to
(targeted) RNA-Seq analyses. Male rats were exposed for 4 days by daily gavage to
15 chemicals at doses with known chronic outcomes and liver transcript profiles
were generated using Affymetrix arrays. Our approach had 75% or 85% predictive
accuracy using TALs derived from the TG-GATES or DrugMatrix studies,
respectively. In a dataset generated from the livers of male rats exposed to
16 chemicals at up to 10 doses for 5 days, we found that our NAM coupled with
targeted RNA-Seq (TempO-Seq) could be used to identify tumorigenic chemicals
with predictive accuracies of up to 91%. Overall, these results demonstrate that
our NAM can be applied to both microarray and (targeted) RNA-Seq data
generated from short-term rat exposures to identify chemicals, their doses,
and mode of action that would induce liver tumors, one of the most common
endpoints in rodent bioassays.
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1 Introduction

In the United States, cancer is the second leading cause of death, imposing a tremendous
burden on individuals and their families, as well as the US economy (Ahmad and Anderson,
2021; CDC, 2017). Most chemicals in commerce have not been adequately tested for the
ability to cause cancer in humans and animals. The 2-year cancer bioassay conducted in
mice and rats remains the “gold standard” for carcinogenicity testing, but due to the
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resources needed to assess a chemical ($2–4 M USD; 800 rodents;
histopathological analysis of more than 40 tissues; 2+ years to complete
the in-life study and years to analyze results), only ~1500 commercial
chemicals have been examined to date (Bucher and Portier, 2004; Gold
et al., 2005; Waters et al., 2010). In contrast, there are tens of thousands
of chemicals in commerce with inadequate information on cancer
hazard. These include over 140,000 substances registered by the
European Registration, Evaluation, Authorization and Restriction of
Chemicals (REACH) (REACH, 2008), ~30,000 chemicals being used
commercially in the United States and Canada (Muir and Howard,
2006), and ~41,000 chemicals on the US EPA’s Toxic Substances
Control Act Inventory (https://www.epa.gov/tsca-inventory; accessed
1 August 2022). There are also concerns about the human relevance of
rodent cancer outcomes. New resource-efficient methods are needed to
move away from reliance on the 2-year cancer bioassay and to identify
the carcinogenic potential of a chemical in shorter term in vivo assays or
through sets of assays carried out in appropriate in vitro systems
allowing identification of human-relevant risk that can be put into
the context of boundaries of exposure.

There are increased efforts across broad sectors of the toxicity
testing community to develop new approach methodologies
(NAMs) to reduce or entirely replace animal testing. The
Organization of Economic and Cooperative Development
(OECD) (Jacobs et al., 2020), institutions in the United States
(ICCVAM, 2018; Sciences, 2018) (ICCVAM 2018; NIEHS 2018;
Hood 2019; U.S. EPA 2020a), and the European Union (Annys et al.,
2014; Corvi et al., 2017; Luijten et al., 2020) have efforts to replace
the rodent chronic bioassay using more human-relevant testing
methods, that if implemented will significantly reduce or replace
animal testing (Felter et al., 2021). The NAMs being developed and
validated can include relevant in vitro assays that do not use animals
as well as in vivo studies that are for shorter durations of exposure
and use fewer animals per treatment group than the 2-year bioassay
(Cohen et al., 2019; Madia et al., 2019). Some NAMs can already be
used to help predict human carcinogenic risk in a regulatory setting
including in silicomutagenicity prediction models used to classify an
impurity of concern in an active pharmaceutical ingredient and
reduce further testing to assess carcinogenic risk (ICH (2017)
M7 regulations). Additionally, activities are ongoing to include
weight-of-evidence for the carcinogenicity assessments for
agrochemicals (Hilton et al., 2022) and pharmaceuticals (Bourcier
et al., 2024) which incorporate all available relevant data. The past
work highlights the considerable challenges to using NAMs to
accurately predict human cancer risk including what endpoints
to measure in vitro assays and when to measure them. Although
NAMs are starting to be used and/or considered by some regulatory
agencies (Jacobs et al., 2020; Luijten et al., 2020; Yauk et al., 2020;
Heusinkveld et al., 2020), there is currently limited regulatory
acceptance for decision-making.

Genomic biomarkers are being increasingly recognized by broad
sectors of the scientific community to have the potential to reduce
the need for conventional rodent carcinogenicity studies of
chemicals through a weight-of-evidence approach. Biomarker-
based NAMs could be used in integrated approaches to testing
and assessment (IATA) strategies or could be used as standalone
NAMs for an intended use (Corton et al., 2022a). Gene expression
biomarkers have been developed and applied for hazard
identification in a number of contexts. One of the first

biomarkers to be developed was the TGx-DDI biomarker,
currently under regulatory review by the FDA through the
Center for Drug Evaluation and Research Biomarker
Qualification Program (Avila et al., 2020). The biomarker was
developed to enable differentiating between true positive DNA
damage-inducing (DDI) agents and non-DDI irrelevant positive
agents using a number of human cell lines (Li et al., 2017; Corton
et al., 2018; Cho et al., 2019). Another set of biomarkers were
developed to identify molecular initiating events (MIEs) in cancer
and liver steatosis adverse outcome pathways (AOPs) by
leveraging microarray data from livers of chemically-treated
wild-type and transcription factor-null mice, allowing for the
identification of well-defined mechanistic gene sets (Oshida
et al., 2015a; Oshida et al., 2015b; Oshida et al., 2016; Rooney
et al., 2018a; Rooney et al., 2018b; Rooney et al. 2,019). These
biomarkers have been applied to sets of chemicals to identify
relationships between exposure and hazard (Rosen et al., 2017),
as well as to identify the most likely AOP responsible for rodent
liver tumors (Peffer et al., 2018; Rooney et al., 2017; Rooney et al.,
2018c). Given the growing emphasis on tiered screening of
chemicals using high-throughput transcriptomics (HTTr) in
human cell lines (Thomas et al., 2019; Harrill et al., 2021), a
number of groups have constructed biomarkers that identify
important molecular targets underpinning in vivo toxicity
including estrogen receptor (ER) (Ryan et al., 2016) and
androgen receptor (Rooney J. P. et al., 2018) modulation as well
as stress factor induction (Jackson et al., 2020; Rooney et al., 2020;
Cervantes and Corton, 2021; Korunes et al., 2022) and histone
deacetylase inhibition (Cho et al., 2021; Corton et al., 2022b).
Future NAMsmay one day use gene expression biomarkers used to
interpret transcript profiles derived from in vitro HTTr human-
derived multicellular models (micro-physiological systems,
organoids, organ-on-a-chip) that better mimic the physiological
and toxicological behaviors of human organs compared to the
current screening paradigm carried out in two dimensional human
cell cultures. Like NAMs, regulatory acceptance of biomarker use
for toxicological assessments is rare; only the GARDskin/
GARDpotency used to identify skin sensitizers in a human
myeloid dendritic-like cell line have been accepted for
regulatory studies (OECD TGP 4.106).

