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The cell painting (CP) assay has emerged as a potent imaging-based high-
throughput phenotypic profiling (HTPP) tool that provides comprehensive
input data for in silico prediction of compound activities and potential hazards
in drug discovery and toxicology. CP enables the rapid, multiplexed investigation
of various molecular mechanisms for thousands of compounds at the single-cell
level. The resulting large volumes of image data provide great opportunities but
also pose challenges to image and data analysis routines as well as property
predictionmodels. This review addresses the integration of CP-based phenotypic
data together with or in substitute of structural information from compounds into
machine (ML) and deep learning (DL) models to predict compound activities for
various human-relevant disease endpoints and to identify the underlying modes-
of-action (MoA) while avoiding unnecessary animal testing. The successful
application of CP in combination with powerful ML/DL models promises
further advances in understanding compound responses of cells guiding
therapeutic development and risk assessment. Therefore, this review
highlights the importance of unlocking the potential of CP assays when
combined with molecular fingerprints for compound evaluation and discusses
the current challenges that are associated with this approach.
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1 Introduction

In the field of drug discovery and toxicology, computational and experimental
methodologies are closely intertwined for the rational design of compounds and the
assessment of their potential hazardous properties. As a result of increasing volumes of
data becoming available, computational methods have become an integral part of the
compound assessment process, as described by Muratov et al. (Muratov et al., 2020),
helping to (de)prioritize compounds to be tested in the wet lab. This can be done by
leveraging information from datasets of already tested compounds for the evaluation of yet
untested compounds. In drug design, computational methods aid in the faster identification
of promising compounds that exhibit the desired bio-activity, thereby accelerating the drug
discovery process. Concerning toxicology, the methods can help to flag hazardous
compounds (e.g., compounds that harm human cells) early on, which can then be
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excluded from further testing. In both scenarios, the aim is to reduce
the number of compounds for animal testing, and thus, contribute to
the 3Rs introduced by Russell and Burch (Russell and Burch, 1959):
replacement, reduction, and refinement of animal testing.
Classically, the computational assessment of compound bio-
activity and toxicity has been relying heavily on structural and
physico-chemical information on compounds, utilizing molecular
fingerprints to predict molecular properties or toxicological
endpoints. While effective, these methods may overlook the
complex, multifaceted nature of biological interactions, focusing
narrowly on specific targets without considering the broader
biological context.

Cell Painting (CP) assays mark a significant shift toward a more
holistic evaluation of the effects that chemical and genetic perturbations
can have on cells. It is based on the assumption that detectable changes in
the organization of sub-/cellular structures can serve as indicators for the
alterations of normal cell functions. This may be illustrated by the
example of facial expression indicating the well-being of a person. Just as
a smile or frown can convey underlying emotions, changes in the
arrangement of cellular components observed through CP assays can
provide valuable insights into the physiological state of the cell in
response to various perturbations. CP is an imaging-based high-
throughput (HT) phenotypic profiling (HTPP) method that
comprehensively captures various cellular phenotypes from sub-
cellular compartments and organelles that are visualized by staining
with a set of defined fluorescent dyes (Bray et al., 2016; Cimini et al.,
2023). Using suitable image analysis tools, hundreds of features
representing the specific phenotypic responses of cells to compound
treatment can be extracted from the microscopic images. These features
translated into a machine-readable format, give rise to so-called
morphological fingerprints. These fingerprints enable quantitative
analysis and “barcode”-like representation of the image data (Nyffeler
et al., 2022). The variations in morphological fingerprints are ultimately
caused by the mode of action (MoA) of the applied compound
treatment. A treatment, thereby, is the application of a condition for
which one wants to measure the cellular response. These conditions do
not necessarily have to correspond to exposures to (pure) compound
solutions, but can also represent a metabolically or genetically altered
state of the target cells, or treatment with an extract containing amixture
of compounds. Part of the treatment is the incubation time. Using
multiple sampling time points and concentrations during incubation
allows for capturing dynamic changes in cells, providing valuable insight
into their fluctuations over time.

Given the fact that CP experiments can be performed at high
throughput, they provide a promising alternative to (binding) assay
information, typically used to train machine learning (ML) methods in
cheminformatics. Arguably, morphological fingerprints may readily
assess what MoA a compound may be acting through in human
cells. Such information could, for example, inform the development
of anti-tumour compounds (von Coburg and Dunst, 2023) or be used
in the assessment of human health or environmental risk of industrial
chemicals (Nyffeler et al., 2023). Thus, the introduction of CP opens the
route for a paradigm shift towards amore comprehensive assessment of
compound effects. However, working with HT cellular readouts also
poses significant challenges, which need to be understood andmitigated
to make the most use of the data. This review will highlight the
advantages of using CP data for predictions, underlining its
synergistic relationship with other methodologies and data types.

Thereby, it aims to improve mutual understanding of challenges
between the wet lab and the dry lab.

2 Background on cell painting,
molecular representations and artificial
intelligence

In the following, first the CP assay will be introduced, as well as
the processing of molecular data in a computer-readable format, and
finally, how artificial intelligence (AI) currently impacts the field.

2.1 The cell painting assay in a nutshell

The concept of painting the cells with as many fluorescent
morphological markers as possible while maintaining the method’s
applicability to large-scale experiments was pioneered at the Broad
Institute of Harvard and MIT, with special contributions from the
laboratory of A.E. Carpenter (Bray et al., 2016). Since the introduction
of the CP concept by Gustafsdottir et al. (Gustafsdottir et al., 2013), the
CP assay has been successfully implemented, optimized, and
standardized at various sites giving rise to multiple updates of the
original method (Bray et al., 2016; Cimini et al., 2023).

2.1.1 Brief description of the general CP pipeline
In the CP assay, cells are typically seeded into 384-well plates,

grown for 24 h, and then exposed to different experimental
conditions along with suitable positive and negative control
reference compounds (Willis et al., 2020; Dahlin et al., 2023) for
another 24–48 h. The next step includes multiplexed staining of the
cells with six defined fluorescent dyes that label eight distinct sub-
cellular compartments and organelles, i.e., DNA, cytoplasmic RNA,
nucleoli, actin cytoskeleton, Golgi apparatus, plasma membrane,
endoplasmic reticulum and mitochondria (Bray et al., 2016; Cimini
et al., 2023). Notably, depending on the imaging system, the limited
number of available microscopic channels leads to the merged
imaging of at least two dyes (Actin + Golgi), and if four channels
are utilized of another two dyes (RNA/ER) in one channel
each (Figure 1).

Imaging is typically performed using an automated high-content
microscope to capture a certain set of image fields. A recent
publication by Tromans-Coia et al. (Tromans-Coia et al., 2023)
investigated the compatibility of the CP assay with various high-
content microscopes and summarized specific recommendations for
the implementation of the CP assay to a new laboratory. Each well of
the 384-well plate is usually imaged at multiple positions, in
horizontal (xy) and vertical (z) dimensions, to collect a
sufficiently large number of cells and different sub-cellular
regions. Hence, the primary raw output data obtained from CP
assays are thousands of multi-dimensional images at gigabyte-scale,
with single images typically containing hundreds of cells. During the
subsequent image analysis step, these images are computationally
processed using automated image analysis tools that are integrated
as proprietary software such as Harmony (Revvity Inc.) into the
respective high-content microscope or available as open-source
software such as CellProfiler (Bray et al., 2016; McQuin et al.,
2018; Stirling et al., 2021). Using specific image analysis
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algorithms, the software corrects image illumination, locates and
segments cells employing the Watershed method (Scikit-Image,
2024), and extracts hundreds to thousands of features
characterising each single cell. For each individual channel, the
extracted features include the size, shape, texture, correlation, and
spatial relationships of cells, sub-cellular compartments and
organelles (Figure 2).

The nomenclature of CP features typically follows the structure
Compartment_FeatureGroup_Feature_Channel, although not all
features include channel information. Features characterize
specific segmented compartments such as cells (identified using
the RNA channel), nuclei (defined using the DNA channel), and
cytoplasm (identified by removing nuclei from the cells). For each
compartment, modules gather unique sets of features, called feature
groups, labelled I, G, M, and T in Figure 2. For example, a measure of
form factors (metrics characterizing the circular shape of an object,
obtained by dividing the area of an object by the square of its

perimeter, multiplied by 4π) performed on the nuclei will be denoted
as follows: nuclei_areaShape_formfactors, where nuclei is the
compartment, areaShape represents the feature group or
morphological M) module, and formfactors denote the actual
computed features.

This computational step produces specific morphological
profiles per cell, which can then be aggregated into a profile per
experimental condition, essentially serving as a unique
morphological fingerprint or signature reflecting the cellular
response to the respective chemical or genetic perturbation.

