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Neurotoxicants are substances that can lead to adverse structural or functional effects
on the nervous system. These can be chemical, biological, or physical agents that can
cross the blood brain barrier to damage neurons or interferewith complex interactions
between the nervous system and other organs. With concerns regarding social policy,
public health, andmedicine, there is a need to ensure rigorous testing for neurotoxicity.
While the most common neurotoxicity tests involve using animal models, a shift
towards stem cell-based platforms can potentially provide a more biologically
accurate alternative in both clinical and pharmaceutical research. With this in mind,
the objective of this article is to review both current technologies and recent
advancements in evaluating neurotoxicants using stem cell-based approaches, with
anemphasis ondevelopmental neurotoxicants (DNTs) as thesehave themost potential
to lead to irreversible critical damage on brain function. In the next section, attempts to
develop novel predictive model approaches for the study of both neural cell fate and
developmental neurotoxicity are discussed. Finally, this article concludes with a
discussion of the future use of in silico methods within developmental neurotoxicity
testing, and the role of regulatory bodies in promoting advancements within the space.
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1 Introduction

1.1 Manuscript overview

Developmental toxicity is defined as the effects that interfere with normal
development before or after birth, resulting from either pre- or postnatal exposure.
These effects can manifest at any time point, with major manifestations including
functional deficits, altered growth, or structural abnormalities, according to the
OECD Guidance Document 43. GD 43 was published as part of a series on testing
and assessments for human health, which aimed to provide additional guidance on the
overall testing approaches used for DNTs (Grandjean and Landrigan, 2006; OECD, 2008).
It currently supplements testing guidelines published by the United States Environmental
Protection Agency (USEPA) and the Organization for Economic Cooperation and
Development (OECD). While a broad range of toxins and toxicants can be
considered DNTs, this paper will predominantly refer to DNTs as chemical and
small-molecules that have developmental neurotoxic effects.

Guidelines set by the USEPA and OECD for DNT testing mainly focus on in vivo
testing – specifically in murine models – to assess motor and autonomic function, convulsive
behaviors, and other “unusual or abnormal behaviors” (USEPA United States Environmental
Protection Agency, 1998; OECD, 2007; Makris et al., 2009). In addition, the OECD Testing
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Guideline (TG) 443 specifically focuses on assessing the potential
impact of pre- and post-natal chemical exposure on both the
developing nervous and immune systems (OECD, 2018). While
these guidelines represent the best assessment for DNT human
health risk, TG 443 requires extensive amounts of time, animal,
and financial resources to conduct. The highly involved nature of
in vivo testing, alongside inadequate regulations and policies,
potentially explains the lack of testing among the roughly
87,000 commercially used chemical substances (TSCA Chemical
Substance Inventory, 2023). To date, approximately only
165 chemicals have been assessed using either the EPA or OECD
TG 443 guidelines (Crofton and Mundy, 2021). Animal-based test
methods are also limited in their interpretation due to issues with
variability, precision, and uncertain human relevance (OECDwork on
in vitro). Recognizing the drawbacks of in vivo testing, efforts are
focused on developing alternative models for the evaluation of
potential DNTs. Most recently, the OECD released a report on the
use of non-animal testing methods for developmental neurotoxicity
and has published a guidance document on evaluating data from
in vitro testing batteries on DNTs (OECD, 2017; OECD, 2022; OECD,
2023). The USEPA is also developing a work plan to reduce vertebrate
animal testing in their New Approach Methodologies (NAMs)
(USEPA, 2021).

It is recognized that many of the models and in vitro studies
described below may refer more broadly to general neuronal or
other toxicity. Echoing the DNT testing guidelines set forth by the
OECD, which incorporates established assays originally developed
for other investigations of toxicity, these examples are meant to
serve as points of discussion in which applications of such
methodologies can be expanded to cover applications within
DNT testing. In other words, this paper builds on existing
literature with a focus on current strategies for stem cell-based
approaches to investigating potential DNTs, before further
expanding on the novel use of predictive models in this space.
Predictive models can be a powerful tool in toxicity testing,
especially when used for initial screenings of chemicals. By
utilizing a predictive model to isolate potential DNTs, the
experimental space can be reduced which allows for more
effective use of testing resources.

1.2 Developmental
neurotoxicants – Definition, classification,
and implications

The first neurotoxicants established to also be DNTs were
identified in 2006 and included lead, methylmercury, arsenic,
polychlorinated biphenyls (PCBs), and toluene (Grandjean and
Landrigan, 2006). Since then, there have been several more
identified: manganese, fluoride, perchloroethylene, organochlorine
compounds such as dichlorodiphenyltrichloroethane (DDT),
chlorpyrifos, and the polybrominated diphenyl ethers (Grandjean
and Landrigan, 2014). Numerous other studies are currently
investigating other neurotoxic compounds that may potentially
affect brain development.

Developmental neurotoxicants (DNTs) may work specifically in
preventing neural stem cell differentiation, by causing permanent
changes in gene expression, damaging DNA, modifying key

signaling proteins in essential pathways, among many others
(Song et al., 2011). This impact on neural development can be
distinct from the effect of stem cell toxicants, which are those that
are cytotoxic to stem cells, and neurotoxicants, which are either
cytotoxic or functional toxicants to neurons or glial cells. At the
same time, there can be a significant amount of overlap between
the three types of toxicants, as an identified DNT could
potentially also be a functional toxicant to neurons after
development. The lack of standard in vitro DNT testing
methods remains an issue, with many teams relying on
looking at endpoints which sometimes correspond with
outcomes similar to stem cell toxicant or neurotoxicant
activity, as will be discussed later. Therefore, working towards
improving testing could allow for stricter distinctions between
DNTs, stem cell toxicants, and neurotoxicants in the future. For
these reasons, this paper includes established developmental
neurotoxicants along with neurotoxicants that impact stem cell
differentiation or other critical developmental processes (e.g.,
synaptogenesis) as DNTs.

The developing brain is highly susceptible to DNTs for several
reasons, as DNTs cause adverse effects by interfering with the
cascade of developmental processes. Neurogenesis occurs
throughout different parts of the brain at various stages, and the
introduction of harmful compounds at any time point can lead to
the degeneration of neurons and synapses crucial for brain function
(Abbott and Nigussie, 2021). Gliogenesis, the process in which glial
cells such as astrocytes and oligodendrocytes rapidly proliferate, is
also susceptible to the toxic effects of certain chemicals (Aschner
et al., 1999). The blood brain barrier (BBB) is important for
regulatory functions including nutrient metabolism and acts as a
selective barrier, protecting the brain from certain potentially
harmful compounds (Pardridge, 1983; Saili et al., 2017). The BBB
is formed via angiogenesis which begins at around 8 weeks of
gestation and peaks at roughly 35 weeks in humans (Mito et al.,
1991; Marín-Padilla, 2012). Zhao et al. demonstrated that disruption
of the BBB development during pregnancy by inflammatory agents
can lead to long-lasting BBB dysfunction in offspring, potentially
contributing to neuropsychiatric disorders (Zhao et al., 2022).