In the present study, we describe and test the predictive
capability of a NAM using a set of gene expression biomarkers,
that was designed to meet 21st century goals of reduced reliance on
animals to identify potential carcinogens using short-term
exposures in rats and transcript profiling. The NAM was trained
to not only identify chemicals and their doses that would cause rat
liver tumors but to also identify the underlying chemical mode of
action (MOA). Regulatory agencies would then be able to use prior
knowledge to determine if the MOA is of human relevance and
whether the chemical would need to be examined in a 2-year
bioassay. As the NAM was trained and tested on microarray
data, we determined if the NAM would be able to accurately
identify liver tumorigens using (targeted) RNA-Seq data. We
found that the NAM accurately identifies chemicals and their
doses that cause liver tumors in rat chronic studies under a wide
variety of acute testing conditions. The information derived from the
NAM then can be used to determine if the predicted mode of action
would be relevant to humans.
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2 Methods

2.1 Overview of datasets used in the analysis

There were three datasets used in our analysis which are
described in greater detail below.

• “Study A”: To confirm that our approach could be used to
identify hepatotumorigens using Affymetrix data at a single
dose and time, we utilized a dataset generated in male
Sprague-Dawley rats exposed to 22 chemicals at a single
dose level each day for 4 days (rat 4-day study). This study
has not been previously described. (Quick summary:
22 chemicals; 1 dose; 4 days; Affymetrix)

• “Study B”: To compare biomarker activation levels generated
using Affymetrix and RNA-Seq, we utilized a published
dataset that was generated in male Sprague-Dawley rats
exposed to 27 chemicals at one dose level each day for 3,
5 or 7 days (rat Affymetrix-RNA-Seq comparison study)

derived from the DrugMatrix study. The livers of the rats
were evaluated for gene expression changes using Affymetrix
arrays and in later studies by RNA-Seq. The data from this
study came from (Bushel et al., 2018; Svoboda et al., 2019;
Wang et al., 2014). (Quick summary: 27 chemicals; 1 dose; 3, 5,
or 7 days; comparing Affymetrix vs. RNA-Seq)

• “Study C”: To determine if the biomarker tumorigenic
activation levels (TALs) generated using microarray data
could be applied to targeted RNA-Seq data, we used a
dataset generated in male Sprague-Dawley rats exposed to
16 chemicals at up to 10 dose levels for 5 days (rat 5-day
study). The livers of the rats were evaluated for gene
expression changes using TempO-Seq. The livers used in
this study came from a previously published study (Gwinn
et al., 2020). (Quick summary: 16 chemicals; up to 10 doses;
5 days; targeted RNA-seq). It should be noted that the 5-day
study was available to us to use as a dataset to determine if the
Tempo-Seq platform could be used in the NAM, not to
optimize the minimal number of doses to be used.

TABLE 1 Chemicals used in the rat 4-day study (study A).

Common chemical
name (abbreviation
used in the study)

CASRN DTXSID Dose level
used in the
study
(mg/kg/day)

Dose
classification1

Lowest
tumorigenic
dose
(mg/kg/day)

Highest non-
tumorigenic
dose
(mg/kg/day)

2,5-Pyridinedicarboxylic acid,
dipropyl ester

136-45-8 DTXSID8032544 600 3 1000 500

Acetochlor 34256-82-1 DTXSID8023848 250 1 250 69

Ametryn 834-12-8 DTXSID1023869 176 1 176 26.2

Bisphenol A 80-05-7 DTXSID7020182 450 3 95.4

Carbaryl 63-25-2 DTXSID9020247 100 2 500 100

Cyclanilide 113136-77-9 DTXSID5032600 58.6 3 43.1

Cyfluthrin 68359-37-5 DTXSID5035957 23 2 23

Cyprodinil 121552-61-2 DTXSID1032359 74 2 73.6

Di (2-ethylhexyl) phthalate 117-81-7 DTXSID5020607 600 1 99 19.8

Estragole 140-67-0 DTXSID0020575 600 1 600

Ethyl methanesulfonate 62-50-0 DTXSID6025309 200 3

Flusilazole 85509-19-9 DTXSID3024235 13 3

Flutamide 13311-84-7 DTXSID7032004 10 3 50

Indoxacarb 173584-44-6 DTXSID1032690 10 2 10

Lipopolysaccharride (LPS) NOCAS_36695 DTXSID4036695 2 3

N,N-dimethyl-p-toluidine 99-97-8 DTXSID0021832 60 1 60 20

Perfluorooctanoic Acid 335-67-1 DTXSID8031865 15 1 4 1.9

Pirixinic acid (WY-14,643) 50892-23-4 DTXSID4020290 10 1 10

Simazine 122-34-9 DTXSID4021268 63 2 1000

Tebufenpyrad 119168-77-3 DTXSID0034223 17 1 6.5

Triclosan 3380-34-5 DTXSID5032498 1000 3 127

Vinclozolin 50471-44-8 DTXSID4022361 225 1 225 83

1Tumorigenicity classification of the dose used in the study: 1 = tumorigenic; 2 = not tumorigenic; 3 = not known.
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2.2 Rat 4-day study (study A)

2.2.1 Chemicals
The chemicals and doses used in the study are found in Table 1

and include those that are carcinogenic and noncarcinogenic at the
doses used. There were also a set of chemicals in which the
carcinogenic status of the dose used is not known. The following
chemicals were obtained from Bayville Chemical Supply
Corporation (Deer Park, NY) at label purities >95%: acetochlor,
ametryn, cyclanilide, cyfluthrin, cyprodinil, flusilazole, indoxacarb,
simazine, and tebufenpyrad. The following chemicals were obtained
from Sigma-Aldrich (St Louis, MO) at label purities >97%:
bisphenol A, carbaryl, ethyl methanesulfonate, flutamide,
lipopolysaccharide, perfluorooctanoic acid, and triclosan. WY-
14,643 was obtained from A.G. Scientific (San Diego, CA) at a
label purity of 98.5%, and estragol was obtained from Penta
Manufacturing Company (Livingston, NJ) at a label purity of
99.7%. Lipopolysaccharide was obtained from Sigma-Aldrich
Company (St. Louis, MO). Syringeability, solubility, and
concentration were verified for each chemical using either HPLC
or GC methodologies.

2.2.2 Rat exposures
Male Harlan Sprague-Dawley rats (Harlan Laboratories,

Dublin, VA) (6–9 weeks old) were maintained on a 12-h light/
dark cycle at 20-25°C with a relative humidity of 30%–70%, fed
NTP-2000 diet (Zeigler Bros., Gardners, PA) and provided food
and water ad libitum. Rats were housed individually during
acclimation and grouped 2 per cage. Animals were assigned to
a dose group using a procedure that stratifies animals across
groups by body weight such that mean body weight per group
did not differ statistically among groups at the start of the study
based on analysis of variance (ANOVA) (Statistical Analysis
System version 9.1, SAS Institute, Cary, NC). Each vehicle
control and treatment group had 6 animals. Studies were run
on blocks of 4–6 chemicals at a time, with a common group of
vehicle-treated animals for comparison.

Rats were exposed daily to either a 1% acetone/99% corn oil
vehicle or test chemical (Table 1) dissolved in vehicle for four
consecutive days by oral gavage at a dosing volume of 5 mL/kg.
Ethyl methanesulfonate was administered in saline.
Lipopolysaccharide was dissolved in saline and administered only
once by intraperitoneal injection, 4 h prior to terminal sacrifice. For
these last two chemicals, saline was used as the control. Dose
volumes were adjusted for body weight daily. The dose of test
chemicals used was in most cases based on the liver tumorigenic
doses from cancer bioassays. For chemicals that did not cause rat
liver tumors, the highest dose in the bioassay was used. To convert
the dietary exposures to daily oral gavage exposures, average daily
dietary intake was estimated from individual studies based on food
intake and chemical concentrations in the diet. This dose was then
converted to an oral gavage dose. The dose of flutamide used was
based on pilot studies examining its anti-androgenic effects in rats
(data not shown).