2.1.2 Open-access cell painting image libraries
available to the scientific community

The widespread adoption, high throughput and usability of the
CP assay led to the deposition of extensive image and profile datasets
for community-based analysis. For example, the National Institute
of General Medical Sciences (NIGMS) of the National Institutes of

FIGURE 1
CP in a nutshell. Cells of interest are first cultivated (A) and then seeded to, typically, a 384-well plate (B). Every well is exposed to a single compound
or genetic perturbation (E) and incubated for a period ranging from 24 to 48 h, after which every well is uniformly stained with a collection of fluorescent
dyes (C). Subsequently, imaging of the cells is carried out (D), and a phenotypic profile is generated for each experimental condition (F). The images of the
molecules in section (E.) were created using CineMol (Meijer et al., 2024).

FIGURE 2
Example ofmorphological ‘barcode’ representation of CP image data for various concentrations of compound A.Morphological fingerprint includes
generic features (G), intensity (I), morphology (M), and texture (T), extracted individually for each channel. Five image channels are depicted: DNA
(desoxyribonucleic acid, cyan), RNA (ribonucleic acid) and ER (endoplasmic reticulum, green), AGP (actin, Golgi and plasmamembrane, orange), andMito
(mitochondria, red). Features characterize segmented compartments: cells (RNA channel), nuclei (DNA channel), and cytoplasm (excluding nuclei
from cells).
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Health launched the Cell Image Library (CIL), a database for images
and movies of cells from a variety of organisms which contributes to
both profiles and images freely accessibility for analysis (Cell Image
Library, 2017). In 2017, through the article “A dataset of images and
morphological profiles of 30,000 small-molecule treatments using the
Cell Painting assay”, Bray et al. provided the first of such large-scale
CP datasets currently available at the CIL (Bray et al., 2017) and the
Cell Painting Gallery (Institute B, 2024). Recently, in 2023, the Joint
Undertaking for Morphological Profiling Cell Painting (JUMP)
Consortium, a collaboration between companies and non-profit
institutes, released a dataset of 136,000 chemicals, capturing
perturbations for 1.6 billion cells and their single-cell profiles,
with an estimated size of 115 terabyte (Chandrasekaran et al.,
2023). The Cell Painting Gallery, launched in January 2024, is
currently the largest publicly available Cell Painting-specific
database with 656 TB in size and includes, among others, those
two datasets (Weisbart et al., 2024).

2.1.3 Applications of cell painting in the field of
toxicology

As an HTPP method designed for the comprehensive screening
of large numbers of compounds, chemicals, or genetic perturbations,
CP provides insights into diverse cellular (disease) states by
capturing phenotypic responses of cells to perturbations using
morphological profiles. The CP assay can be run in single- or
multi-concentration approaches to identify active compounds or
to derive potency estimates for particular perturbations, highlighting
the utility of CP-based phenotypic profiling in regulatory toxicology.
For example, CP has already demonstrated its usability for rapid
generation of screening-level hazard assessments for thousands of
chemicals enabling identification of putative MoAs and grouping of
chemicals (Nyffeler et al., 2023). The resulting bio-activity data has
been taken up into the U.S. EPA CompTox Chemicals Dashboard.
Being an untargeted method, CP enables capturing of a broad array
of morphological changes in cells and their organelles without
needing specific a priori knowledge on potential compound
activities for different target organs or tissues. Therefore, CP is
an important complementary approach to other profiling methods
such as HT transcriptomics (HTTr) analyzing the whole
transcriptome. In combination, these two profiling methods can
capture changes at different levels of cellular organization, with
HTTr focussing on the molecular level (gene expression) and HTPP
on the cellular level, enabling concurrent potency estimation and
mechanistic prediction of compound activities in a so-called “New
Approach Methodology” (NAM)-based chemical hazard evaluation
strategy (Thomas et al., 2019; Nyffeler et al., 2022). Moreover,
combining HTTr and HTPP data further gives a more holistic
view of the cause-and-effect relationship linking a chemical or
genetic perturbation with its specific morphological profile. Since
CP is conducted in vitro using cultured, mostly human cells, it may
also serve as an alternative method to reduce animal testing in the
future, e.g., as a surrogate pre-screening method to the complex
regulatory rodent studies that are still required for evaluating
specific target organ toxicity (STOT) upon single or repeated
exposure to chemicals for hazard classification and labelling of
chemicals (GHS Rev10e, 2023). Importantly, such application
scenarios of the CP assay in NAM-based approaches in human
regulatory toxicology demand high robustness of the CP assay to

provide reproducible data for accurately predicting the hazard of a
compound in human cells and require selection of cell types relevant
to the biological process under investigation (Schmeisser et al.,
2023). For example, a study investigating cardiotoxicity should
preferably be conducted using cardiomyocyte cell lines or, at
least, cell lines with similar properties (myocytes) rather than
other less related cells to ensure translatability of the results.

These datasets are valuable for diverse applications, including
studies on 1) the compoundMoA as illustrated by Lapins and Spjuth
(Lapins and Spjuth, 2019), Schneidewind et al. (Schneidewind et al.,
2020), Wong et al. (Wong et al., 2023), Tian et al. (Tian et al., 2023),
2) target identification investigated by Akbarzadeh et al.
(Akbarzadeh et al., 2022) and 3) linking cell morphology to
disease studied by Cerisier et al. (Cerisier et al., 2023), Lejal et al.
(Lejal et al., 2023). Moshkov et al. (Moshkov et al., 2023)
demonstrated success in assessing gene function and Seal et al.
(Seal et al., 2021; Seal et al., 2022; Seal et al., 2023a) in evaluating
environmental toxicants, which will be discussed in more detail
throughout this review.

2.2 Computational activity or toxic endpoint
prediction relies on computer-readable
molecular representations

Computational methods have become an integral part of active
compound design, prioritisation and assessment of diverse
properties, including toxicity. Computational toxicology concerns
predicting the hazards and risks of chemicals for humans, animals or
the environment. Commonly used techniques include similarity
search, virtual screening, structural alert identification, as well as
statistical and machine learning models (Morger et al., 2020; Tang
et al., 2023). Especially, quantitative structure-activity and -property
relationships (QSAR and QSPR) models play a major key role in
predicting molecular properties and toxicity endpoints over the last
decade (Muratov et al., 2020; Kusko et al., 2023). The methods rely
on the hypothesis that structurally and property-similar molecules
exhibit similar behaviour on the target or in the whole cell. To train
and apply such methods, the molecules need to be transferred to a
computer-readable representation. Thereby, the choice of
representation has a high impact on the predictions and diverse
types of representations have been introduced over the last decades,
as illustrated by Figure 3 (David et al., 2020; Backenköhler
et al., 2023).

2.2.1 Representations extracted from the
molecular structure

Traditionally, molecules were described by features, mapped
into a so-called descriptor vector or fingerprint. Various types of
features are available to describe molecules based on their structure -
more precisely the contained atoms - and the information that can
be calculated from it. Descriptor vectors can contain count-based
information (number of rotational bonds, heavy atoms, etc.),
physio-chemical properties (solubility, electro-negativity,
molecular weight, etc.), adherence to drug-likeness rules (i.e., rule
of three or five) (Lipinski et al., 1997), topological index (Wiener,
1947), Randic and Chi connectivity indices (Randic, 1975).
Molecular fingerprints are based on the molecular structure as
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well and characterize, in an often predefined fixed-size vector, the
presence or absence of substructures (e.g., MACCS, 166 fragments)
or atom environments (e.g., ECFP, often 1024 or 2048 bits) (Rogers
and Hahn, 2010). The MACCS (Molecular ACCEss System) key is
composed of structural fragments extracted from the two-
dimensional representation of 166 predetermined structural keys.
Each bit in this vector indicates the presence (Muratov et al., 2020)
or absence (0) of a specific substructure in the molecule (Durant
et al., 2002). The Extended Connectivity Fingerprint (ECFP),
derived from the Morgan algorithm (Morgan, 1965), captures
local atom environments. ECFPs can encompass a diverse range
of molecular features, which can be further adapted by changing the
diameters for the considered circular atom neighbourhood,
including stereo-chemical information. ECFPs are versatile and
can be utilised for various tasks such as similarity searching,
clustering, and more, making them suitable for a wide range of
applications.

2.2.2 Learnt representations from strings or graphs
With the advent of deep learning (DL), more advanced

descriptors use learnt molecular representation, so-called
embeddings. Embeddings are an abstract representation of
molecules in a vector space that preserve learnt structural and
functional patterns by the model itself. Techniques derived from
natural language processing or computer vision, e.g., graph
convolutional neural networks (GCNNs) (Kipf and Welling,
2016), are end-to-end trainable models that directly learn to
extract features from the input representation. End-to-end
thereby means that no additional human information or rules are
needed and the algorithm learns the patterns simply from the data
itself. The typical transformer architecture learns from linear - text-

like - representations of molecules such as Simplified Molecular
Input Line Entry System (SMILES) (SMILES, 1988), InChiIKey
(Heller et al., 2013), or Self-Referencing Embedded Strings
(SELFIES) (Krenn et al., 2020). Additionally, a graph naturally is
an exhaustive and intuitive way of representing molecules: nodes of
graphs represent the molecules’ (heavy) atoms while edges represent
the covalent bonds between them. Thus, architectures like graph
GCNNs can extract local as well as global features from the graph
representation of the molecules.