In one review paper, Heyer and Meredith state that the
discussion of non-genetic environmental toxicants potentially
affecting neural development has been mainly focused on their
correlation with the onset of neurodevelopmental disorders (NDDs)
such as autism, Attention Deficit/Hyperactivity Disorder (ADHD),
and schizophrenia (Heyer and Meredith, 2017). The team goes on to
detail the four most common pathophysiological mechanisms of
DNTs in these NDDs: oxidative stress, immune system
dysregulation, altered neurotransmitter systems (hyperserotonemia,
dopamine dysfunction, neuronal excitability), and thyroid hormone
disruptions. Using both human and animal findings, the team was
also able to map sensitive time windows during brain development
where exposure to specific DNTs and other chemical toxicants would
increase the risk of certain NDDs.

The high risk of crucial developmental event disruptions due to
prenatal exposure to DNTs cannot be overstated, emphasizing the
importance of investigation and regulation of testing in this space.
However, it is evident that current standards for toxicity testing may
not be rigorous enough not only for screening potential DNTs, but
perhaps neurotoxicants as a whole. To expand on this, the list of
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industrial chemicals that have a documented neurotoxic effect on
adults range across numerous categories, including metals and
inorganic compounds, organic solvents, organic substances, and
pesticides. However, less than 20% of the most extensively
regulated classes of these industrial chemicals have any
information available for a thorough health-hazard assessment
(National Research Council US). Even fewer of these compounds
have been tested for selective toxicity in children, speaking to the
lack of adequate regulations in place to identify DNTs. The
magnitude of this issue could also be associated with the rising
prevalence of developmental disabilities. From 1997 to 2017, there
has been a 38.3% increase in the number of children in the US who
were affected by developmental disabilities (Boyle et al., 2011;
Zablotsky et al., 2019). Many of these disabilities are related to
neurological development, some of which are the result of
prolonged exposure of the brain to toxic substances. These
agents can result in neurological disorders like epilepsy,
schizophrenia, and dyslexia (Rice and Barone, 2000). The
prevalence of potential DNTs in the environment, along with
the detrimental consequences DNTs have on individuals and
communities means it is imperative to find ways to effectively
regulate testing, while also raising awareness and increasing
understanding of developmental neurotoxicity.

1.3 Current methods to evaluate
neurotoxicants

As previously discussed, efforts to move towards alternatives to
in vivo testing for neurotoxicity have led to the development of
in vitro testing batteries. The term in vitro in this context refers to the
use of stem cells, stem cell derived neurons, or cultured neurons to
analyze the specific impact of toxicants on cell fate (Sisnaiske et al.,
2014; Kang et al., 2017; Mansel et al., 2019; Bu et al., 2020). Existing
methods used for this purpose include assays studying cytotoxicity
and cell viability, functionality, gene and protein expression, and cell
morphology. These methods mostly involve two-dimensional (2D)
cell cultures grown in monolayers, either in flat petri dishes or
culture flasks, where cells attach to a cell-adherent surface such as
plastic. As such, the applications for the following assays will be
described using the conventional 2D cell culture method.

1.3.1 Cytotoxicity and cell viability assays
Cytotoxicity and cell viability assays are some of the most

popular assays used in toxicology studies. They can be used to
monitor cell health by detecting cell death or non-viability through
assessing several features, with the most common being membrane
integrity and metabolic activity (Figure 1). Assays detecting

FIGURE 1
Examples of cell viability/cytotoxicity assays. (A) Vital dye assays are conducted by staining dead cells using dyes (e.g., Trypan blue) from which the
percentage of viable cells (unstained) can be calculated. Red arrow indicates trypan blue staining of a non-viable cell with perforated membrane. The
graph is not based on real data but is meant to represent conclusions drawn by previous teams. (B) Succinate dehydrogenase activity-based assays work
by the conversion of water-soluble yellow MTT to purple formazan crystals by succinate dehydrogenase in the mitochondria of healthy cells.
Measured absorbance of purple solution using a spectrophotometer is directly correlated with cell viability.
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membrane integrity typically utilize “vital dyes,” such as trypan blue
or propidium iodide, which selectively penetrate dead cells through
their damaged membranes. Viable cells with intact membranes
remain clear, allowing researchers to use a hemocytometer to
count a small fraction of the cell suspension and extrapolating to
find an estimated number of dead cells (Strober, 2015; Riss
et al., 2019).

Succinate dehydrogenase activity-based assays (e.g., MTT, WST,
orMTS), are commonly used to detectmetabolic activity. These assays
measure cell viability and proliferation by enzymatically reacting with
succinate dehydrogenase in the mitochondria, with mitochondrial
respiration catalyzing the reduction of the dye, such as MTT, into
insoluble purple formazan crystals (Ghasemi et al., 2021). The number
of viable cells can then be determined through colorimetric analysis
after the cells have been lysed and processed. Both succinate
dehydrogenase activity-based assays and dye exclusion assays allow
researchers to efficiently determine the dose- and time-dependent
cytotoxic effect of a drug or compound of interest.

Several teams have explored the use of human induced
pluripotent stem cells (hiPSC) and hiPSC-derived neural stem

cells (NSCs) for neurotoxicity testing, using cell viability assays as
the main methodology for examining cytotoxicity (Valdiglesias
et al., 2015; Pei et al., 2016; Kamata et al., 2020). NSCs
proliferate and differentiate into numerous types of neural
progenitor cells (NPCs) including neuronal and glial progenitors.
These NPCs then proliferate, migrate, and differentiate into the
three major cell types in the central nervous system (CNS) in the
following temporally defined sequence: neurons appear first,
followed by astrocytes, and finally oligodendrocytes (Okano and
Temple, 2009; Zhao and Moore, 2018). Using mitochondrial MTS
and cellular ATP assays, Kamata’s team from Japan found that
compared to immortal cell lines Cos-7 and HepG2, hIPSCs and
NPCs were more vulnerable to a majority of the 35 DNTs studied (as
indicated by diminished IC50 values) (Kamata et al., 2020).