At 1 and 4 h post dosing, animals were observed cage side. Four
hours (±15 min) after the final dose administration, animals were
humanely euthanized by CO2 asphyxiation and blood was collected
via cardiac puncture. Death was confirmed by exsanguination. Rats

were euthanized in the same order as they were dosed. Livers were
excised and weighed. The left lobe of the liver was cut into cubes,
flash frozen in liquid nitrogen, placed in cryotubes on dry ice, and
then stored at or below −70°C for transcriptomic analysis. All animal
procedures were in compliance with the Animal Welfare Act
Regulations, 9 CFR 1–4. All animals were handled and treated
according to the Guide for the Care and Use of Laboratory
Animals (Clark et al., 1997).

2.2.3 RNA isolation
Frozen liver samples (approximately 20–30 mg) were

submerged in ten volumes of pre-chilled RNAlater®-ICE (Life
Technologies, Carlsbad CA) and stored at −20°C ± 10°C for a
minimum of 16 h. The RNAlater®-ICE supernatant was then
removed and each liver tissue sample, weighing between 23.6 and
30.0 mg, was added to lysis buffer and homogenized using plastic
disposable pestles (Fisher Scientific, Pittsburgh, PA). Following
homogenization, samples were stored at −80°C ± 10°C until RNA
was isolated. Samples were thawed and centrifuged. RNA was
extracted from the supernatant, subjected to DNase I digestion,
and isolated using the Qiagen RNeasy Mini Kit (Qiagen, Valencia,
CA). Each RNA sample was analyzed for quantity and purity by UV
analysis using a NanoDrop ID-1000 Spectrophotometer (NanoDrop
Technologies, Wilmington, DE). Purity was defined as the ratio of
A260 to A280; an acceptable purity range was defined as a value
between 1.80 and 2.20. A minimum concentration of 35 ng/μL was
targeted to ensure reliable amplification using Affymetrix
GeneChip® reagents and kits. All samples yielded an acceptable
purity and concentration appropriate for use with the Affymetrix
GeneChip® 3′ IVT Express Kit. All samples were evaluated for RNA
integrity using an RNA 6000 Nano Chip kit with an Agilent
2100 Bioanalyzer (Agilent, Santa Clara, CA) and were based on
the RNA integrity number (RIN) calculated by the 2100 Expert
software. A RIN value of 8 and above was met for all samples
indicating ideal integrity for microarray processing.

2.2.4 Microarray analysis
Total RNA (100 ng), isolated from each of the rat liver samples,

was used to synthesize single-stranded DNA, which was
subsequently converted into a double-stranded cDNA template
for transcription. An in vitro transcription (IVT) reaction, which
incorporates biotinylated ribonucleotide analogs, was then used to
create labeled amplified RNA (aRNA). This RNA target preparation
was performed using the Affymetrix GeneChip® 3′ IVT Express Kit
(Affymetrix Inc., Santa Clara, CA). All incubation steps during this
preparation were completed using an Eppendorf Mastercycler®
thermal cycler (Eppendorf Hamburg, Germany).

Labeled aRNA was fragmented and subsequently hybridized to
the Affymetrix Rat Genome 230 2.0 Array (31,099 probe sets) using
an Affymetrix GeneChip® Hybridization Oven 645. Washing and
staining of the arrays was completed using the Affymetrix
GeneChip® Hybridization Wash and Stain kit and performed
using the Fluidics Station 450 according to the Affymetrix
recommended protocol. After washing and staining, the arrays
were scanned using an Affymetrix GeneChip® Scanner 3000 7G
and the raw microarray data (.cel files) were acquired using
Affymetrix GeneChip® Command Console® Software (AGCC).
The following QC parameters were evaluated for each array:
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average background, scale factor, percent of genes scored as present,
3′ to 5′ ratios for the internal control genes beta-actin and
glyceraldehyde-3-phosphate dehydrogenase (Gapdh), values for
hybridization control transcripts, and values for poly (A)
controls. Microarrays were normalized in GeneSpring 12.0 using
RMA and features were then filtered in which a feature needed to be
present at >20% percentile rank in the normalized intensity data in
all samples from at least one treatment group. Filtered gene lists were
then subject to a Welch test (unpaired, unequal variance t-test;
treated vs. paired vehicle control). Genes with statistically significant
differential expression were those exhibiting a p-value <0.05. The
p-values were not subjected to a multiple testing correction, because
this is not a standard applied for creating lists of differentially
expressed genes in BaseSpace Correlation Engine (BSCE)
(Kupershmidt et al., 2010). The genes exhibiting significant
differential expression were further filtered by removing genes

that exhibited less than an absolute 1.2-fold change. Lists of
differentially expressed genes and their fold change values for
each chemical treatment were uploaded into BSCE.

2.3 Rat affymetrix-RNA-Seq comparison
study (study B)

The analysis of the profiles generated from this study have been
described previously (Bushel et al., 2018; Svoboda et al., 2019; Wang
et al., 2014). Briefly, male Sprague-Dawley rats were exposed by oral
gavage to one of 27 chemicals at one dose level for 3, 5 or 7 days
(three rats per chemical with matched controls). Liver RNA was
isolated and analyzed using Affymetrix microarrays (Gene
Expression Omnibus (GEO) accession number: GSE47875) and
Illumina RNA-Seq (GSE55347). The chemicals and their doses

TABLE 2 Chemicals used in (study B).

Chemical name CASRN DTXSID Dose (mg/kg/day)

3-Methylcholanthrene 56-49-5 DTXSID0020862 300

Aflatoxin B1 1162-65-8 DTXSID9020035 0.3

17beta-Estradiol 50-28-2 DTXSID0020573 150

5,6-Benzoflavone 6051-87-2 DTXSID8030423 1500

Bezafibrate 41859-67-0 DTXSID3029869 617

Carbon tetrachloride 56-23-5 DTXSID8020250 1175

Cerivastatin 145599-86-6 DTXSID9022786 7

Chloroform 67-66-3 DTXSID1020306 600

Clofibric acid 882-09-7 DTXSID1040661 448

Clotrimazole 23593-75-1 DTXSID7029871 89

Econazole 27220-47-9 DTXSID2029872 334

17alpha-Ethinylestradiol 57-63-6 DTXSID5020576 10

Fluconazole 86386-73-4 DTXSID3020627 394

Gemfibrozil 25812-30-0 DTXSID0020652 700

Ifosfamide 3778-73-2 DTXSID7020760 143

Leflunomide 75706-12-6 DTXSID9023201 60

Lovastatin 75330-75-5 DTXSID5020784 450

Methimazole 60-56-0 DTXSID4020820 100

Miconazole 22916-47-8 DTXSID6023319 920

Nafenopin 3771-19-5 DTXSID8020911 338

N-Nitrosodimethylamine 62-75-9 DTXSID7021029 10

Norethindrone 68-22-4 DTXSID9023380 375

Phenobarbital 50-06-6 DTXSID5021122 54

WY-14,643 50892-23-4 DTXSID4020290 364

Rosiglitazone 122320-73-4 DTXSID7037131 1800

Simvastatin 79902-63-9 DTXSID0023581 1200

Thioacetamide 62-55-5 DTXSID9021340 200
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TABLE 3 Chemicals used in (Study C).