2.2.3 Representations beyond structures
To complement structural information, biological data from

in vitro or in vivo studies, such as binding assays, are helpful to
bring additional layers of information, characterising the response of
biological systems to perturbation for activity and toxicity prediction.
Incorporating experimental data delves into the biological space,
enabling the identification of compounds with analogous behaviour
in biological systems, regardless of their chemical similarities. Binding
assays reveal how well a compound binds to a particular
macromolecule, offering insights into its interactions with
biomolecules. Given a compound assay matrix, i.e., a number of
compounds measured against a number of assays, these assay
outcomes can be used as a biological fingerprint (Riniker et al., 2014;
Helal et al., 2016; Garcia de Lomana et al., 2021). The additional insights
gained from in vitro methods vary with the analysis conducted. Cell-
based assays offer valuable data such as viability, stress response, and
immune activation following a treatment, which can serve as
supplementary features for drug evaluation. Similarly, micro-
physiological systems can provide detailed information at the tissue
and organ level, aiding in characterising the organ states after treatment
(inflamed, necrotized, etc). Experimental models, like cell culture,

FIGURE 3
Compound and cell profile featurization. (A) Compound structures are typically represented as graphs and stored as compressed text, e.g., as
SMILES strings. (B)Molecular fingerprint algorithms like a circularMorgan fingerprint can turn themolecular graph structure into an n-bit array, converting
the molecular graph into a fixed bit-sized array. Fixed arrays are useful for data analysis and machine learning approaches that require tabular data. (C)
The graph structure can also be leveraged directly for graph neural networks, which keep three distinct tables per compound: a table containing
atoms and their features, a table containing bonds and their features, and a table that connects the atoms and bonds. (D) Image-based morphological
profiles typically consist of multiple grey-scaled images, one image per fluorescent dye used. (E) Segmentation tools can process these image profiles
and output a fixed-sized array of features. These morphological fingerprints can equally be leveraged by algorithms that process tabular data. (F) The
morphological images can also be used directly in convolutional neural network architectures, which can learn to create a fixed-sized fingerprint, called
an embedding.
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organoids, and organ-on-a-chip systems, mimic physiological
properties, facilitating compound screening and the exploration of
drug-induced toxicity across multiple systems (Liu et al., 2017; Cong
et al., 2020; Xu et al., 2020; Trapotsi et al., 2022; Liu et al., 2023).

2.3 Recent advances in using artificial
intelligence to predict molecular properties

Classical computational methods for molecular activity or
toxicity prediction often rely on techniques such as similarity
search, clustering, statistical modelling and machine learning.
Unsupervised methods, such as clustering, aim to group data
points into homogeneous subgroups by optimizing a proximity
index using partitioning (Jin et al., 2010), hierarchical, (Zhao
et al., 2010) or density-based (Sander et al., 2010) algorithms.
This ensures that data points that end up within the same cluster
are highly similar to each other and more dissimilar to those in
different clusters. Consequently, clustering can discern patterns in a
collection without the need for data labels. Nevertheless, coupled
with annotation data, this approach is valuable for MoA prediction
and target identification (Schneidewind et al., 2020; Akbarzadeh
et al., 2022; Pahl et al., 2023). Supervised learning approaches have
been pivotal in predicting bio-activity or toxicity by leveraging
features extracted from molecular structure and their
corresponding measured values or classes. Algorithms like
Random Forest (RF), a type of ensemble model for regression or
classification, built on decision trees (Kusko et al., 2023), have shown
great success in computational MoA prediction (Seal et al., 2021;
Seal et al., 2023a; Seal et al., 2023b). Likewise, Support Vector
Machines (SVMs) represent a ML technique that can solve both
regression and classification tasks. SVMs have been applied to a
variety of tasks to identify molecular adverse outcomes (e.g.,
carcinogenicity, hepatotoxicity) with promising results (Shi et al.,
2023). Such models, leverage the features or molecular fingerprints
extracted from the molecular structure and their corresponding
measured values or classes to make predictions based on the learnt
pattern in the data representation.

However, the advent of deep learning (DL) has further propelled
in silico drug design, allowing for the utilization of other molecular
representations such as graphs and strings. Graph convolutional
neural networks (GCNNs) (Kipf and Welling, 2016), Long Short-
Term Memory networks (LSTMs) (Hochreiter and Schmidhuber,
1997), and transformers (Vaswani et al., 2023) are among the
cutting-edge architectures capable of directly learning features
from molecular representations. GCNNs operate on graphs using
a message-passing mechanism, aggregating neighbouring
information to iteratively update each node within the graph.
Chemprop (Heid et al., 2024), a prominent example within this
domain, has significantly contributed to predicting various chemical
properties, including toxic endpoints. This baseline architecture was
also used for predicting compound activity from both phenotypic
profiles and chemical structures (Moshkov et al., 2023).

Nevertheless, training such DL models necessitates large, well
curated, and harmonized annotated datasets. This is challenging in
molecular property and toxicity prediction, disciplines in which data
is growing but still scarce compared to image or text processing
tasks. In addition, standardized protocols are often missing, and

inconsistencies in labels among databases exist. DL models need
large datasets to effectively learn complex patterns to generalize well
to unseen data. To address this limitation, emerging concepts like
transfer learning and multi-task learning have shown promise
(Allenspach et al., 2024). Transfer learning, in particular,
facilitates domain adaptation by leveraging knowledge gained
from pre-training on extensive unlabelled public datasets, thereby
enhancing generalization to novel compounds. The assumption
thereby is that the large unlabelled molecular data helps the
model to learn the general characteristics of molecules from a
large chemical space. During fine-tuning, this knowledge can
then be transferred to smaller labelled data sets. Likewise,
contrastive learning models assist the learning process by always
considering pairs of data points. These models minimize the
distance between similar data points while maximizing the
separation between dissimilar ones in the embedding space.
Contrastive learning has for example, been applied by Sanchez-
Fernandez et al. (Sanchez-Fernandez et al., 2023) to directly learn on
CP images using a convolutional neural network (CNN). The images
are given to the network as tensors of shape, number of images,
image dimensions (e.g., height and width) and number of channels.
In each layer of the neural network, the image is convoluted (further
abstracted) and the information is pooled and thereby hierarchical
patterns are learnt in images (Li et al., 2021). CNNs can therefore be
used for image segmentation, as alternative to classical segmentation
algorithms like the Watershed Algorithm in CellProfiler.
Furthermore, multi-task learning enables the simultaneous
training of multiple tasks using a single model, leveraging shared
knowledge among single tasks to improve global performance. If the
single tasks of a multi-task model are related to others, the model
learns the internal representation of the input data useful for
all tasks.

In addition to these advancements, the integration of advanced
architectures from other domains, e.g., computer vision, such as
variations of autoencoders (Ma Ranzato et al., 2006) and Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014), has opened
new avenues for molecular discovery. Note that these methods can
be applied for de novo generation of compound suggestions with
desired properties, instead of only predicting molecular properties
and ranking given compounds. Autoencoders, including Variational
Autoencoders (VAEs) (Kingma and Welling, 2022), are a type of
neural networks that enable the generation of new data by learning
to reconstruct the input from compressed representations. VAEs
compress the input images, yielding a condensed representation
namely, the code, that is given to a decoder that reconstructs the
input resulting in a reconstruction of the original image with little
information loss. The second type of generative models are GANs
which facilitate the creation of plausible data within the task domain.
GANs are two-part models, comprising a generator and a
discriminator. The generator learns to produce plausible data,
while the discriminator learns to differentiate between the
generator’s fake and real data. Notably, models like Mol2Image
(Yang et al., 2021) and Morphnet (Lee and Welch, 2022) have
emerged, harnessing the power of autoencoders and GANs to
generate cell images and cell morphology profiles based on
chemical compound structures and gene expression data,
respectively. The synergy between chemistry, i.e., compound
structure, and morphology, i.e., the response of the cell to
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treatment, holds great potential in optimizing de novo molecular
design and chemical de-risking.

In the subsequent sections, we will delve into specific studies that
leverage the combined knowledge of cell morphology and chemical
information to enhance experimental design and de novo drug
design using AI-driven approaches.