1.3.2 Functional assays
Functional assays, as depicted in Figure 2, measure a neuron’s

electrophysiology and neurotransmission ability. In some cases,
toxicity in neurons may manifest in non-obvious changes, such
as changes in membrane potential or action potential propagation,

FIGURE 2
Types of functional assays for neural cells. The graphs are not based on real data; rather they are abstract representations that retain the same
conclusions as described in prior studies. (A) Manual and automated patch clamp electrophysiology utilized adherent and suspended cell cultures
respectively, with the electrical current generated during depolarization being recorded. (B) Genetically encoded calcium indicators (GECIs), such as
GCaMPf6, bind with Ca2+ and allow for the observation of changes in fluorescence during synaptic transmissions (Zhang et al., 2023). Blue arrows
indicate time points when cells are stimulated, and depolarization occurs. (C)Microelectrode arrays (MEA) also use cultured neurons on a special type of
plate with microelectrodes embedded in the base, also producing a graph recording current during depolarization.
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in comparison to directly observable morphological changes like
membrane integrity. The patch clamp technique is an
electrophysiological method that directly measures membrane
potential or current going across the cell membrane, and is
currently the gold standard of functional assays (Hill and
Stephens, 2021). This can be performed on single neurons, brain
slices or live brains in sedated animals. In single cell applications,
researchers place a glass micropipette electrode directly on a small
area of the cell membrane and use suction to firmly seal the tip of the
pipette to the cell. The tight seal provides extremely high resistance
which allows for the detection of small voltage changes during action
potential firing, while blocking external currents from surrounding
cells (Covey and Carter, 2015). More recently, the automated patch
clamp (APC) has become an increasingly popular application that
allows for high-throughput screening using the same
technique – with each APC chip commonly having either 384 or
768 wells (Bell and Dallas, 2018; Toh et al., 2020). Instead of
manually attaching the pipette onto a single adherent cell, cell
suspensions are applied to planar recording chips of varying
substrate materials, including borosilicate glass, silicon, and
polymer. Due to a combination of gravity and negative pressure,
a high electrical resistance seal is formed between the chip and the
immobilized cell which then allows for accurate recordings of
membrane potential or current (Bell and Dallas, 2018;
Obergrussberger et al., 2022).

In one example, Beske et al. (2016) were able to establish
synaptic activity as a functionally relevant reporter for clostridial
neurotoxin (CNT) intoxication through whole-cell patch clamp
electrophysiology. The whole-cell patch clamp is achieved by
creating a negative pressure that ruptures the cell membrane,
allowing for electrical access to the entire cell instead of ion
channels exclusively. By measuring the frequency of spontaneous
synaptic neurotransmission, Beske’s team effectively reproduced
antitoxin protective effects from CNTs botulinum neurotoxin
serotypes A and B (BoNT/A and BoNT/B) on mouse embryonic
stem cell-derived neurons (ESNs), using the current standard
technique mouse lethality assay as a benchmark. With respect to
developmental neurotoxicity, this remains a promising and more
humane alternative to both mouse and human in vivo testing, while
being clinically and physiologically relevant.

Another method of tracking neuron functionality can be
achieved using calcium indicators. During neurotransmission, an
influx of calcium ions into the presynaptic terminal triggers the
exocytosis of neurotransmitter-containing vesicles into the synaptic
cleft. Tracking the movement of calcium using indicators allows for
neuronal signaling to be imaged using high-speed confocal
microscopy (Grienberger and Konnerth, 2012). Significant
advancements in generating protein-based genetically encoded
calcium indicators (GECIs) have led to the development of new
methods for calcium imaging in vivo, the latest of which have been
focused on GCaMPs (Zhang et al., 2023). To study the direct and
modulatory synaptic influences on cholinergic myenteric ganglion
(MG) neurons, Margiotta et al. (2021) used engineered mice
expressing GcaMP6f and biosynthetic choline acetyltransferase
(ChAT) selectively in neurons. Among other findings, Margiotta’s
team was able to determine that cholinergic MG neurons require
sodium channel-dependent impulses in the axonal presynaptic
input in order to generate spontaneous action potentials in the

postsynaptic soma. This was conducted by comparing the frequency
and peak amplitude of Ca2+ transients in ChAT+/GCaMP6f+ MG
neurons using tetrodotoxin (TTX), a known neurotoxin that inhibits
voltage-gated Na+ channel-dependent action potentials (Chen and
Chung, 2014). In the realm of DNT testing, various compounds of
interest can be introduced and used to determine any changes in
Ca2+ transients as a result.

Microelectrode arrays (MEAs) are another increasingly popular
system for high-throughput functional phenotyping and drug
screening applications. Ranging from 12 to 96-well formats, these
systems are comprised of tissue culture plates with a grid of small
electrodes embedded within the bottom of each well which then
allows for the extracellular action potential from cultured neurons to
be recorded. There have been various formats used, including for 2D
and 3D structures (Shafer et al., 2019; Passaro and Stice, 2021).
MEAs can provide insight on network-wide properties, such as
connections, and incorporate many benefits of non-invasive patch
clamp electrophysiology. Challenges associated with MEAs have
revolved around data analysis and interpretation of experimental
results, with a team from Finland creating a dataset and analysis
tools for others to validate their findings with (Kapucu et al., 2022b;
McCready et al., 2022). MEAs have recently been used in testing for
DNT hazard by Shafer et al. (2019) utilizing a network formation
assay in cortical cells to test 136 unique chemical compounds for
developmental neurotoxicity. However, MEAs may not be as
sensitive as patch clamp recordings, which could have played a
role in Shafer’s team reporting an assay sensitivity (true positives) of
0.78. Regardless, MEAs are a valuable tool, providing high-
throughput, robust information that may eventually become the
new gold standard of functional assays.

1.3.3 Gene and protein expression
Gene and protein expression analysis can be carried out to study

the impact on NSCs as a result of exposure to drugs or
environmental compounds. As shown in Figure 3, researchers
can identify cell differentiation, maturity and up/downregulation
of the gene or protein of interest using several methods, including
reverse transcription polymerase chain reaction (RT-PCR), Western
blots and immunocytochemistry.

RT-PCR works by generating cDNA from mRNA, with its high
sensitivity allowing for detection of gene expression from a single
cell (Bachman, 2013). By comparing gene expression in NSCs pre-
and post-exposure to the compound, the effects of a compound of
interest can be determined. After exposure to the compound, the
mRNA produced is isolated and prepped for RT-PCR. Primers
selected to identify key genes for cell fate include βIII-tubulin (Tuj-1)
as a marker of immature or early differentiated neurons, and
MAP2ab as markers for mature neurons (Soltani et al., 2005;
Kermani et al., 2008). These primers will only bind to
complementary sequences on the cDNA, amplifying the genes of
interest to detectable levels which can then be detected using either
gel electrophoresis or primers with fluorescent tags (Kermani
et al., 2008).

Western blots and immunocytochemistry are methods used to
track changes in protein expression after NSCs are exposed to the
compound of interest. Western blots typically utilize a BCA protein
assay to first determine overall protein concentration in lysed NSCs,
followed by gel electrophoresis to separate proteins and a fluorescent
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antibody stain to visualize target protein (Engstrom et al., 2015;
Hobson et al., 2022). The fluorescence is detected using a confocal
microscope and can then be processed to analyze protein expression.
For example, synaptophysin, a presynaptic vesicle membrane
protein critical for neurotransmission, has been used as a proxy
to study the protective effects of physical exercise by a team in Brazil
(Leardini-Tristão et al., 2020).