Chemical Abbreviation CASRN DTXSID# Dose
levels
(mg/kg/
day)

Highest
nontumorigenic
dose

Lowest
tumorigenic
dose

Dose
classification
(in order of
dosing order)1

Acrylamide ACR 79-06-1 DTXSID5020027 0.075, 0.156,
0.3125,
0.625, 1.25,
2.5, 5, 10

2.7 2,2,2,2,2,3,3,3

Bromodichloroacetic
acid

BDCA 71133-
14-7

DTXSID4024644 1.25, 2.5, 5,
10, 20, 40,
80, 160

43 2,2,2,2,2,3,3,3

Coumarin COU 91-64-5 DTXSID7020348 3.125, 6.25,
12.5, 25, 50,
100, 200, 400

71.4 200 2,2,2,2,2,3,1,1

Di (2-ethylhexyl)
phthalate

DEHP 117-81-7 DTXSID5020607 8, 16, 31.25,
62.5, 125,
250, 500,
1000

19.8 99 2,2,3,3,1,1,1,1

Pentabromodiphenyl
ether mixture

DE71 32534-
81-9

DTXSID2024246 0.38, 0.75,
1.5, 3, 15, 50,
100, 200, 500

15 50 2,2,2,2,1,1,1,1

Ethinyl estradiol EE2 57-63-6 DTXSID5020576 0.02, 0.067,
0.2, 0.6, 1.8,
5.4, 16.2, 48.6

0.429 3,3,3,1,1,1,1,1

Fenofibrate FEN 49562-
28-9

DTXSID2029874 8, 16, 31.25,
62.5, 125,
250, 500,
1000

10 45 2,3,3,1,1,1,1,1

Furan FUR 110-00-9 DTXSID6020646 0.125, 0.25,
0.5, 1, 2, 4,
8, 16

1.4 2,2,2,2,2,3,1,1

Hexachlorobenzene HCB 118-74-1 DTXSID2020682 0.004, 0.015,
0.0625, 0.25,
1, 4, 16, 64

1.6 5 2,2,2,2,2,3,1,1

Methyl eugenol MET 93-15-2 DTXSID5025607 4.625, 9.25,
18.5, 37, 75,
150, 300, 600

26.4 3,3,3,1,1,1,1,1

Perfluorooctanoic acid PFOA 335-67-1 DTXSID8031865 0.156,
0.3125,
0.625, 1.25,
2.5, 5, 10, 20

2.2 3,3,3,3,1,1,1,1

Pulegone PUL 89-82-7 DTXSID2025975 2.4, 4.7, 9.4,
18.75, 37.5,
75, 150, 300

37.5 2,2,2,2,2,3,3,3

Tetrabromobisphenol
A

TBBPA 79-94-7 DTXSID1026081 4, 8, 16,
31.25, 62.5,
125, 250, 500,
1000, 2000

1000 2,2,2,2,2,2,2,2,2,3

3,3′,4,4′-
Tetrachloroazobenzene

TCAB 14047-
09-7

DTXSID6026086 0.1, 0.3, 1, 3,
10, 30, 100,
200, 400

10 100 2,2,2,2,2,3,1,1,1

Tris (chloropropyl)
phosphate

TCPP 13674-
84-5

DTXSID5026259 18.75, 37.5,
75, 150, 300,
600, 1000,
2000

395 789 2,2,2,2,2,3,1,1

α,β-Thujone THU 76231-
76-0

DTXSID3040774 1.5, 3, 6.25,
12.5, 25, 50,
100, 200

50 2,2,2,2,2,2,3,3

1Tumorigenicity classification of the dose used in the study: 1 = tumorigenic; 2 = not tumorigenic; 3 = not known.
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used in the study are found in Table 2. Starting with the raw
expression data available in GEO, all statistically filtered gene sets
from the study were generated using the BSCE analysis pipeline for
Affymetrix or RNA-Seq data that has been described previously
(Kupershmidt et al., 2010).

2.4 Rat 5-day study (study C)

This study has been described previously (Gwinn et al., 2020).
Briefly, male Sprague Dawley (Hsd: Sprague Dawley SD) rats were
exposed by oral gavage to 16 chemicals at up to 10 doses once per
day for 5 consecutive days (Days 0–4) with n = 4 rats per exposure
concentration and vehicle control. The rats were sacrificed on the
5th day. The chemicals and their doses used in the study are found in
Table 3. In the original study, the liver RNAs were evaluated using
the rat S1500+ TempO-Seq platform. To comprehensively evaluate
transcriptional benchmark dose (BMD) approaches, the RNAs used
in the original study were re-isolated and evaluated using the rat full
genome TempO-Seq platform. For RNA isolation, frozen RNA
stabilized tissues were obtained from the National Toxicology
Program, thawed on ice and ~10 mg liver were distributed at one
sample per well in nuclease-free 96-well plates (Cat. 89218-298,
VWR, Radnor, PA, United States) preloaded with 50 µL/well
RNAlater™ Stabilization Solution (Cat. AM7021, Invitrogen by
ThermoFisher Scientific, Vilnius, Lithuania). Plates were sealed
with nuclease-free aluminum seal (Cat. 75805-268, VWR®

Aluminium Foil Seals, Radnor, PA, United States) suitable for
ultracold storage and stored at < −70°C until RNA isolation and
purification was performed (BioSpyder Technologies, Carlsbad, CA,
United States). For RNA isolation and purification, samples were
processed using the RNAdvance purification kit (Beckman Coulter,
Indianapolis, IN, United States) according to the manufacturer
protocol. First, tissues were removed from RNAlater™ and
transferred to deep-well homogenization plates loaded with
RNAdvance lysis buffer and two stainless steel balls. Following
homogenization, sample supernatants were digested in lysis
buffer and RNA bound to kit provided SPRI beads. Bound RNAs
underwent several rounds of incubation and washing followed by
DNAse treatment according to RNAdvance protocol with purified
RNA eluted in 40 µL nuclease-free water. Purified RNA was stored
at < −70°C until sequenced. Raw TempO-Seq reads were aligned to
all known probe sequences for the Rat Whole Transcriptome
v1.0 probe set, as described previously (Harrill et al., 2021)
(Everett et al., 2024 in preparation). Individual samples
with <50% of reads uniquely aligned to known probe sequences,
or <1 million uniquely aligned reads were removed from further
analysis. Outlier samples were identified using PCA plots for each
chemical and removed from further analysis as previously described
(Everett et al., 2024 in preparation). For each chemical, differential
expression analysis was performed using DESeq2 as previously
described (Harrill et al., 2021). Briefly, probe counts were
tabulated for all samples passing the quality checks described
above, corresponding to each dose group and study-matched
vehicle controls. Only those probes with mean count ≥5 were
used for DESeq2 analysis. A single DESeq2 model was fit per
chemical, with each dose group considered as an additional
treatment factor. p-values and fold-changes were then computed

for each dose group versus the vehicle control group. To derive a
gene list for each dose group, genes were filtered to those with
unadjusted p-value ≤0.05 (Wald test), and normal shrinkage was
used to derive moderated log2 fold-change values. The gene lists
were imported into BSCE and compared to the 6 biomarkers as
described below. Outlier samples were removed as described
(https://www.epa.gov/etap). There was one outlier removed in the
following groups: DE71, 15 mg/kg; TBBPA, 31.25 mg/kg.