3 Exploring integration of molecular
fingerprints and cell painting readouts
for activity prediction

3.1 Datasets and data integration

This section will provide an overview of commonly used CP
datasets (Table 1). Highlighting not only chemical perturbation but
also different treatment types as gene manipulation and RNAi, and
covering the relationship between cellular morphology and
molecular perturbation.

3.1.1 A cell image library dataset of 30,616
small molecules

In 2017, Bray et al. released a dataset comprising 30,616 small
molecules screened on U2OS cells, a human bone osteosarcoma cell
line, using the CP assay method. U2OS cells were seeded in
406 multi-well plates (384 wells per plate) and treated with each
of the 30,616 compounds in biological quadruplicates or
octuplicates. The resulting image dataset is characterised by five
fluorescent channels across six fields of view and is publicly
accessible on the CIL repository (Cell Image Library, 2017), the
Image Data Resource (IDR - OpenMicroscopy Environment, 2016),
the Cell Painting gallery (Institute B, 2024) and the Broad Bioimage
Benchmark Collection under BBBC047 accession number (Broad
Bioimage Benchmark Collection, 2017). The workflow for
illuminating, correcting, and extracting features from these
images using CellProfiler can be found on GitHub (Carpenter,
2017). Raw cell-level profiles were measured 48 h post-treatment

for the thirty thousand compounds. Various methods, such as
averaging features across all cells for each well, can be employed
to create population profiles based on the per-cell profile. Both types
of profiles are available in the GigaDB repository (Gigadb dataset,
2017). Among the tested compounds, 10,080 originate from the
Small Molecule Repository, 2,260 are drugs, natural products, and
small-molecule probes from the Broad Institute’s known bio-active
compound collection, 269 are confirmed screening hits from the
Molecular Libraries Program, and 18,051 are novel compounds
derived from diversity-oriented synthesis (Bray et al., 2017).
Since its release, up to now, the technique (Bray et al., 2016) and
dataset (Bray et al., 2017) have been cited over 800 times (by March
2024), indicating substantial interest in such datasets.

3.1.2 The Joint Undertaking for morphological
profiling consortium

The JUMP consortium, comprising ten pharmaceutical
companies, six supporting technology companies, and two non-
profit organizations, created a CP dataset containing morphological
profiles for 116,715 unique, pure compound treatments.
Additionally, the dataset includes the phenotypic effects from
over-expressing 12,064 genes and 7,795 gene knockouts. Likewise,
to the CIL dataset, the 116,715 compounds were tested on U2OS
cells. The consortium partners exchanged compounds with each
other and ran approximately five replicates of each experiment,
performed as one to two replicates at three to five different sites
around the world. The compounds consist mainly of synthetic
compounds but also contain a smaller subset of natural products.
Treatment incubation time was 48 h and treatment concentration
was 10 μM except for one partner who tested at 0.625 μM. The
dataset includes pre-processed CellProfiler features (Josh Moore,
2023) for all images (McQuin et al., 2018), organized at a per-
well level.

3.1.3 In house datasets
As CP has become more accessible over the past years, thanks to

the sharing of protocols and open-source image processing software

TABLE 1 Examples of cell painting (CP) datasets used within the literature. For each CP dataset, the number of treatments, the used cell lines, treatment
concentrations, and measured time points are listed, as well as data availability.

Name Treatments Cell lines Concentrations (μM) Time points (h) Open source

CIL [BBBC047]1 30,616 U2OS various 48 Yes

JUMP2 116,750 U2OS 0.10, 0.625 48 Yes

Pahl et al.3 4,256 U2OS, HeLa 2–10 48 Yes

BBBC0214 113 MCF-7 various 24 Yes

(Gupta et al., 2022)5 231 U2OS 10 48 Yes

LINCS6 1,920 A549, MCF-7, U2OS 10 6, 24, 48 Yes

BBBC0257 315 U2OS 10 96 Yes

Akbarzadeh et al.8 15,603 U2OS, HeLa 10 24 No

Schneidewind et al.9 3,580 U2OS 2, 10 24 No

Recursion10 > 5, 000 HUVEC, HRCE, RPE, U2OS, HEPG2 various N/A Yes

Note: The superscript numbers in the Name column are being reused in Table 2. For Pahl et al. (Pahl et al., 2023) dataset, the concentration corresponds to a range varying from 2 to 10 μM. For

BBC021 dataset, each of the 113 treatments is screened at eight-point half-log dose. Recursion provides five different datasets of CP images.
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like CellProfiler, various researchers have generated in-house
datasets. This enables research groups to screen their own
compound libraries under various conditions and cell types,
facilitating the study of molecule-specific modes of action. This
approach was exemplified by Pahl et al. (Pahl et al., 2023). They
followed the original method described by Bray et al. (Bray et al.,
2016) and introduced a different cell line, the HeLa cells (cervix
carcinoma), infected with papillomavirus. Various concentrations of
4,256 compounds were tested on both U2OS and HeLa cells,
expanding the scope of their investigations for consensus profile
analysis and bio-activity annotations. Similarly, Gupta et al. (Gupta
et al., 2022) followed the protocols established by Bray et al. to
produce five-channel CP images for MoA prediction. This dataset
was created for model development for Tian et al. (Tian et al., 2023).
One notable advantage of generating in-house images lies in the
control over parameters, including image resolution and plate layout
design. In this context, they employed a tool called PLAID (Plate
Layouts using Artificial Intelligence Design) (Francisco Rodríguez
et al., 2023) to achieve an optimized plate layout that minimizes
plate effects. Other datasets from the Broad Institute, using different
cell lines and treatment as gene expression can be accessed at the cell
painting gallery (Institute B, 2024). Note, this is just an extract of in
house data sets included in the studies discussed in this review, with
no claim to completeness.

3.1.4 Omics data integration
Combining the read-outs from different types of treatments has

the ability to give a holistic insight into the cause-and-effect
relationship between different treatments and the cells’ change in
morphology. Apart from compound treatments, consideration can
be given to the relationship between cell morphology and a given
treatment at the genetic, transcriptomic, proteomic, and/or
metabolic level, as measured by the respective omics technique.
For example, genomic data, such as DNA sequencing or gene
expression profiles, can help link phenotypic changes observed in
the assays to genetic alterations. Performing CP assay on different
cell models with knock-down and knock-out genes could give
insight into identifying drivers of diseases, and cellular responses
to drugs. Chandrasekaran et al. (Chandrasekaran et al., 2022)
assessed genetic perturbations in addition to some of the
compound treatments by including 176 gene over-expression and
160 gene knock-down treatments. They combined these
morphological profile data with datasets from Recursion
(Sypetkowski et al., 2023) which is a comprehensive, and largely
proprietary dataset describing compound and genetic perturbation
treatments. In the same manner, integrating transcriptomic data can
help correlate changes in gene expression with phenotypic
alterations, and identify transcriptomic profiles within target cells
that are associated with specific MoAs of the compounds to which
they are exposed (Carraro et al., 2022). Protein levels can be
measured alongside CP, providing detailed insights into how
genetic modifications, compound treatments, or disease states
influence cell morphology. This is especially valuable for
identifying compounds that bind to key regulatory proteins (Ma
Y. et al., 2006). Next to the proprietary Recursion dataset, multiple
open-source datasets containing CP data from different treatment
types have been created. Primary examples are the LINCS dataset,
created by Keenan et al. (Keenan et al., 2018) and Natoli et al. (Natoli

et al., 2021), and the recently created JUMP dataset by
Chandrasekaran et al. (2023).

3.2 Approaches for molecular activity and
toxicity prediction

In the following, the state-of-the-art methods including
morphological data for activity and molecular property
prediction, including toxicity, are discussed. The general
workflows on how the data can be integrated into the individual
models is exemplified in Figure 4.

3.2.1 Similarity search and hierarchical clustering
for annotation and MoA prediction

In this section, we explore how bio-similarity of morphological
fingerprints/profiles serves as a metric for clustering and similarity
search to annotate and identify the MoA of novel compounds. Bio-
similarity of morphological fingerprints/profiles is defined as one
minus the correlation distance between two profiles (Eq. 1).

distcorr x, y( ) � 1 − x⊤y
‖x‖ · ‖y‖

BioSim � 1 − distcorr

(1)

Where x⊤y represents the dot product of two morphological
fingerprints x and y; ‖x‖ and ‖y‖ denote the Euclidean norm
(magnitude) of profile x and y, respectively.