Immunocytochemistry involves fixing post-exposure NSCs
typically with a cross-fixing agent such as paraformaldehyde and
staining with fluorescent primary and secondary antibodies for
specific proteins of interest, before an imaging process similar to
that seen in Western blots. While both methods allow for detection
of presence of and relative abundance of the protein of interest,
immunocytochemistry is performed on intact NSCs which
additionally allows for subcellular localization. EAAT1, or

excitatory amino acid transporter 1, is a glutamate transporter
found on the surface of astrocytes and plays a role in glutamate
reuptake from the synaptic cleft (Malik and Willnow, 2019). As the
main excitatory system, astrocytic EAAT1 levels gradually become
upregulated during CNS development and therefore can provide
insight on the inhibitory effects of toxicants, particularly on synaptic
transmission (Araque et al., 1998; Banner et al., 2002).

1.3.4 Morphology
The effect of neurotoxicants on NSCs or neurons can be

determined based on their morphology, such as changes in cell
size or fragment length, branches, and total length per cell. These
morphological changes can indicate the impact of the toxicant on
cellular differentiation and cytotoxicity as shown in Figure 4.
Crumpton et al. (2001) used a morphological index to identify

FIGURE 3
Methods for determining gene or protein expression in neural cells. (A) RT-PCR of βIII-tubulin and MAP2ab mRNA from NPCs, with an increase in
βIII-tubulin indicating lower concentration of differentiated neurons which may be due to differentiation-inhibiting effect of a toxicant. (B)Western blot
detects protein levels, such as synaptophysin (presynaptic vesicle membrane protein) and directly correlates to fluorescence of the sample from an
enzyme-linked secondary antibody binding to the Fc region of the primary antibody. The cytotoxic effect of a toxicant would thus result in a
diminished fluorescence level. (C) Immunocytochemistry also involves the use of primary and secondary antibodies but preserves cell structure as the
primary antibodies bind to surface markers of adhered cells. In the example above, the toxicant results in the prevention of NPC differentiation into
astrocytes, which results in a decrease of astrocyte-associated surface marker EAAT1. All graphs above are not based on real data, but represent the
conclusions described in published studies.
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the most sensitive period during differentiation for which the toxicant
had the greatest effects on the stem cells, concluding that lead had the
greatest effect during the early initiation events of differentiation.
Investigating morphological changes provides a straightforward and
effective method for determining impacts of a compound of interest
on the physical characteristics of neural cells. In a study conducted by
Pistollato et al. (2020) on developmental neurotoxicity, one of the
DNT-specific endpoints assessed was neurite outgrowth which was
analyzed using β-III-tubulin staining. The team concluded that a
combination of chemicals which they defined to have similar modes of
action [i.e., Bisphenol A (BPA), Lead (II) chloride (Lead), and
Chlorpyrifos (CPF)] can produce higher levels of toxicity
compared to single chemicals, as seen in downregulated neurite
length and number of branch points compared to each of the
single chemicals (Pistollato et al., 2020).

1.4 Challenges with current methods

The assays mentioned above utilize different principles to assess
the in vitro effects of potential DNTs. However, there are challenges

faced by each of the methods as summarized in Table 1 which can
affect their ability to accurately determine the full extent of the
effects of each compound or toxicant. These challenges can be
overcome by employing several techniques over the course of the
investigation (Seal et al., 2021; Seal et al., 2022). However, there are
certain limitations shared across all of the methods above which
involve cell culture type (2D and 3D) and screening efficiency
(LTS vs. HTS).

1.4.1 2D and 3D cell cultures
Methods used to evaluate developmental toxicants have

conventionally been conducted in 2D cultures. With a simple
culture process and low-cost maintenance, 2D cultures provide a
reproducible method of conducting functional tests that are
relatively high-performing for their cost. However, there are also
several drawbacks to adherent cell cultures. Neural cells cultured on
a flat surface may be unable to mimic the organizational complexity
and structure of brain tissue, and cellular interactions are limited to
peripheral contact. This disadvantage impacts certain aspects of in
vivo modeling, as crucial cell-cell and cell-extracellular matrix
interactions that are responsible for cell differentiation and

FIGURE 4
Examples of morphological changes of neurons due to exposure to toxicants. Neuronal markers like βIII-tubulin can be used to stain neurites which
can then be imaged using a fluorescentmicroscope. The effects of toxicant type (examples labeled ToxA and ToxB above) and dose on (A)Neurite length,
(B)Number of neurites per neuron, and (C)Number of branch points per neuron can be observed. The graphs are not based on real data but are adapted
by Pistollato et al. and represent some of the team’s conclusions (Pistollato et al., 2020).
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proliferation, survival, and morphology may not be as easily
replicated (Brännvall et al., 2007a; Xu et al., 2009; Pontes Soares
et al., 2012; Centeno et al., 2018). Monolayer cultures also have
access to unlimited nutrients, oxygen, and other essential
metabolites as all cells are in direct contact with the medium.
This can be less representative of in vivo conditions, leading to
another issue with respect to the evaluation of neurotoxicants. Some
studies have demonstrated that 2D cell cultures are more susceptible
to the effects of drugs, due to reasons such as exposed receptors
enhancing the binding efficacy of drugs (Cushing and Anseth, 2007;
Bonnans et al., 2014; Lv et al., 2017; Langhans, 2018). As such,
results of neurotoxicant testing in adherent cell cultures may not
always be fully representative of the actual effects in vivo.

For mechanisms that cannot be as effectively modeled using 2D
cultures, researchers have opted to investigate these mechanisms
using 3D cultures. There are several approaches used to create 3D
cultures, including self-assembling cell aggregation in spheroids/
organoids, cell encapsulation, or direct cell plating in either natural
or synthetic hydrogels (Huang et al., 2012; Białkowska et al., 2020;
Lam et al., 2020; Vallejo-Giraldo et al., 2020). Hydrogels confer a
significant advantage to 3D cultures as hydrogels provide a complex
network of proteins and cross-linking polymers which mimics that
of the extracellular matrix (ECM), facilitating cell-ECM interactions
for improving cellular function and morphology. This is especially
important for functional assays, which evaluate neural activity, as
this is highly dependent on effective cell-cell communication (Lam
et al., 2020).

However, there are several disadvantages that 3D cultures face
which are actively being addressed as they become more widely used
for toxicology studies. Low optical transparency for imaging due to
culture density or scaffold limitations can lead to challenges within
observing changes in cells exposed to toxicants (Hopkins et al., 2015;
D’Avanzo et al., 2015). This is especially important for calcium
imaging and characterization of neuronal activity. There is also
potentially decreased reproducibility as a result of variability across
batches of scaffold material, such as hydrogel (Tibbitt and Anseth,
2009; Caliari and Burdick, 2016; Baruffaldi et al., 2021). The need for
expensive and highly specialized equipment, such as bioreactors, to
grow and maintain cell cultures also remains a significant barrier to
the mainstream use of 3D cultures for DNT testing (Centeno et al.,
2018). While there are still challenges towards the widespread
implementation of 3D cultures in research, it is becoming an
increasingly popular choice. 3D culture platforms offer a robust

way to culture cells and study their cellular functions, and thus
represent a new modality to complement 2D cultures in
understanding the effect of compounds on the differentiation of
stem cells to early neurons. The use of 2D or 3D cultures within
neurotoxicant testing ultimately remains up to the researcher, with
both providing different information relevant to in vivo behavior
and each type of culture having their own advantages and
disadvantages.