2.5 Determination of hepatocarcinogenicity
of chemicals

We utilized a number of databases that had annotations for
tumor induction after chronic exposure in rats. Most of the data
came from the Lhasa Carcinogenicity Potency Database (CPD)
(https://carcdb.lhasalimited.org/). Data for pesticides not in the
CPD came from annotations in the ToxRef database (Watford
et al., 2019) or National Toxicology Program studies.
Carcinogenicity information for fenofibrate was kindly provided
by Drs. Frank Sistare and Rachel Hao using the Pharmapendium
database (https://www.elsevier.com/solutions/pharmapendium-
clinical-data; accessed 13 August 2022). For all chemicals, we
annotated effects described in these studies after chronic
exposure on incidence of the following liver effects:
hepatocellular carcinomas and adenomas, multiple liver tumor
types, neoplastic nodules, trabecular hepatocellular carcinomas,
and hepatocellular cholangiocarcinomas. The dose ranges and
associated incidences were used to determine the highest non-
tumorigenic dose and the lowest tumorigenic dose (if relevant).
Any incidences greater than 5% over the control were considered
tumorigenic, especially if higher doses resulted in greater incidences.
Chemicals evaluated using the 2-year bioassay in which there were
no increases in liver tumor incidences were assigned a highest non-
tumorigenic dose representing the highest dose used in the study.
For the most part, data was collected from 2-year bioassays. For one
chemical (WY-14,643), only 1-year studies were available but
allowed the derivation of lowest tumorigenic dose levels.
Annotations were only made for chemicals with clear positive or
negative responses, in female or male rats from any strain. All tumor
data used in the analysis is found in Supplementary Files S1, S2.

2.6 Comparison of established biomarkers
to gene lists

The six biomarkers for AhR, CAR, PPARα, ER, cytotoxicity and
genotoxicity have been previously described (Rooney et al., 2018a;
Hill et al., 2020). The biomarker genes and associated fold-changes
along with the gene lists generated from the 4-day and 5-day rat
studies described above were uploaded into BaseSpace Correlation
Engine (BSCE), in which internal protocols rank the genes by
absolute fold-change (Kupershmidt et al., 2010). The Running
Fisher test is then used to compare the ranked biomarker genes
to each ranked gene list from the three studies, calculating a pair-
wise correlation p-value for the genes that overlap between lists. The
p-values were converted to -Log (p-values) and negative correlations
were converted to negative numbers. These procedures allowed the
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evaluation of the correlation of the overlaps between gene lists. Thus,
the higher the -Log (p-value), the greater the correlation.

2.7 Application of tumorigenic biomarker
activation levels

The activation levels of each of the biomarkers associated
with tumorigenicity were derived as described earlier (Corton
J. et al., 2020). Briefly, biomarker activation levels associated
with liver tumor induction were derived from two large datasets:
the TG-GATES study and the DrugMatrix study. Because we are
at an early stage in potential use of the NAM, we wished to
determine if one set of tumorigenic activation levels (TALs) are
more predictive than another. Using chemical-dose pairs
annotated for liver tumorigenicity, biomarker activation
levels associated with the maximum -Log (p-value)s that
did not generate a liver tumorigenic response were used as
the TALs. The levels were derived from CodeLink microarray
data from the DrugMatrix study or Affymetrix data from the
TG-GATES study. The biomarker TALs are found in
Supplementary File S3. Each biomarker -Log (p-value)
derived from the three studies described above was
evaluated relative to the biomarker TG-GATES and
DrugMatrix TALs resulting in 12 tumorigenic biomarker
activation levels to determine if exposure to a dose of a
chemical exceeded or not the biomarker activation level. The
datasets used to determine the TALs were not used in the
present study. If any biomarker in each set of six exceeded
the TAL, then the dose was predicted to lead to liver tumors in
chronic studies, otherwise the dose was not predicted to be
tumorigenic.

2.8 Determination of accuracy of
the approach

For Study A and Study C, the predictive accuracy was
determined at the level of the individual chemical-doses. For
Study C, predictions were also made by chemical at any dose level.
Predictions in this scenario would be similar to those used in
preliminary testing of a new chemical entity to assist in avoiding
any potential liabilities. The biomarker TALs derived from the
TG-GATES or DrugMatrix studies (described above) were used
to determine if the test chemical-dose exceeded or not the
activation levels. The predictions for tumorigenicity were
assigned a score of false positive (FP), false negative (FN), true
positive (TP), or true negative (TN). Regarding the predictions
based on any dose of a chemical (Study C), FN was assigned if all
of the doses for a tumorigenic chemical were beneath all
biomarker TALs. FP was assigned if any dose for a
nontumorigenic chemical exceeded one or more of the
biomarker TALs. These were the equations used in
determining scores: balanced or predictive accuracy =
(sensitivity + specificity)/2; sensitivity (TP rate) = TP/(TP +
FN); specificity (TN rate) = TN/(FP + TN); positive predictive
value (PPV) = TP/(TP + FP); negative predictive value (NPV) =
TN/(TN + FN).

3 Results

3.1 Use of a NAM computational model to
identify liver tumorigens after short-
term exposures

Our study was designed to achieve three objectives. First, we
wished to confirm that our NAM approach could be used to identify
liver tumorigens when examining only one dose level. In this case,
the study was conducted using Affymetrix arrays. The second
objective was to compare the transcriptional responses between
Affymetrix and RNA-Seq to determine if the derived biomarker
-Log (p-value)s would be different between the two methods that
may preclude accurate predictions using (targeted) RNA-Seq. Lastly,
we wished to determine if the NAM could be applied to transcript
profiles derived from (targeted) RNA-Seq (TempO-Seq) analyses
without having to rederive the TALs.

To accomplish these objectives, we utilized a previously
described NAM that can predict liver cancer outcomes using
transcript profiles derived from the livers of rats treated with
chemicals with unknown potential to cause liver cancer
(Figure 1). The computational model consists of three major
components necessary for prediction. First, there are six well-
characterized gene expression biomarkers predictive of the
modulation of the major MIEs of rodent liver cancer. Each
biomarker consists of 7–113 genes and associated fold-change
values that are used to determine whether a chemical is an
activator of one or more MIEs (Rooney et al., 2018b; Corton
J. C. et al., 2020; Corton J. et al., 2020; Hill et al., 2020; Lewis
et al., 2020). As it is well known that activation by itself is not
sufficient to generate the signals that lead to the adverse outcome, we
had previously identified activation levels for each biomarker
associated with tumor induction (called tumorigenic activation
levels or TALs). We derived the TALs to predict induction of
hepatocellular adenomas and/or carcinomas. The TALs have not
been tested for other types of liver tumors, e.g., cholangiocarcinomas
in part due to their rarity as outcomes. The last component is the
Running Fisher statistical test within the BaseSpace Correlation
Engine environment used to compare each of the biomarkers to the
chemical-induced transcript profiles. We had previously determined
that gene lists derived from the livers of rats exposed to a chemical
up to 29d could be used by the NAM for accurate prediction or
tumorigenicity (Rooney et al., 2018c; Corton J. C. et al., 2020; Corton
J. et al., 2020; Hill et al., 2020; Lewis et al., 2020). Our previous
studies showed that the predictions coming from the NAM
computational model can not only be used to identify which
MIEs are activated but whether the level of activation exceeds a
tumorigenic level. Here, we apply this NAM to rat studies that vary
by chemical, dose level, time of exposure, and profiling platform.