Schneidewind et al. (Schneidewind et al., 2020) used
morphological fingerprint similarity to deduce the mode of
action of small molecules. A morphological fingerprint from a
compound with a known mode of action is taken as a reference,
and the annotation is then extrapolated to closest match(es) in terms
of bio-similarity. The study is performed with deferoxamine (DFO)
as the reference, an iron-chelating agent known to disrupt cell cycles.
The authors seek matches within 3.580 morphological fingerprints
of annotated molecules. Consequently, molecules with a bio-
similarity score to DFO exceeding 80% are deemed to share the
same mode of action as DFO. The hypothesis is validated through
case studies; e.g., ciclopirox and phenanthroline, two known metal
ion chelators, were found to have a high bio-similarity of over 93% to
DFO. Also unexpected molecules displayed high bio-similarity to
DFO. An example is PAC-1, a procaspase activator, with an 89%
bio-similarity to DFO, despite targeting a different protein. Further
investigation revealed that PAC-1 activates procaspase3 by chelating
zinc ions. Similarly, 20 other molecules exhibit high bio-similarity
(79%–92%) to DFO but were annotated as nucleoside analogues,
CDKs, topoisomerases, DNA intercalating agents, and others. Iron
serves as a crucial factor in cellular life (Yu and Richardson, 2007);
enzymes involved in DNA repair and synthesis require iron as
cofactors (Puig et al., 2017). Additionally, iron can inhibit cell
proliferation and induce cell-cycle arrest in the G1/S-phase
(Siriwardana and Seligman, 2013), modulating the expression of
various cyclins and cyclin-dependent kinases, thereby leading to
cell-cycle arrest. Thus, the similarity among these diverse
compounds does not arise from the modulation of a single
target, but rather from a shared mode of action, namely,
inducing cell-cycle arrest. Consequently, Schneidewind et al.
demonstrated that bio-similar but structurally distinct

Frontiers in Toxicology frontiersin.org08

Odje et al. 10.3389/ftox.2024.1401036

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2024.1401036


compounds with varying annotated cellular targets can cause shared
physiological responses.

Likewise, Akbarzadeh et al. (Akbarzadeh et al., 2022) employed
morphological fingerprints to identify compounds targeting
tubulins, emphasizing the importance of characterizing off-target
binding. In vitro tubulin binding assays may not accurately reflect
the cellular state, leading to insufficient characterization of tubulin
binding mode due to scarce high-quality phenotypic assays.
Identifying common morphological patterns, induced by small
molecules binding tubulin, helps in predicting and experimentally
validating microtubule-binding activity. Utilizing nocodazole’s
morphological profile as a query—a known tubulin-targeting
agent—known drugs, e.g., vincristine and vinblastine, with the
same MoA were successfully identified. Microtubule targeting is
crucial in cancer therapy, but the multifaceted modulation of tubulin
by small molecules complicates compound development.
Akbarzadeh et al. demonstrated that bio-similarity search using
nocodazole’s CP profiles helps in predicting microtubule
modulation for unexplored compounds and several reference
compounds initially unrelated to tubulin. Experimental evidence,

including live cell imaging, supported this conclusion, highlighting
the need for early investigation of tubulin as an off-target in
compound development.

Pahl et al. (Pahl et al., 2023) analyse sub-profiles of
morphological fingerprints to annotate novel molecules. A sub-
profile is a consensus fingerprint that contains only a subset of
features characterizing a set of bio-similar molecules. Such sub-
profiles are generated by first conserving features with the same sign
(positive or negative) and then aggregating them into one
fingerprint by taking their median. The set of bio-similar
molecules refers to compounds having the same known MoA,
e.g., tubulin inhibitors. Therefore, Pahl et al. generated consensus
fingerprints, i.e., sub-profiles, defining 10 MoA groups. As the sub-
profiles use a subset of features, these features help in allocating
molecules to the same MoA group. For instance, in Schneidewind
et al. (2020)’s study, the common MoA identified using DFO’s
morphological fingerprint as a query is cell cycle impairment.
This MoA group also contains molecules that inhibit CDKs,
affect topoisomerases, and are nucleoside-type. A hierarchical
clustering based on the selected features reveals a distinct

FIGURE 4
Using CP data for mechanism of action prediction. (A). Representations for compounds and CP images can be either calculated, for example, with
CellProfiler, or learnt with deep learning approaches. (B). Data representations can be concatenated or used independently for downstream tasks. (i) The
MoA of new representations can be determined through comparison with similar annotated representations. (ii) Tree models like Random Forest’s can
be used to predict MoA for new representations. (iii) Other classical machine learning algorithms like SVMs can also learn to predict MoA for new
representations. (iv) Instead of using the representations for downstream tasks, a predictor module can be directly attached to model learning the
representations to create an end-to-end predictor.
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separation among compounds sharing the same MoA, grouping
them into (sub-)families. Thus, Pahl et al. were able to assign
unknown molecules to known MoA clusters using their sub-
profile similarity and experimentally confirmed their findings by
using three uncharacterized compounds and mapping them to a
cluster of molecules that impact protein synthesis similarly to DFO.

Summary: Binding assays address the modulation of proteins by
small molecules, however, they do not reflect their influence on
whole cell processes. Schneidewind et al. (Schneidewind et al., 2020)
illustrate that compounds with diverse annotations form
morphological clusters which are based on the same mode of
action rather than on the same target. Furthermore, bio-
similarity between compounds helps to unveil the MoA for
unexplored compounds and to identify un-expected off-target
activities for known compounds, as demonstrated with
Akbarzadeh et al. (Akbarzadeh et al., 2022) and Pahl et al. (Pahl
et al., 2023).

3.2.2 Random forest for the mean of toxicology
and MoA prediction

A RF model aims to follow a path of criteria along decision trees -
learnt from the input features (e.g., gene expression data,
morphological or molecular fingerprints) of a set of training
compounds - to predict a specific outcome, e.g., cytotoxicity. The
final decision is made at the leaf node level, e.g., for cell viability, toxic
vs non-toxic. Thereby, decision trees identify effective feature splits to
segment the data. By aggregating multiple decision trees, the random
forest algorithm improves predictive power. The predicted class for a
data point is determined by the most frequently occurring categorical

variable among the decision trees, addressing the initial question,
i.e., about the molecule’s cytotoxicity.

Seal et al. (Seal et al., 2021) compared the performance of RF
models, incorporating morphological fingerprints from Bray et al.
(Bray et al., 2017) (see Table 1, BBBC047) and structural fingerprints
to predict proliferation-related assay outcomes obtained from the
MoleculeNet ToxCast benchmark (Wu et al., 2017). The study
investigated whether single or combined modalities,
i.e., molecular, morphological, or combined fingerprints, better
predict cell viability. A RF model was built and optimized
separately on each type of fingerprint through nested k-fold
cross-validation and leave-one-cluster-out (LOCO) split (see
methods of Seal et al. (Seal et al., 2021)). Permutation
importance analysis was employed to identify the contributing
morphological fingerprint features for predicting proliferation
assay outcomes. Seal et al. explored two different structural
fingerprints (Morgan and Extended reduced Graph) with
mediocre prediction performance, e.g., average balanced accuracy
for LOCO split is 0.56 ± 0.13 and 0.54 ± 0.09, respectively, for the
BSK_3C_Proliferation_down endpoint (refer to Table 2 in Seal et al.
(Seal et al., 2021)). Cell painting data alone proved more effective in
predicting 9 out of 12 studied cases, i.e., assay outcomes related to
cell viability or proliferation, with a mean balanced accuracy of
0.66 ± 0.1. However, combining morphological and Morgan
fingerprints yielded the best result in 10 out of the 12 studied
cases with a mean balanced accuracy of 0.77 ± 0.12. Additionally,
morphological feature contributions were extracted for different
endpoints to enhance the interpretability of the results. Compared to
structural fingerprints, morphological fingerprints can be linked to

TABLE 2 Summarizes the state-of-the-art discussed works together with the employed methods, the cell painting (CP) data used, and the prediction task
theywere applied to. The superscript numbers in the CPData column refer to the data set summaries in Table 1. Method abbreviations: Random Forest (RF),
Neural Network (NN), Feed-forward NN (FNN), Convolutional NN (CNN), conditional Generative AdversarialNetwork (cGAN).

Authors Method CP Data Application

Schneidewind et al. (2020) Similarity search in house9 MoA annotation

Akbarzadeh et al. (2022) Similarity search in house8 Target annotation

Pahl et al. (2023) Similarity search and clustering in house3 Target Annotation

Seal et al. (2021) RF BBBC0471 Assay activity

Seal et al. (2022) RF BBBC0471 Mitochondrial toxicity

Seal et al. (2023a) RF BBBC0471 Cardiotoxicity

Moshkov et al. (2023) Chemprop BBBC0471 Assay activity

Simm et al. (2018) RF, k-NN, Macau, FNN in house Assay activity

Hofmarcher et al. (2019) FNN, CNN BBBC0471 Assay activity

Wong et al. (2023) CNN in-house5 Assay activity

Tian et al. (2023) FNN, CNN, classical ML in-house5 Assay activity

Nguyen et al. (2023) Contrastive learning JUMP2 Molecular property prediction

Sanchez-Fernandez et al. (2023) Contrastive learning BBBC0471 Assay activity, cross-modal retrieval

Gabriel et al. (2023) Contrastive learning JUMP2 Cross-modal retrieval

Zapata et al. (2023) cGAN BBBC0471 Molecular generation

Palma et al. (2023) Autoencoder BBBC0214 CP image generation
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MoAs or to identify novel markers for, e.g., cell viability/toxicity.
Specifically, after cell death, remaining cells had reduced contact
with neighbours, leading to contracted edge pixels touching another
cell, thus, identifying cell neighbour features as crucial indicators of
cell death/viability markers in the assays.