1.4.2 LTS vs. HTS
One strategy of optimizing and improving the cost effectiveness

of manufacturing cell cultures has been through high-throughput
screening (HTS). HTS platforms commonly use hydrogel
microarrays to study the effects of numerous physical and
biochemical properties on cell behavior, allowing for the
production of large-scale reproducible results while minimizing
use of reagents and samples (Seo et al., 2018). This can be
implemented in both 2D and 3D cultures, with a recent protocol
for the generation of 3D spheroids from NSCs meant for the use in
HTS published in 2022 (Kang et al., 2021). However, there has been
some variability in effectiveness of both types of cultures in HTS. Lu
et al. (2023) developed both 2D and 3Dmicroarray platforms in 384-
well plates to detect neurotoxicants through studying their effects on
human induced pluripotent stem cell (hiPSC)-derived cultures. The
team introduced 25 reference drugs with known effects on human
seizure risks, and through blind testing were able to determine a 91%
predictive accuracy in determining seizure-inducing neurotoxicants
within 2D cultures, and a 45% accuracy in 3D cultures. Their data
suggests that while there seems to be reliable prediction of DNTs in
2D cultures, there needs to be further investigation into optimizing
HTS methods in 3D cultures.

While the differences may have been a result of limitations
mentioned in the previous section, another explanation could be the
type of 3D culture used. Spheroids, which were used by Lu et al.
(2023), are considered to be lower complexity with less physiological
relevance. On the other hand, organoids are heterogeneous
aggregates that partially resemble the organ in both structure and
function (Renner et al., 2020). HTS using brain organoids can
potentially alleviate this issue, however generating fully matured
organoids can take a significant amount of time – anywhere from
20 days to 6 months depending on the type of neuron (Renner et al.,
2020; Woodruff et al., 2020; Porciúncula et al., 2021). Renner et al.
(2020) addressed this long pre-processing time by developing a

TABLE 1 Description and challenges associated with assays used to evaluate potential DNTs.

Method Description Challenges

Cytotoxicity and cell
viability

Based on cell metabolism or intact cell
membrane

Dyes can interact with non-target compounds, leading to false attributions and overestimation of
cell viability (Braun et al., 2018)

Functionality Based on calcium influx or action potential
generation

Limited by kinetics and signal-to-noise ratio
Functional synapses are preserved in slice preparations, which cannot be used for high-throughput
automated patch clamp
Current calcium indicators inadequate at studying rapid timescales relevant to neural behavior
(Zhang et al., 2023)

Gene and protein
expression

Based on changes in cell gene and protein
expression

Potential non-specific amplification when low or no gene expression (Mitchell and Iadarola, 2010)

Morphology Based on changes in cell’s physical features NSCs dynamic growth and development can cause difficulty in determining significant differences
against baseline (Schaudien et al., 2018)
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protocol using an automated liquid handling system to culture and
phenotype midbrain organoids, highlighting the potential for
improvements in this field through automation.

Nonetheless, even with improvements to 3D culture generation
and scale-up, there are still issues that remain within the acquisition,
extraction, and processing of large quantities of data from HTS
methods. Light scattering which limits the penetration depth of light
(roughly 50–70 μm) into 3D cultures for conventional imaging leads
to noisy datasets that require careful clean-up and analysis to
provide any meaningful interpretations (Wang and Jeon, 2022).
To address this, machine learning algorithms (MLAs) are becoming
an increasingly popular choice to handle large and complex datasets.
MLAs can also utilize multidimensional analysis of various
parameters which would allow for a more holistic interpretation
of several factors to the target cell culture (Lin et al., 2020). A shift
towards integrating machine learning, such as artificial intelligence,
are becoming increasingly common within drug screening. As such,
there is a call for the integration of predictive models that could
better inform testing batteries for DNTs. Currently, predictive
models are employed for several types of studies, including
determining cell fate of NSCs. Understanding these novel models
can allow researchers to gain more insight into how these models
can then be applied for use in screening potential DNTs.

2 Predictive models for neuronal
cell fate

2.1 What are they and how are they used?

Predictive models use existing data to make predictions on the
outcome of a new unknown input given definedmodel parameters. In
neural stem cell (NSC) systems, data on NSC response to exogenous
factors (which includes both test system environment or substances)
may be quantitatively analyzed, developing computational models
that can then be used to predict or even control stem cell fate
(Viswanathan and Zandstra, 2003). These algorithms obtain
parameters by fitting their models to experimental data studying
net changes in NSC populations using different variables.

There are two main types of predictive models: Data-driven and
mechanistic models. Data-driven, or empirical, approaches are
typically employed for pattern recognition, classification, and
prediction, establishing relationships between extensive amounts of
input data with the predicted output (del Sol and Jung, 2021). On the
other hand, mechanistic models use mathematical formulations that
describe the biological or physical mechanisms that occur in a system.
To create a mechanistic model, the cellular mechanisms (such as signal
transduction pathways, receptor binding affinity, etc.) must be defined
and understood so as to model and predict a compound’s effect (van
der Graaf, 2018; Collin et al., 2022). It should also be mentioned that
while data-driven and mechanistic models operate using two different
methodologies, they can be complementary approaches to improve
efficiency and optimize predictive power. As an example, NSCs
undergo differentiation and self-renewal in culture and as such
both differentiation and proliferation of individual NSC populations
to be examined simultaneously while altering environmental
conditions (Morrison, 2001). In this case, mechanistic models could
serve as a straightforward and effective tool to discern the effects of

exogenous factors, ranging from toxicants to substrate surface, on NSC
fate decisions, with data-drivenmachine learning used to filter and sort
the input going into the mechanistic model.

2.2 Cost and efficiency

Even with the advancements made in the field, there remains a
significant barrier to implementing robust screening batteries for
DNTs. For the approaches described above, the cost and efficiency of
such methods are still an issue, especially considering the highly
involved nature of developing such strategies. This issue is not
unique to toxicology screenings. Within the context of drug
discovery, conventional methods include HTS using large
libraries to identify potential “hit compounds,” which are then
experimentally tested for biological effectiveness on a target
ligand. With the cost of screening one potential compound
sometimes upwards of $1.50 per well, Dreiman et al. (2021)
found that employing an iterative screening model using machine
learning could improve rates of finding hit compounds which would
then optimize their experimental testing. Another team used virtual
libraries to eliminate compounds with known toxic or reactive
functional groups to narrow the experimental space (Zhu et al.,
2013). Similarly, utilizing an in silico approach coupled with
downstream experimental testing may open up complementary
strategies for informing future DNT experimental testing – using
frameworks such as the integrated approaches to testing and
assessment (IATA) (Bal-Price et al., 2018; Hernández-Jerez et al.,
2021; OECD, 2023). These can also significantly reduce the cost and
amount of resources expended during testing.