3.2 Prediction of tumorigenicity of
chemicals examined at a single dose

To accomplish our first objective, we evaluated the transcript
profiles derived from the livers of rats treated with 22 chemicals at one
dose level for 4 days (Study A). These chemicals included pesticides,
industrial chemicals and reference chemical activators of one or more
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MIEs. Each dose level was classified as tumorigenic, not tumorigenic
or not known. There were 14 chemical-dose pairs that could be
annotated for cancer outcome. Each profile was compared to the set of

6 biomarkers using the Running Fisher test. The level of activation of
each biomarker was compared to the TAL derived from the TG-
GATES study (TG-TAL) (Figure 2) or from the DrugMatrix study

FIGURE 1
Use of a new approach methodology computational model to identify liver tumorigens. The computational model consists of three major
components. There are six well-characterized gene expression biomarkers predictive of themodulation of themajormolecular initiating events of rodent
liver cancer. Each biomarker consists of 7–113 genes and associated fold-change values. The model includes biomarker activation levels associated with
liver tumor induction after chronic exposure. The Running Fisher test within the BaseSpace Correlation Engine environment is used to compare
each of the biomarkers to a transcript profile derived from the liver of a rat exposed to a new chemical entity for up to 29d. The model is able to identify
MIEs activated and whether the level of activation exceeds a tumorigenic level.

FIGURE 2
Identification of chemical-dose pairs that are tumorigenic. The 6 biomarkers were compared to the transcript profiles derived from the livers of rats
exposed to the indicated chemicals (dose levels described in Table 1). The 6 -Log (p-value)s representing the correlation of each chemical to the
6 biomarkers was compared to the tumorigenic thresholds derived from the TG-GATES study. Values on the y-axis represent the (biomarker -Log
(p-value)/the tumorigenic threshold) × 100. Any treatment that exceeds 100% for any of the biomarkers (pink shaded area) would be predicted to
cause increases in liver tumors under chronic conditions.

Frontiers in Toxicology frontiersin.org09

Ledbetter et al. 10.3389/ftox.2024.1422325

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2024.1422325


(DM-TAL) (Supplementary File S4). Figure 2 shows the TG-TALs
relative to the tumorigenic levels for each of the biomarkers for the
chemicals. There were 9 chemicals that were examined at
tumorigenic dose levels (acetochlor, ametryn, di (2-ethylhexyl)
phthalate (DEHP), estragole, N,N-dimethyl-p-toluidine,
perfluorooctanoic acid (PFOA), tebufenpyrad, vinclozalin, WY-
14,643 (WY)). DEHP and PFOA activated only one MIE (PPARα)
at tumorigenic levels. The other chemicals activated a mixture of
two or more MIEs but most commonly, AhR and CAR. Using the
DM-TALs, the analysis was repeated and is shown in
Supplementary File S4. The MIEs that were activated to
tumorigenic levels were similar to the analysis with the TG-
TALs. However, two chemicals were called false negatives as
they were not correctly identified as tumorigenic
(acetochlor, ametryn).

There were 5 chemicals examined at doses that did not
induce liver tumors at the highest dose tested (carbaryl,
cyfluthrin, cyprodinil, indoxacarb, simazine). Using the TG-
TAL, cyprodinil was predicted to cause liver tumors
through an AhR mechanism and carbaryl through an ER
mechanism (false positives) (Figure 2). Using the DM-TAL,
no chemicals were predicted to be tumorigenic
(Supplementary File S4).

In addition to the tumorigenic and nontumorigenic
chemicals, there were 8 chemicals (2,5-pyridinedicarboxylic
acid, dipropyl ester (2,5-PDCADE), bisphenol A, cyclanilide,
ethyl methanesulfonate (EMS), flusilazole, flutamide,
lipopolysaccharide (LPS), triclosan) that could not be classified
for tumorigenicity, either because the dose examined in the study
was higher than the highest nontumorigenic dose or that the
chemical had not been examined in a chronic study. For all but
EMS, flutamide and 2,5-PDCADE, the chemicals were predicted
to increase liver tumor incidence after 2 years using the TG-TALs
(Figure 2), while only cyclanilide and triclosan would be
predicted to cause liver tumors in chronic studies using the
DM-TALs (Supplementary File S4).

We determined how accurate the NAM was at identifying
chemical doses that were tumorigenic. The predictive accuracy
using the TG-TALs was 80% (100% sensitivity; 60% specificity)
(Table 4). The predictive accuracy using the DM-TALs was 89%
(78% sensitivity; 100% specificity). The level of accuracy for this
set of chemicals is within the range of accuracies demonstrated in
previous studies.

3.3 Relationships between biomarker TALs in
affymetrix and RNA-Seq profiles

Our second objective was to determine if the biomarker TALs
derived from microarray data could be applied to RNA-Seq data
(Study B). A unique dataset was used to make comparisons between
the two platforms. Male rats were exposed to 27 chemicals at one
dose level each day for 3, 5, or 7 days, and the liver RNAs were
evaluated using Affymetrix arrays and RNA-Seq. The two transcript
profiles from each chemical-dose pair were compared to the set of
6 biomarkers. Figure 3 shows the biomarker activation levels (using
-Log (p-value)s of the Running Fisher test as metrics) across all of
the chemicals for individual biomarkers. The figures show that for
the most part, there is a linear relationship between the activation
levels determined by Affymetrix arrays and by RNA-Seq, especially
within the range of the biomarker TALs (~2–7). Using the TG-TALs
(Figure 3), we found that the levels derived from extrapolation to the
RNA-Seq data were similar. For all but genotoxicity, the TALs from
the RNA-Seq data were somewhat smaller compared to the TALs
derived from the Affymetrix data. Using the DM-TALs
(Supplementary Figure S4), we found that the levels derived from
extrapolation to the RNA-Seq data were also similar. The findings
indicate that the TALs could potentially be used to make predictions
using RNA-Seq data.

3.4 Identification of chemical-dose pairs
that are tumorigenic using TempO-Seq data

There have been no studies applying the NAM to full-genome
TempO-Seq-derived transcript profiles to make predictions. We
utilized a dataset from the livers of rats treated with 16 chemicals for
5 days at up to 10 dose levels for a total of 132 chemical-dose
comparisons (Study C). There were 100 comparisons that could be
annotated for potential to induce tumors. Figure 4 shows the
biomarker activation levels relative to the TG-TALs for each
chemical. The figures derived from the analysis using the DM-
TALs are shown in Supplementary File S4.

Predictive accuracies were determined two ways. In the first
method, accuracy was based on the 100 chemical-dose pairs that
could be annotated for chronic outcomes. Table 4 shows that the
balanced accuracies using the TG-TALs or DM-TALs was 81% or
74%, respectively. Using the TG-TAL, there were 11 false negatives

TABLE 4 Predictive accuracies derived using the NAM.

Study Unit of
prediction

Tumorigenic
activation level

Total number
of biosets or
chemicals
examined

TP TN FP FN Sensitivity Specificity PPV NPV Balanced
accuracy

Study A Chemical-Dose TG-GATES 14 9 3 2 0 1 0.6 0.82 1 0.8

Study A Chemical-Dose DrugMatrix 14 7 5 0 2 0.78 1 1 0.71 0.89

Study C Chemical-Dose TG-GATES 100 31 51 7 11 0.74 0.88 0.82 0.82 0.81

Study C Chemical-Dose DrugMatrix 100 22 56 2 20 0.52 0.97 0.92 0.74 0.75

Study C Chemical TG-GATES 16 11 3 2 0 1.00 0.60 0.85 1.00 0.80

Study C Chemical DrugMatrix 16 9 5 0 2 0.82 1.00 1.00 0.71 0.91
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for 4 chemicals (furan, TCAB, EE, methyleugenol) and 7 false
positives for 6 chemicals (coumarin, TCPP, BDCA, BDCA,
TBBPA, coumarin, fenofibrate). A number of the false
positives were at doses lower than those that were
tumorigenic including for coumarin, DE71, fenofibrate, and
TCPP, indicating the TG-TALs are sensitive to gene changes
that precede overt tumor induction. Using the DM-TALs, there
were 20 false negatives for 8 chemicals (coumarin, DE71, EE, furan,

HCB, methyleugenol, TCAB, TCPP) and 2 false positives
for 2 chemicals (coumarin, fenofibrate). The relatively high
level of false negatives compared to the TG-TALs may be
due to the higher -Log (p-value)s for the DM-TALs for all
6 biomarkers.