Drug-inducing mitochondrial toxicity frequently contributes to
late-stage withdrawals of marketed therapeutics. Therefore Seal et al.
(Seal et al., 2022) explored predicting mitochondrial toxicity by
integrating gene expression profiles (Links: L1000 dataset (Keenan
et al., 2018)), morphological (from the CIL dataset, (Bray et al.,
2017), BBBC047, Table 1) and Morgan fingerprints (derived from
molecules using RDKit (Team and Landrum, 2024)). The molecules
within the dataset are labelled as potential mitochondrial membrane
disruptors using the Tox21 dataset endpoint with assay ID AID
720637. The overlap between the gene expression and the
morphological datasets with the mitochondrial toxicity
annotation results in a dataset of 404 unique molecules. In
addition to this, an external test set is used from Hemmerich
et al. (Hemmerich et al., 2020) plus 8 molecules from Mitotox
(Lin et al., 2021). Five RF models were built to predict mito-toxicity;
one for each input type (gene expression, morphological and
structural fingerprint), one early fusion model (the features are
concatenated into one vector and given as input to the model),
and one late fusionmodel (the probabilities of the predictions of the
three single RF models are averaged). A multitude of disrupting
mechanisms can result in mitochondrial toxicity, by identifying
links within the different input types covering different domains,
one can gain more interpretable insight into the cause leading to
mitochondrial toxicity. Seal et al. first evaluated the informative
power of CP features and structural fingerprint through
morphological (Pearson correlation) and fingerprint (Tanimoto
coefficient) similarity analysis. Mitochondrial disruptors exhibit
greater morphological than structural similarities, indicating that
morphological fingerprints are more effective in discriminating
between both compound classes. After conducting principal
component analysis using morphological fingerprint (110 features
post-reduction), clusters representing various causes of
mitochondrial toxicity were identified. Some clusters gathered
known microtube destabilisers (e.g., benzimidazoles) with
structurally different molecules (e.g., rotenone). Additionally,
certain gene features are associated with mitochondrial toxicity
(e.g., endoplasmic reticulum stress, T cell apoptotic process)
correlated with morphological features (e.g., Cytoplasm_
AreaShape_FormFactors, Figure 2), suggesting that morphological
readouts also reflect mitochondrial toxicity pathways (Szegezdi et al.,
2006). Based on this insight, RF models were trained similarly as
described in their earlier study (Seal et al., 2021). Despite decent
performance of both morphological and gene expression data
(balanced accuracy (BA) 0.6), RF models built on Morgan
fingerprints alone showed lower performance, with a drop in BA
from 0.69 to 0.58 and from 0.57 to 0.2 between training and external
test sets. The late-stage fusion RF model seemed to be the most
promising, correctly predicting more mitochondrial toxic
compounds with BAs on the training and external sets of 0.7 and
0.69, and with a sensitivity of 0.62 and 0.78 on those sets,
respectively.

Likewise, Moshkov et al. (Moshkov et al., 2023) combined the
three same modalities (gene expression from L1000, CP data from

Bray et al., structural information derived from Chemprop).
Although the architecture of the model used in Moshkov et al. is
different, the authors came to a similar conclusion. Morphological
fingerprint and gene expression bring complementary information,
and phenotypic profiles improve prediction performance compared
to models built on structural fingerprint information only.

In 2023, Seal et al. (Seal et al., 2023a) conducted another study
exploring the potential of chemical and biological data in predicting
drug-induced cardiotoxicity. Here, the investigated feature space
was further extended, including phenotypic information (such as
CP, gene expression, and gene ontology data), binding assay-related
data (including how a drug interacts with various biological targets
(inhibition/antagonism information)), pharmacokinetic data (as the
total and maximum unbound and total concentrations (Cmax) in
plasma), structural descriptors (Morgan fingerprint, physiochemical
descriptors), and target-MoA annotation. A total of 11 RF classifiers
were trained using either individual features or combinations to
analyze the contribution of the individual feature spaces. The six
best-performing RF models (including structural and
physicochemical descriptors, MoA, Cmax, MoA-Cmax, and
binding assay-related data), were selected to create an ensemble
model, the final prediction is determined by averaging probabilities
across the six models, known as soft voting. Additionally, a second
ensemble model that considers all features individually was built
with both models aiming to predict cardiotoxicity. The ensemble
model, using the six best-performing feature sets, achieved results
equivalent to the model built on the structural descriptors alone,
with an Area Under Curve (AUC) of 0.83. The various analyses
conducted revealed key features associated with drug-induced
cardiotoxicity. For instance, analysis using morphological data
revealed that features related to the endoplasmic reticulum (ER)
and RNA texture, measured in both the cytoplasm and the nucleus
played a significant role in distinguishing between toxicity classes.
These observations align with (Belmadani and Matrougui, 2019)
indicating that morphological texture features may signify
disruptions in ER function leading to ER stress, a condition
associated with various cardiovascular diseases.

In Lapins and Spjuth (Lapins and Spjuth, 2019), the study
similarly integrates the same three data domains, as mentioned
before, to conclude on a synergistic predictive power. However, the
study also emphasises the importance feature pre-processing can
have for model accuracy and interpretability.

Summary: These papers highlight the advantageous synergistic
effect of integrating information from distinct domains for both
toxicity-related tasks and MoA/target annotation. Seal et al. (Seal
et al., 2021; Seal et al., 2022; Seal et al., 2023a) highlight the
significance of CP data for MoA annotation by establishing
connections between several data domains and interpreting the
outcomes derived from RF models, thus, providing mechanistic
insights into toxicology prediction.

3.2.3 Learning directly on cell painting images
CP images can be represented as three-dimensional tensors,

with the dimension length of image x width of image x number of
channels. In this data structure, one unit is defined by one pixel. The
spatial arrangement of the pixels in this data structure has a
meaning. When converted to features in a morphological
fingerprint, this spatial information is lost. But these one-
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dimensional representations can be processed by classical machine
learning algorithms (e.g., RF and SVM) or feed-forward neural
networks (FNNs) (Svozil et al., 1997). However, for the model to
learn on the spatial arrangement of the features (i.e., pixels) as well,
specialized algorithms like CNNs (Li et al., 2021) are required.

Simm et al. (Simm et al., 2018) collected bio-activity data from
an image-based phenotypic screen on 524,371 proprietary
compounds, specifically a three-channel microscopy-based screen
for glucocorticoid receptor translocation, and collected response
classes for these compounds based on their activity on diverse
protein targets. The authors retained classes when there were at
least 25 compounds with a positive response and 25 compounds
with a negative response. This resulted in 545 target classes.
CellProfiler was used to extract features from the phenotypic
screen. The authors used various machine-learning models,
including RF, k-Nearest Neighbours (kNN), Bayesian matrix
factorization (Macau) and FNNs, to predict the aforementioned
bio-activity classes of these compounds. The authors deemed a
prediction task for an assay to be successful if the model was
able to predict the correct bio-activity of compounds with an
AUC-ROC of at least 0.9. The FNN performed best with 8%
successful assay prediction tasks (43 out of 545), followed by
Macau with 5.8%. RF and kNN resulted in 2.3% and 0% success
rates, respectively. To test if the best-performing models were able to
predict the bio-activity for a new target, Simm et al. (Simm et al.,
2018) performed two in vitro tests: one against an undisclosed
kinase, and another against an undisclosed non-kinase enzyme.
For these in vitro tests, the authors used the Macau model to predict
compound bio-activity. In the first test against the kinase, the
authors used the Macau model to predict the bio-activity of
60,000 compounds from the original phenotypic screen that had
no bio-activity data on the respective kinase. 342 highest ranking
hits were selected for wet-lab testing, which resulted in 124 hits
(i.e., XC50 < 1 μM). In the second test against the non-enzyme
kinase, theMacaumodel was used again to predict the bio-activity of
all 524,371 compounds from the original phenotypic screen. After
filtering-out the 141 high-ranking hits compounds, 36 hits were
selected for wet-lab testing.