2.3 Advantages

Predictive modeling serves as an alternative to experimental tests
difficult to perform, due to reasons such as the high cost and time
constraint for a large number of trials. Since predictive models use
existing data to determine causations or correlations, they can reliably
inform of outcomes given inputs in several different parameters,
allowing for simultaneous analysis of multiple factors to influence
cell fate. Generating any accurate model requires large quantities of
experimental data, standardized and normalized to account for any
variations across samples. Significant advancements in single cell
transcriptomics, or scRNA-seq, have led to higher accuracy in
detailing the processes which lead to stem cell differentiation.
Along with other methods to classify single cells and their eventual
cell fate, the growing amount of reliable existing data can make
predictive models even more robust in their predictions (Alquicira-
Hernandez et al., 2019; Sagar and Grün, 2020).

2.4 Predictive modeling for neural
progenitor cell fate

There are numerous factors which affect the behavior of NSCs,
especially concerning their cell fate. Some of these include
material morphology and chemical molecules, which can be
studied in more detail to predict outcomes beyond what is
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tested in the lab (Huang and Wang, 2017). This can provide more
robust and efficient predictions that allow for the identification of
new protocols to induce proliferation and differentiation towards
a target cell type. To develop predictive models for neural
progenitor cell fate, research teams have explored various cell
conditions such as culture type (2D or 3D), presence of chemical
toxicants, and substrate stiffness, among others. Being a relatively
established field of study, these predictive models have been
validated against existing data which can ultimately serve as a
frame of reference for the development of novel predictive models
for DNT testing.

2.4.1 2D or 3D
It has been established that cell cultured on 3D cell matrices have a

higher rate of neural stem cell differentiation, along with increased cell
survival and proliferation (Brännvall et al., 2007b; Ortinau et al., 2010;
Zare-Mehrjardi et al., 2011; Huang et al., 2013; Bozza et al., 2014).
With respect to neural cell differentiation, these studies looked at gene
expression profiles for common neuronal markers that indicate
differentiation and maturation, such as TUBB3 (for βIII-tubulin)
orMAP2 (forMAP2ab). In another application, Zhu et al. developed a
deep learning platform that could predict an NSC’s eventual cell
differentiation into neurons, astrocytes, or oligodendrocytes through
monitoring the gene expression levels of NeuN, GFAP, and
Olig2 respectively (Zhu et al., 2021). With a spectrum for the
functionality and formation of a 3D microenvironment using
hydrogel scaffolds, a predictive model can be designed to
determine how successful different types of hydrogel-based
scaffolds can influence cell differentiation of NSCs by tracking the
expression of various markers such as those mentioned above.

2.4.2 Chemical toxicants
The presence of certain chemical compounds can influence cell

differentiation, proliferation, and cell apoptosis of NSCs (Huang
et al., 2019). While investigating the effects of neurotoxicants in
particular, understanding the dose-response relationship along with
duration of exposure are important factors to consider. In one
instance, Lee et al. (2018) identified a toxicity response gene,
SERPINB2, which is overexpressed in stem cells both in vitro
and in vivo upon exposure to dioxin. Lee’s team noted decreased
levels of self-renewal and differentiation potential of stem cells
during the exposure, suggesting that SERPINB2 would be a good
candidate as a stem cell toxicity marker. In this case, evaluating
potential drug candidates for toxicity could involve quantifying
levels of SERPINB2 expression pre- and post-exposure. Similarly,
Mao et al. (2022) incorporated in vitro toxicity profiles to develop an
in silico platform to understand and predict toxicity patterns of silver
nanoparticles (AgNPs). They began by introducing several
mammalian cell lines to four types of fabricated AgNPs: citrate-
coated (SCS), cysteamine-coated (SAS), citrate-coated (LCS), and
cysteamine-coated (LAS). Cell viability assays were used to generate
data that was then consolidated into a database with several
cytotoxicity-relevant parameters such as cell type and exposure
dose. The model utilizes the assay data to then identify which
parameters are most important in predicting AgNPs induced
toxicity. One prediction, determining that exposure time was the
least influential factor on the cytotoxicity profile of AgNPs, directed
the authors to then investigate and ultimately conclude that non-

cytotoxic doses of AgNPs potentially resulted in autophagy and
senescence in cells.

2.4.3 Stiffness
Stem cells are highly sensitive to mechanical inputs – such as

stiffness – from the ECM and this is known to influence subsequent
differentiation and proliferation (Engler et al., 2006; Pek et al., 2010;
Her et al., 2013). Based on a paper by Engler et al. (2006) it was
identified that in general naive mesenchymal stem cells (MSCs)
differentiated on a substrate with matrix stiffness between 0.1–1 kPa
expressed neurogenic markers, 8–17 kPa expressed myogenic
markers, and 25–40 kPa expressed osteogenic markers. Substrate
stiffness and topography are also known to impact both proliferation
and differentiation of NSCs towards several cell types such as
oligodendrocytes, astrocytes, and neurons (Banerjee et al., 2009;
Leipzig and Shoichet, 2009; Ali et al., 2015; Jiang et al., 2015;
Rammensee et al., 2017; Stukel and Willits, 2018; Liang et al.,
2021; Mattiassi et al., 2023). In order to reliably predict cell fate
based on surface topography, Heydari et al. (2017) designed a virtual
cell model which included substrate characteristics such as stiffness.
The team was able to obtain qualitative data surrounding the
behavior of MSCs and their interactions with their ECM, with
one example being the mimicking of substrate shape. Their work
also demonstrated the potential of predictive models like the virtual
cell to streamline the identification of optimal substrate
compositions for a specific cell fate (Heydari et al., 2017).

2.5 How may they be used for predictive
neurodevelopmental toxicity?

Predictive models and machine learning have the potential to serve
as reliable, efficient, and high-throughput approaches to identifying
possible DNTs. That is not to say that these methods should act as a
replacement of in vitro and in vivo studies, but as a complementary tool
that can reduce the experimental space for such studies. When it comes
to predictive toxicology, in silico modeling has already shown great
promise in identifying toxicants already confirmed through in vitro and
in vivomethods (Knudsen et al., 2020; Zurlinden et al., 2020). This may
be combined with computational embryology, which can help to make
inferences about a potential DNT’s effect during prenatal development
as such information may not be possible to derive experimentally
(Knudsen et al., 2020). One proposed method of designing a model
for predictive developmental neurotoxicity is illustrated in Figure 5 and
includes using biomolecular and biophysical endpoints and data from
in vitro studies, such as cell proteomics and stiffness respectively, to
determine the type of toxicant being introduced into the system
(developmental, neuronal, or stem cell toxicant, etc.). In this
proposed method, toxicant type could potentially refer to which stage
of differentiation the toxicant produces a detrimental effect, as it has been
estimated in one study that certain compounds may lead to cytotoxic or
other negative impacts if introduced at specific time points during the
neurodevelopmental process (Heyer and Meredith, 2017). In another
study, Pei et al. (2016) reported that 40%, 47.5%, 57.5%, and 51.3% from
a set of 80 tested compounds produced significant cytotoxicity in iPSCs,
NSCs, neurons, and astrocytes respectively – with the fewest number of
compounds being significantly cytotoxic in iPSCs. The results from this
study suggest that there may be merit in differentiating toxicant types
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based on the type of cells it affects, as some compounds impacting fully
differentiated cells like astrocytes or neurons may not have a significant
inhibitory effect on their parent cells such as iPSCs or NPCs.