In a screening study to identify hazards, all doses would be
considered, not just individual chemical-dose pairs. When the
accuracy was determined based on evaluation of all dose levels

FIGURE 3
Relationships between biomarker activation levels derived using Affymetrix vs. RNA-Seq. Transcript profiles generated using either Affymetrix arrays
or RNA-Seq were derived from the same livers of rats exposed to 27 chemicals. The pairs of profiles were compared to each biomarker. The TG-TALs are
indicated on the x-axes and the derived TALs from the RNA-Seq analysis are shown on the Y-axes. The lines indicate linear trendlines. The figures show
that the TALs derived from the Affymetrix data are similar to values derived from the RNA-Seq studies.
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for each chemical, the balanced accuracies were 80% and 91% for the
TG- and DM-TALs, respectively. There were 2 false positives
(BDCA, TBBPA) using the TG-TALs and no false negatives. For
BDCA the TALs were not dose-dependent; the activation levels
were achieved at 10 mg/kg for ER and at 5 mg/kg for PPARα. This
is in contrast to the true positive chemicals in which there was
usually more than one dose level that was positive for one of the
MIEs and occurred at the higher dose levels. There were 2 false
negatives (EE, methyleugenol) using the DM-TALs and no false
positives. Thus, the NAM can be accurately applied to
TempO-Seq data.

4 Discussion

New approach methodologies (NAMs) have the potential to
radically transform carcinogenicity testing. Integrated sets of in vitro
assays could be used in IATA-type approaches. However, their
ability to accurately predict cancer has not been fully tested.
Short-term exposures in test species coupled with NAMs have
the potential to greatly reduce the number of animals and could
act as a bridge between the current requirements for chronic
exposure testing and future in vitro testing strategies. Here, we
describe a novel NAM that can be used with transcript profiling

FIGURE 4
(Continued).
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measurements to identify in short-term exposures, chemicals and
their doses that would cause tumors in the livers of rats (Figure 1).
Capitalizing on three studies conducted in rats in which liver gene
expression was evaluated after 3–7 days exposures, we demonstrated
that 1) using Affymetrix data, the NAM could identify individual
chemical-dose pairs that were tumorigenic (80% or 89% accuracy);

2) when comparing the transcript profiles generated from the same
liver samples by Affymetrix and RNA-Seq, there were no notable
differences in the responses in the -Log (p-value) range of biomarker
TALs, indicating the TALs derived from microarray data could be
applied to RNA-Seq data, and supporting this observation; 3) using
TempO-Seq-generated transcript profiles, the NAM was able to

FIGURE 4
(Continued). Biomarker activation levels identify chemical-dose pairs that are tumorigenic in chronic studies. Rats exposed to 16 chemicals at up to
10 dose levels were evaluated for gene expression changes using targeted RNA-Seq (TempO-Seq). Each derived gene list was compared to the
6 biomarkers using the Running Fisher test. Dose-dependent changes in the -Log (p-value)s of each biomarker relative to the derived TG-TALs are
shown. A similar analysis using the DrugMatrix TALs is found in Supplementary File S4. The TAL for each biomarker was set at 100%. The different
color lines track the changes in the TALs for each of the molecular initiating events. Each dose is indicated as a diamond (tumorigenic), a filled circle (not
tumorigenic) or x (tumorigenicity at this dose is not known). Abbreviations: AhR, aryl hydrocarbon receptor; CAR, constitutive activated receptor; ER,
estrogen receptor; PPARα, peroxisome proliferator-activated receptor α.
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identify chemicals and their dose levels that would be tumorigenic
with 75%-91% accuracy. In summary, the NAM can be used for
prediction of liver tumor induction under different rat exposure
scenarios and using different platforms to interrogate RNA
expression.

Due to the diversity and complexity of the biological processes
underlying tumor formation, the ability to predict human tumor
induction using sets of nonanimal-based NAMs within an IATA
framework will be challenging. While rodent tumor formation does
not alwaysmimic that in humans, regulatorymandates require rodent
carcinogenicity testing, which the current study is meant to support
and optimize. While approaches using large sets of in vitro assays
coupled with in vitro to in vivo extrapolation to set exposure limits
appear to be promising (Paul Friedman et al., 2020), most new
chemicals will not be evaluated using even a subset of the assays.
Short-term tests in animals that linkmolecular and cellular changes to
subsequent toxicity may provide a way to reduce animal testing,
especially if approaches for harmonization of animal tests could be
agreed upon. Use of HTTr gives a better understanding of underlying
toxicity by indicating the actual toxicological mechanisms, which can
be used to infer eventual toxicity and carcinogenesis; thus, this allows
for the use of shorter exposures on fewer animals by negating the need
to wait for the possible development of cancers over a rodent’s
lifetime. This approach could be incorporated into new standards
to make future animal use more reliable and relevant, whilst reducing
animal usage and suffering overall, and falling in step with the 3Rs of
toxicology. With this in mind, an approach that has been receiving
much attention recently is the in vivo application of transcriptomics
for establishing a “bioactivity” point of departure (PoD). This
approach is based on the hypothesis that any toxicity (including
carcinogenicity) is not likely to occur in the absence of changes in gene
expression in one or several sentinel tissues (Thomas et al., 2013)
(https://www.epa.gov/etap). Promising studies examining adult and
fetal tissues (e.g., Johnson et al., 2022) after short-term exposures have
shown that the derived PoD could be used to protect human
populations from adverse effects. The EPA has proposed to use
this approach to determine PoD based on transcriptomics for
data-poor chemicals (https://www.epa.gov/etap). Implementing this
strategy to large sets of chemicals will be challenging due to the costs of
the studies, identification of appropriate exposure conditions, the
choice of tissues to examine, and the computational methods for
deriving the PoD. Despite these challenges, the approach has the
potential to greatly reduce the animal requirements for not only the 2-
year bioassay, but other animal tests required by regulatory agencies.
Until the toxicity testing community has greater confidence in this
approach, NAMs with known predictive accuracies for important
endpoints will likely assist in making regulatory decisions.

The NAM approach described and tested here was built using the
network of liver cancer AOPs as a starting point that can be found in the
AOPWiki (https://aopwiki.org/). The importance of using the AOP
framework for building and testing NAMs is highlighted by work in
which knowledge related to carcinogenicity assessment has been
reorganized into AOP networks resulting in the development of the
Kaptis model (https://www.lhasalimited.org/products/kaptis.htm)
which like the AOPWiki has the potential to facilitate interpretation
of the weight of evidence of available information related to
carcinogenicity assessment and future integration of existing and
emerging in vitro and in vivo assays used for prediction (Felter et al.