Hofmarcher et al. (Hofmarcher et al., 2019) showed that using a
CNN trained directly on the images, provided a substantial increase
in performance over training on morphological fingerprints. In this
study, the authors annotated compound-image profile data pairs
from the Cell Painting dataset by Bray et al. (Bray et al., 2017) with
activity labels mined from ChEMBL. Consecutively, they used
various CNN-based architectures to predict these activity labels
solely based on the images. The findings indicate that CNNs
significantly outperform FNNs operating on precomputed
morphological fingerprints. The best-performing CNN was able
to predict the outcome of 32% of 209 biological assays with an
AUC higher than 0.9, compared to the FNN which achieved tis in
26% of the cases.

To test the performance of CNNs on image-based
morphological profiles, Wong et al. (Wong et al., 2023) created
MOAProfiler, a modified pre-existing CNN-based EfficientNet (Tan
and Le, 2019) image classifier model that predicts MoAs for five-
channel images from CP assays. For the training data, the authors
collected compound-image profile data from the JUMP pilot dataset
(Chandrasekaran et al., 2023) and LINCS (Natoli et al., 2021), and

labelled them with MoA classes when the annotation was known.
Only the compounds with at least one label were retained for
training. This resulted in 266 compounds with 176 unique MoA
annotations from the JUMP pilot dataset for training and a subset of
56 MoA annotations for testing. In addition, 1287 compounds with
424 unique MoA annotations from the LINCS dataset for training
and a subset of 215 MoA annotations for testing. Separate models
were trained for both datasets. The authors achieved an Area Under
Precision-Recall Curve (AUPRC) of 0.46 with MOAProfiler on the
JUMP pilot dataset hold-out MoAs and an AUPRC of 0.34 on the
LINCS dataset hold-out MoAs. Additionally, the authors extracted
embedding layers from both of the trained models and aggregated
these. These embeddings represent learnt representations of the CP
and compound input data. Wong et al. (Wong et al., 2023)
compared the extracted image profile embeddings from
MOAProfiler with extracted image profile embeddings from
DeepProfiler (Bornholdt et al., 2022) and with CellProfiler
fingerprints. The embeddings and fingerprints were compared by
calculating average Pearson correlation coefficients between
embeddings for the same MoA, performing k-Nearest
Neighbours classification for well-level MoA, and a custom class
latent assignment metric. This metric assigns MoA to a test set
sample embedding by calculating which median-aggregated MoA-
level embedding is closest to it in embedding space. The median-
aggregated MoA level embedding is obtained by retrieving all
training embeddings related to a specific MoA and calculating
the median for every feature. For the models on both datasets,
MOAProfiler outperformed the DeepProfiler embedding and the
CellProfiler fingerprint on all accounts. This indicates that
embeddings generated by MOAProfiler are more
distinguishable per MoA.

Tian et al. (Tian et al., 2023) used a similar approach as
MOAProfiler, a modified EfficientNet model for directly learning
on the CP images. Instead of predicting MoA on the images alone,
the authors created a model architecture that also incorporated the
molecular features of the compound used for the treatment to create
each CP profile, in order to complement the image data. The
modified EfficientNet model was trained on 231 annotated
image-based morphological profiles, while the compound
classifier was trained on 5500 annotated compounds. The image
data accompanying this paper is described by Gupta et al. (Gupta
et al., 2022). The authors tested several different models for
classifying the compounds, including classical machine learning
algorithms trained on Morgan fingerprints, an FNN trained on
Morgan fingerprints, and a GNN trained on the molecular graphs.
When trained on only the molecular data, the best-performing
model, the FNN, achieved a macro-averaged F1 score
(i.e., unweighted mean of all per-class F1 scores) of 0.58.
Training on only the cell morphology image data with the
modified EfficientNet model resulted in a higher macro-averaged
F1 score of 0.81. The global model, which was trained on both types
of data, achieved the highest macro-averaged F1 score of 0.92,
indicating a clear synergistic effect from combining these
data sources.

The previous examples focused on predicting MoA from
compounds and image profiles directly. These models require
MoA annotations for every training sample. This limitation can
be overcome by using unlabelled compound-image profile data pairs
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for contrastive learning. Nguyen et al. (Nguyen et al., 2023) created a
multi-modal contrastive learning framework called Molecule-
Morphology Contrastive Pretraining (MoCoP), that integrates
molecular graph data and cellular morphology. The authors
featurized CP image data from the JUMP dataset with
CellProfiler (Chandrasekaran et al., 2023) and used that data to
contrastively pre-train a GNN for molecular property prediction. To
evaluate the pre-training, Nguyen et al. (Nguyen et al., 2023)
measured the accuracy of molecule and image profile retrieval
tasks using the JUMP dataset. The retrieval performance was
quantified by reporting the average top-k accuracy for retrieving
a molecule given its morphology and vice versa. MoCoP is able to
retrieve the correct (i.e., top-1) sample among 1000 randomly picked
samples in about 5% of the cases when pre-training is performed on
101,000 compounds, and in about 20% of the cases when the correct
sample is among 100 randomly picked samples. Subsequently, the
pre-trained GNN was evaluated through transfer learning on
1310 binary downstream tasks (number of classes), for
approximately 450 thousand compounds, described in the
ChEMBL20 dataset. ((Gaulton et al., 2012)) The pre-trained
GNN showed an average improvement of 2.6% and 6.3% in
AUPRC for full and low data regimes (i.e., low data regimes use
a subset of all the training data for training), compared to the
baseline model, also a GNN, that was trained on the downstream
tasks only. The results show that contrastive pre-training improves
the performance of molecular property predictors, especially when
more compounds are included.

The Contrastive Learning and leave-One-Out-boost for
Molecule Encoders (CLOOME) model, created by Sanchez-
Fernandez et al. (Sanchez-Fernandez et al., 2023) follows a
similar strategy. The authors used compound-image profile pairs
from the Cell Painting dataset (Bray et al., 2017) to create a shared
embedding. However, instead of using CellProfiler features to
represent the cell profile images, Sanchez-Fernandez et al.
(Sanchez-Fernandez et al., 2023) operate on images directly
during model training. To evaluate the information content of
the embeddings, the authors tried to retrieve images with
compounds and vice versa, just like Nguyen et al. (Nguyen et al.,
2023). On a hold-out dataset of 2115 compound-image pairs,
CLOOME was able to correctly retrieve the compound from the
image in 3.8% of the cases, and retrieve the image from the
compound in 3.2% of the cases. The transferability of these
learnt compound-image embeddings were highlighted by using
them as training data for 209 downstream bio-activity prediction
tasks. These are the same evaluation tasks as performed by
Hofmarcher et al. (Hofmarcher et al., 2019). CLOOME was able
to predict the outcome of 27.3% of the 209 biological assays with an
AUC higher than 0.9, which is a little bit lower than the 32% by the
CNN-based models created by (Szegezdi et al., 2006). However, it
should be noted that CLOOME was trained without the need of
MoA labels, which allows for more (unlabelled) data to be used
for training.

Gabriel et al. (Gabriel et al., 2023) introduced two novel loss
functions for improving contrastive learning on compound-image
pairs: Extra Modality Multiview (EMM) and Intra Modality
Multiview (IMM). Loss functions are used in deep learning to
steer the learning process by minimizing the difference between
the predicted output of a model and the actual outcome (or label).

EMM focuses on the relationships between a compound and images,
while IMM considers the relationships between images. The authors
used their newly devised loss functions to train a Contrastive
Language-Image Pre-training (CLIP) model architecture
((Radford et al., 2021)), using the JUMP dataset
((Chandrasekaran et al., 2023)) as training data. The CLIP model
with EMM loss function was able to correctly use an image to
retrieve its paired compound from a pool of 100 compounds in 8.5%,
and for IMM in 9.6% of the cases, and in 10.3% using EMM and in
7.7% using IMM for retrieving the correct image from a compound.
This is a modest improvement over using the CLIP model without
the EMM and IMM loss functions, which was only able to retrieve
the correct compound for an image in 7.7% of the cases, and the
correct image for a compound in 6.6% of the cases. Moreover, the
authors show that the EMM and IMM loss functions can be used to
mitigate batch effects in the data. Batch effects are variabilities in the
data due to differences in experimental conditions rather than
biological factors. Presumably, mitigating batch effects will
increase the quality of learnt embeddings, improving downstream
prediction tasks as well. Such batch effects might arise when CP data
is collected from several different sources. The authors quantified
batch effects by calculating the performance of k-Nearest
Neighbours and logistic regression classifiers on several train and
test data splits stratified by source (e.g., CP assay location), batch
(e.g., time point or microscope used), and plate. For these
classification tasks, Gabriel et al. (Gabriel et al., 2023) trained
classification methods to predict a compound’s target gene. Batch
effect mitigation was measured by evaluating the ratio between the
performance of a model trained on one of the stratified train and test
data splits and the accuracy of a model trained on a random train
and test data split. The improvement (ratio of better-performing
models) using EMM and IMMwas, respectively, 0.83 and 0.93, while
the ratio for CLIP without using the novel loss functions was 0.72—a
clear improvement.