Strategies employed to inform drug development, like
physiologically based pharmacokinetic models (PBPK) can also
provide promising applications within toxicity studies through
improving in vitro to in vivo extrapolation (IVIVE) (Zhou et al.,
2021). For example, Singh et al. (2020) developed a PBPK model
integrated with pharmacodynamics (PD) which allowed for the
characterization of their CAR-T cells to better understand their
clinical behaviors like efficacy and toxicity. Another concept
important to highlight is the adverse outcome pathway (AOP)
model. As defined by the National Toxicology Program, AOPs

“[identify] the sequence of molecular and cellular events required
to produce a toxic effect when an organism is exposed to a
substance.” (U.S. Department of Health and Human Services,
2023) These can provide a conceptual framework to standardized
toxicity testing methods, combining data generated from relevant
in vitromethods to map them towards endpoints like developmental
toxicity. In an effort to methodically develop predictive models for
DNT testing, AOPs are a powerful tool that can allow for accurate
prediction of downstream response and effects of toxins and
toxicants on both the molecular and cellular level (Pistollato
et al., 2020). An example of an AOP can be seen in Table 2,
where inhibition of the vascular endothelial growth factor
receptor (VEGFR) results in a sequence of effects that ultimately

FIGURE 5
Example of a proposed predictive model for developmental neurotoxicity using in vitro experimental data. Using both biomolecular and biophysical
parameters, a proposed predictive model could potentially classify a novel test compound into one of several types: developmental (specific detrimental
effects during fetal development), neuronal (affecting differentiated neural cells), stem cell (targeting stem cells or progenitor cells), or non-toxic.

TABLE 2 Example of an AOP: Disruption of VEGFR signaling leading to developmental defects (AOP 43) available from https://aopwiki.org/aops/43
(Knudsen et al., 2023).

Level of Organization AOP diagram (Knudsen et al., 2023) Event

Macromolecular Inhibition of VegfR2 Molecular initiating event (MIE): specialized key event that triggers AOP

Cell/Tissue Reduction of angiogenesis

Key events (KEs): measurable event within specific level of biological organizationOrgan/Organ system Impairment of endothelial network

Vascular insufficiency

Individual Increased developmental defects Adverse Outcome (AO): key event of regulatory significance that concludes an AOP
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lead to developmental defects in an individual (Knudsen
et al., 2023).

3 3D developmental neurotoxicity
predictive models

3.1 Morphology

Morphology-based predictive models have been proposed for
various applications such as classifying and predicting cell health
phenotypes, along with determining cancer cell migration patterns
(Zhang et al., 2018; Li et al., 2021; Way et al., 2021). These models
typically use single-cell image feature extraction of in vitro data to
categorize and validate which morphological properties are
important for their target prediction output. Predictive models
are especially useful for assessing stem cell differentiation as
traditional methods (RT-PCR, immunostaining, etc.) are time-
consuming, expensive, and may face challenges due to the
dynamic nature of stem cell growth. Several teams have been
able to successfully develop morphology-based models to predict
both adipogenic and osteogenic differentiation from MSCs (Lan
et al., 2022; Mai et al., 2023).

In 2022, the USEPA’s Center for Computational Toxicology and
Exposure (CCTE) published a presentation by Megan Culbreth,
PhD, detailing a HT phenotypic profiling strategy that looks at
chemically-induced changes in human neural progenitor cell
morphology specifically for DNT hazard assessment. Based on a
paper published by Culbreth et al. (2022) in Frontiers, the model
described was able to identify cell-level features like nuclei, nucleoli
and ER, golgi and plasma membrane, and mitochondria separately.
Using these parameters, a phenotypic profile can then be generated
and applied to compare the effects of the target compound against
profiles generated by reference chemicals.

However, one drawback of such assays is that DNTs may affect
critical processes of nervous system development that cannot be
reproduced by neural progenitor cells or other stem cell models. For
example, neuronal morphology plays a large role in dictating the
architecture of the cortical network. While axo-dendritic overlaps
are necessary to the formation of synapses, several other properties
can more reliably predict the nonrandom occurrence of network
motifs. This includes cell diversity, dendrite polarity, or geometric
features like packing density (Gal et al., 2020; Udvary et al., 2022).
Interfering with such delicate mechanisms (like synapse formation)
is enough to cause severe and irreversible effects on the developing
brain, and single cell morphological changes identified to indicate
cytotoxic activity may be unable to establish the detrimental effects
of a DNT in this context. As such, moving towards predictive models
that include impacts of morphology on the structure and function of
features like neocortical synapses may thus provide holistic insights
on the true effects of a potential DNT during hazard assessments.

3.2 Cell viability and proliferation

Cell viability, in both drug discovery and toxicity studies, is
typically assessed through in vitro tests like the WST, MTT, or
L-Lactate dehydrogenase (LDH) assays. LDH is a cytoplasmic

enzyme involved in glycolysis and its quantification in serum has
been used clinically to determine the extent of tissue damage, both
acute and severe (Kaja et al., 2017). Monitoring proliferation is also
important as there may be disruptions that do not directly or
immediately lead to cell death but instead impedes growth rate.
An example of cell viability and proliferation being a key assessment
endpoint is highlighted by Coccini et al. (2020) using magnetite
nanoparticles (Fe3O4NPs). The team first induced
transdifferentiation of human umbilical cord MSCs into neurons
before tracking changes in cytoplasm retraction and long bipolar
cellular processes, typical indicators of the neuronal phenotype,
upon the introduction of Fe3O4NPs. While there were no obvious
morphological changes, there was a significant decrease in cell
density while Fe3O4NPs accumulated within the cytoplasm of
neuronal-like cells (hNLCs). The team also looked at changes in
membrane integrity, adenosine triphosphate and caspase 3/7 activity
as proxies for cell death. Ultimately, the team’s findings were
consistent with previous studies establishing critical
concentrations of Fe3O4NPs in animal models (Wang et al.,
2010; Wu et al., 2013).