, 2021). While each of the liver cancer AOPs examined in our study
contain key events downstream of the MIEs, many of these KEs cannot
be measured using transcript profiling. Thus, we originally focused on
methods to predict each of the MIEs of the major liver cancer AOPs
using transcript profiling, a now routine method for identifying
chemical hazards. The 6 biomarkers were constructed using profiles
derived from the livers of rats exposed to reference chemical activators
of each of the MIEs. In our past studies, the individual gene expression
biomarkers had balanced accuracies of 92%–98% (Rooney J. P. et al.,
2018; Hill et al., 2020). We found in these studies that most chemicals
have mixed MOAs in that they activate 2 or more MIEs under
conditions that would cause cancer. This finding highlights the need
for measurement of all MIEs when considering whether exposure to a
chemical would be relevant to humans.

Our approach to determining the activation of MIEs is similar to
that described by another group. Using a multivariate regression
approach applied to liver RNA-Seq data derived from rats exposed
to a diverse reference chemical set enabled the identification and
refinement of gene sets (biomarkers) predictive of agonists for
5 different canonical xenobiotic receptors (AhR, CAR, Pregnane
X Receptor [PXR], PPARα, ER), 3 mediators of reactive metabolite
stress responses (NRF2, NRF1, p53), and activation of the innate
immune response (Podtelezhnikov et al., 2020). Additionally, a
composite transcriptional biomarker of tissue injury and
regenerative repair response was described by the same group
and could be applied across 8 different tissues (Glaab et al.,
2021). These 10 biomarkers along with thresholds for AhR
activation (Qin et al., 2019) are used by the group for routine
monitoring in initial rat tolerability studies just prior to entering
drug development to identify drug candidate potential for activating
these MIEs to trigger liver and other organ toxicities with strong
(>90%) sensitivity and/or specificity (Monroe et al., 2020; Glaab
et al., 2021).

These AOP-based approaches to predicting toxicity and cancer are
different from the key characteristics of carcinogens (KCC) approach
(Smith et al., 2016; Guyton et al., 2018) originally inspired by the idea of
the Hallmarks of Cancer (Hanahan andWeinberg, 2000; Hanahan and
Weinberg, 2011) and identified and developed to organize new lines of
evidence for assessing carcinogenicity. In the first study using the KCCs,
Smith et al. (2016) analyzed the biological effects of chemicals classified
as known human carcinogens and defined 10 KCCs. Tice et al. (Tice
et al., 2021) reviewed the KCCs as a method to develop an IATA of
carcinogenic potential using NAMs. However, their conclusion echoed
by others (Goodman et al., 2018) was that the KCCs lack the necessary
specificity for carcinogenicity prediction as KCCs are also involved in
disease processes that are not related to cancer. Furthermore, no scheme
has yet been proposed in which to relate the number of KCCs that are
“positive” and carcinogenicity potential, the identification of assays to
determine if the chemical exhibits that KCC, and how the KCCs could
be used in a quantitativemanner. There is general agreement that KCCs
could play a role in assembling lines of evidence in assessing
carcinogenic potential that would complement other relevant
information.

While our MIE biomarkers had demonstrated utility in
identifying chemical MOAs for liver tumorigens, it was not
possible using the biomarkers alone to identify the doses of a
chemical that would cause cancer. Thus, in later studies we
capitalized on a central premise of the AOP concept which is
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that while MIEs/KEs are required at a qualitative level, they must be
activated to a sufficient level and duration to cause an adverse
outcome (Conolly et al., 2017). Computationally-derived
quantitative effect levels, or “molecular tipping points” can be
used as tools for adversity determinations using shorter-term
data (Julien et al., 2009; Knudsen et al., 2015). Using biomarker
TALs that were derived a number of ways, we found that across
163 chemicals examined at multiple time points, the NAM had
predictive accuracies of 96%–97% (Corton J. C. et al., 2020; Lewis
et al., 2020). We also found that data requirements for prediction
could be reduced to measuring 12 individual genes (2 from each
biomarker) (Corton J. et al., 2020), or measuring combinations of
liver weight to body weight and clinical chemistry markers (Corton
J. C. et al., 2020); these approaches were predictive of liver tumors at
up to 97% balanced accuracy. These predictions were based for the
most part on legacy microarray and associated data from TG-
GATES and DrugMatrix datasets. Remarkably from the current
study, we showed that the predictive accuracies using full-genome
targeted RNA-Seq (TempO-Seq) transcript profile data was as high
as 91%, in the same range as our original studies. Thus, our NAM
can be used under a wide number of short-term exposure scenarios
(4–29 days) using transcript profiling platforms that are more
commonly in use today.

The 6 biomarkers and their TALs discussed here could be applied in
a number of ways for toxicological testing of industrial chemicals. After
preliminary short-term exposure studies followed by gene expression
analysis, the TALs could be used to help bracket the range of doses
between the BMD and the calculated dose that would be expected to
induce liver tumors. Knowledge of the TALs could be used to allow
informed decisions to bemade of doses to use in chronic studies to avoid
tumor induction. In testing for pharmaceutical candidates, the TALs
could be used to support reduced carcinogenicity testing under the
International Council for Harmonization of Technical Requirements for
Pharmaceuticals for Human Use (ICH) S1 guidance modification
initiatives. Modifications to ICH S1 Carcinogenicity Testing Guidance
(ICH, 2015) proposes a more flexible approach to pharmaceutical
carcinogenicity testing. This allows for adequate assessment of
carcinogenic risk without the need for always conducting a 2-year rat
carcinogenicity study. Thismodification in the guidancemay enable drug
sponsors to gain 2-year rat carcinogenicity study waivers through a
Carcinogenicity Assessment Document (CAD)-based justification
process. Our study represents an example of how gene expression
thresholds could be leveraged as “new biomarkers” data (ICH, 2015)
to strengthen CAD-based predictions. If, for example, after a 6-month
study there are histopathological indicators of liver cancer signals, a short-
term toxicogenomic study coupled with our biomarker TAL approach
would provide information about the underlying AOP and doses that
would lead to liver tumors and possibly contributing to the conclusion
that a 2-year bioassay is not needed.

Given the convergence of approaches to build and utilize gene
expression biomarkers by multiple groups, the HESI Emerging
Systems Toxicology for the Assessment of Risk (eSTAR)
committee has an ongoing multi-institution effort to identify
predictive gene sets. The committee will employ a number of
computational approaches to liver transcript profiles of chemicals
annotated for liver cancer MIE modulation and cancer outcomes
(Corton et al., 2022a). The approach will include data from wild-
type versus factor-null rats where gene dependence on ligand-

activated transcription factors can be confirmed, complemented
with a large body of published or to-be-generated data including
ChIP-Seq data to further support specific compound MIEs. The
hope is that scientific consensus between investigators will result
in a validated set of biomarkers and computational techniques
that will be accepted by various regulatory agencies for
widespread use for internal decision making as well as for
regulatory applications.

In summary, the NAM described and tested here to be used to
replace carcinogenicity testing exhibits characteristics desired in a
method used for prediction. These include accurate prediction of
whether the MIE is modulated and most importantly, whether the
dose of the chemical would be tumorigenic in chronic studies. The
NAM could be used for screening chemicals in short-term exposures to
identify potential liabilities or after a chronic study before the
appearance of tumors when the liver is found to be a tissue with
histopathology findings of concern. The continued use of in vivo tests
using new animal models or modifications of existing guideline
animal studies of shorter duration is increasingly recognized as a
necessity for bridging gaps en route to establishing new animal-free
regulatory frameworks that are the goal of regulatory
Agencies worldwide.
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