Advancements within this space have allowed researchers from
the Eunice Kennedy Shriver National Institute of Child Health and
Human Development (NICHD) to design a label-free, non-invasive,
and repeatable assay using supervised machine learning techniques
to assess cell viability (Park et al., 2022). Using dynamic full-field
optical coherence microscopy (DFFOCM), the team obtained raw
images of cell samples with a frame rate of 300 Hz which were used
to calculate two indicators of intracellular movement identified as
fmean and magnitude in a prior study done by the team (Park et al.,
2021). This data was then fed into four trained algorithm models to
indicate live and dead cells at various time points, with a final
balanced accuracy of 93.92% ± 0.86%. Such a system is promising in
moving the field towards non-invasive methods for determining cell
viability and proliferation, which almost certainly will serve to
improve the efficiency of existing HT screening methods.

In their initial recommendations for evaluating data from DNT
in vitro testing batteries (IVBs), the OECDhas also released guidelines
on how to apply prediction models when analyzing cell viability and
proliferation data (OECD, 2023). Some examples of this include
assessment of cell proliferation in human neural progenitor cells
(NPC1) in Appendix B.1 and the high-content imaging assay
screening changes in human neuroprogenitor cell (hNP1) upon
chemical exposure in Appendix B.10 of the OECD DNT-IVB
document. Like all types of in vitro data, data collected from these
hazard assessment assays require extrapolation towards in vivo
exposure levels to become clinically relevant. However, the assays
have included varying amounts of IVIVE modeling and data – with
some stating it has not yet been determined nor well
established – demonstrating the experimental gaps that need to be
addressed as the OECD continues to improve their guidelines for
DNT-IVBs. With specific biomarkers indicating cell proliferation or
apoptosis, such as GFAP, MCM2, or p53, cell viability and
proliferation can also be output parameters of prediction models
(Zhang and Jiao, 2015; Aubrey et al., 2018). Using gene and protein
expression profiles, prediction tools which efficiently generate
hypotheses to characterize potential chemical toxicants for
exposure-based assessments have been designed (Zurlinden
et al., 2020).
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3.3 Gene or protein expression

Gene and protein expression profiles can be used as proxies for
tracking changes in various cellular characteristics and physiological
processes – such as proliferation, differentiation, and apoptosis.
These can be seen to form a unique “fingerprint” indicating the cell’s
current physiological state. For example, neural markers such as β-
Tub III, MAP-2, NSE, and nestin have varying expression levels
during the differentiation process of hNLCs allowing researchers to
approximate which stage the cells are in (Coccini et al., 2020). In
another paper, Lauvås et al. (2022) determined the impact of
acrylamide – and its metabolite glycidamide – on fundamental
neurodevelopmental processes by studying both gene and protein
expression in a 3D mixed culture of neurons and astrocytes. With
the dynamic nature of the differentiation and maturation processes,
time course experiments can be used to generate baseline gene
expression profiles used for predictive modeling – with any
deviation from these profiles potentially indicating an inhibition
of cell differentiation or growth.

Some teams have also been able to use existing gene expression
databases to develop machine learning models that can predict drug
toxicity. One team from Shanghai Ocean University developed a cell
viability prediction algorithm that can predict cell viability upon
administration of various drugs or shRNA using different high-
coverage molecular data recovered from six different databases,
including the perturbation transcriptomics signatures (LINCS-
L1000) and Cancer Therapeutics Response Portal (CTRP) (Lu
et al., 2021). Similarly, Zurlinden et al. (2020) designed a
predictive model that utilized relative changes in the ratio of two
metabolites of cellular respiration, ornithine and cystine (ORN/
CYSS), to predict a substance’s potential developmental toxicity.
Using the Human-Mouse Disease Connection (HMDC) database
with established gene-to-disease associations, Zurlinden’s team
isolated genes with a biological relevance before correlating the
genotypes to specific biochemical features in the ToxCast
NovaScreen assay.

4 Conclusion

No individual NAM or AOP covers all key
neurodevelopmental biology or processes, meaning that a
battery of tests are required to ensure rigorous DNT testing.
With large amounts of data, predictive models can serve as an
efficient tool to quickly discover correlations that allow for the
identification of potential DNTs. In a paper detailing a proposed
cell-based IVB for DNT testing, the use of predictive models in this
space is still considered an open-ended question for many
researchers (Blum et al., 2023). It is important to note that
while DNT predictive models have certain limitations in their
specificity and accuracy, they still provide value by flagging
compounds and prioritizing chemicals with potential human
toxicity for further evaluation. This can narrow down the scope
of experimentation to optimize investigations towards other
aspects, such as estimated adverse doses (AEDs). Instead of
aiming to fully replace animal and in vitro testing, the shift
towards in silico methods serves to both complement and
reduce reliance on such methods – especially considering the
assay gaps for numerous key neurodevelopmental processes in
the current DNT-IVB as seen in Table 3 (Masjosthusmann et al.,
2020; OECD, 2023).

In their latest recommendations on the evaluation of DNT-IVB
data, the OECD (2023) notes that there has been a paradigm shift
away from in vivo animal tests towards in vitro models and higher
throughput technologies within DNT testing. The OECD also states
that DNT-IVB testing should be guided by a problem formulation
approach driven by regulatory needs and acceptability using the
IATA framework, a recommendation supported by the European
Food Safety Authority (EFSA) back in 2021 (Hernández-Jerez et al.,
2021; OECD, 2023). Currently, the OECD is focused on developing a
tiered testing strategy system for DNT that can allow for a broad
range of guidelines in the context of in silico, in vivo, as well as IVIVE
applications (OECD work on in vitro). Such an approach would
include Tier one preliminary screenings for potential developmental

TABLE 3 Summary of key neurodevelopmental processes and DNT-IVB assay gaps (due to lack of complementary assays) (Masjosthusmann et al., 2020;
OECD, 2023).

Key Neurodevelopmental Process Gaps in Current DNT-IVB

Neural Progenitor Cell (NPC) Proliferation Human-induced pluripotent stem cells (hiPSC)-derived NPCs
Radial glia NPCs

NPC Apoptosis Complementary assays in place

Cell Migration Complementary assays in place

NPC Neuronal differentiation Neuronal subtype
Human-induced pluripotent stem cells (hiPSC)-derived NPCs

Neurite outgrowth Complementary assays in place

Neurite maturation Human neuron

Synaptogenesis Human neuron

NPC Glial differentiation Astrocytes
Radial glia

Myelination Oligodendrocytes

Neural network formation Human neuron-based
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neurotoxicity, following up any “hits” with additional, more
intensive Tier two testing (Becker et al., 2007; Giordano and
Costa, 2012). Recognition by regulatory bodies like the US EPA,
EFSA, and OECD through their guidelines play an important role in
establishing standards for new developments within areas like
developmental neurotoxicity. While these guidelines can only
serve as a form of guidance rather than regulation, they allow
researchers to more comprehensively understand the capabilities
of predictive modeling for developmental neurotoxicity testing,
leading to advancements throughout the field.
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