Summary: CNN-based models, leveraging CP image
information directly, show improved performance in predicting
biological assay outcome over FNNs and classical machine
learning methods leveraging morphological fingerprints.
Furthermore, learnt multi-modal representations through
contrastive learning on images and compounds can be used
effectively for multiple downstream tasks like similarity
searching, cross-modal retrieval, and classification.

3.2.4 De novo design: Generative modelling for
tailored molecules and phenotypes

Zapata et al. (Zapata et al., 2023) and Palma et al. (Palma et al.,
2023) both observed that the application of CP data together with
small molecules primarily revolved around clustering and
classification tasks on either extracted features or images. While
these methods are useful for the prediction of molecular properties
for givenmolecules, the next step is to directly predict newmolecules
with the desired properties. Consequently, both authors introduce
proof-of-concept studies integrating CP data into generative AI
approaches, proposing a novel direction for the use of
morphological data.

On the one hand, Zapata et al. leverage information from CP
profiles to guide de novo design. Their model consists of two parts:
first, a VAE that takes SELFIES as input and creates a molecular
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embedding of the SELFIE. This model generates molecular
embeddings (encoder) and is trained to reconstruct discrete
representations of compounds (decoder). The training is
conducted on ChEMBL22 to cover a broad chemical space. The
second part of the model is a conditional Generative Adversarial
Network (cGAN). This cGAN is trained on the BBBC047 dataset
and utilizes the well-level profiles, totaling 126,779 profile (Table 1).
The cGAN takes a vector of noise and a morphological profile as
input to generate an embedding (generator). The discriminator
calculates the probability of the embedding coming from a
profile from a real molecule or a generated profile, while the
condition network evaluates the probability of the embedding
matching the input morphological images. The previously trained
decoder unit part of the VAE takes the generated molecular
embedding to translate them into SELFIES. Zapata et al.‘s model
generated 30,000 molecules conditioned on an equal number of
profiles, of which 15,000 were deemed valid and unique. The
generated molecules exhibit low similarity and high scaffold
diversity compared to the training set, highlighting the novelty of
the compounds. Drug likeness was evaluated by computing
Lipinski’s rule of five and QED scores, indicating that, on
average, the molecules possess drug-like properties. The
Retrosynthetic Accessibility score, a metric which estimates
synthetic feasibility (Thakkar et al., 2021), exceeded 0.5 for over
50% of the generated compounds, with less than 25% containing
toxicophores. Ideally, such a model would help to design molecules
with specific bio-activity toward a protein or help in optimizing
molecular properties.

Palma et al. learnt from small molecules and morphological
features to infer morphological responses to treatments. The Image
Perturbation Autoencoder (IMPA) model employs a style-transfer
approach, which involves altering the style (perturbation) of an
image while preserving its original content (cell representation). The
model is trained to distinguish between untreated cells and cells
treated with a perturbation (genetic or molecular). Training is
conducted on a subset of the BBBC021 dataset (five molecules),
using breast cancer cell lines (MCF-7); images are cropped for every
single cell, resulting in 97.000 data points. Likewise, the
BBBC025 dataset contains 350 gene perturbations and the dataset
is used for training. The style encoder links image features to a
perturbation-specific style and can be used to inspect cell
representation during training. Thereafter, a discriminator
classifier is trained to ensure that predictions match the desired
perturbation style. In other words, the IMPA model takes as input, a
control image with information on a specific compound (e.g.,
topological and structural descriptors, perturbation) or a genetic
perturbation. The information relevant to the drug or gene
perturbation is used to guide the generating step and ensure that
the generated image reflects the expected morphological changes
caused by the perturbation. Qualitative analysis of IMPA predictions
highlights the transformation of control cells into target
perturbation while preserving content information such as cell
orientation and translation. However, the training done with CP
images is conducted with only five drugs, and was done only to
demonstrate the feasibility of the model. The first assessment of
IMPA qualitative inference consists of training a Random Forest
classifier on extracted features (using CellProfiler) from generated
perturbation images and original ones to discriminate control cells

from perturbed cells. The results from the RF feature importance
studies show similar shifts in morphological features for
transformed images compared to controls.

Summary: The two proposed architectures open the door to
phenotype-based drug discovery using CP data. IMPA’s
architecture aids in predicting responses to unmeasured
compounds by solely utilizing chemical representations for
unseen drugs during testing. Zapata et al.‘s framework
introduces novel chemical structures tailored to specific
profiles, offering potential for generating hits in drug
discovery without detailed knowledge about the target. Both
papers illustrate how generative AI could navigate the
perturbation space for optimal experimental design using
morphological modification, coupled with gene expression.

4 Potential limitations and challenges
of working with CP data

As stated throughout the review, CP assay data has a high
potential for molecular activity or toxicity prediction. Compared
to descriptors derived from molecular structure or also from, e.g.,
binding assays, morphological images or fingerprints give a more
holistic view of a cell’s response to treatment, e.g., with a
compound. In addition, the data can be generated in high
throughput, making it extremely attractive for computational,
especially deep learning, methods. However, the technique is still
young and the real benefit for computational prediction depends
on the understanding and the quality of the data sets. CP datasets
comprise high-dimensional data extracted from single cells
across one or multiple plates, often measured at different time
points, which can yield to variability in the cell population.
Handling protocols for sensitive cells may vary between
laboratories, affecting cell response. The extensive information
within CP datasets includes multiple replicates per treatment,
resulting in multiple images captured by various channels.
However, not all dimensions of this data are collected
simultaneously, with replicates frequently distributed across
multiple plates and taken at different time points. Thus,
variability in experimental procedures can significantly affect
cell populations and treatment responses, (Figures 1, 3). Thus,
proper understanding of the experimental layout and adequate
pre-processing, e.g., aggregation over cells and replicates, or
corrections across plates of the data, are key.

No matter if available datasets are used on there own or
combined, generating meaningful interpretations of the image-
based data faces several challenges including variation between
and within datasets. Observed data drifts, so called batch effects,
mostly stem from experimental procedures and routines and, thus,
must be considered - and ideally mitigated - during image
processing and downstream analysis. The nature of the batch
effects can vary widely, from generic environmental factors (e.g.,
humidity, temperature, assay location, experimentator) within the
lab to factors that can be influenced to a certain extent before, during
or after the experiments (e.g., handling, treatment, staining, and
imaging of the cells, as well as data processing).

In the following, first the experimental and biological
parameters that can lead to batch effects or other outliers will be
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discussed. Then, computational pre-processing strategies to account
for these effects will be debated.

4.1 Batch effects before the assay has
been performed

As the basis of cell-based in vitro screens, the integrity of the cells
and standardization of their growth conditions is crucial for
achieving comparable, robust results (Wang and Wang, 2022).
Cancer cell lines, in particular, undergo genetic and
transcriptional changes over time, leading to the diversification of
the namely, same cell clone, and resulting in altered drug-responses
(Ben-David et al., 2018). While it is possible to obtain authenticated
cells from cell banks as starting material, the cell’s similarity can also
be verified through sequencing. One factor contributing to this cell
drift is changing cell culture conditions (e.g., cell confluency and
reagents used within medium or for cell splitting) due to the lack of
standardized cell culture procedures across labs. Accordingly, very
detailed information on the culture of the cells should be provided
with datasets and carefully examined. The cell lines chosen, as well as
their growth conditions, should both align well with the research
question at hand. Therefore, we strongly encourage the scientific
community to apply CP to a broader diversity of cell types and
growth conditions, such as fully confluent monolayers of epithelial
cell lines.

Moreover, compounds to which cells are exposed are well-
known to be prone to batch effects. Although this can only partly
be influenced by scientist, compound quality and stability can be
supported by optimal storage, handling, and solvent-
compatibility of substances. With regards to systematical and
non-biological batch effects, in vitro assays are prone to
positioning effects (edge/drift effects), which can be mitigated
with randomized compound layouts. Additionally, laboratories
entering the field of CP screening may consider to initially screen
a small set of common reference compounds, evaluating both
positioning effects and reproducibility of in-house and published
morphological profiles, following, e.g., HT screening or image-
based high-content screening guidelines (Bray et al., 2004; Iversen
et al., 2004), as well as CP reproducibility studies (Tromans-Coia
et al., 2023). While negative controls are consistent across
datasets, the inclusion of positive controls varies considerably
across screens and is in need of harmonization. Positive control
compounds ideally address both the MoA analyzed in the
following screen and effect magnitude observed, while serving
the purpose of the experimental set-up. However, this is only
possible when investigating a specific MoA in a targeted screen.
Nevertheless, even when CP is used as an untargeted screening
method, positive controls can serve as important parameters to
inspect systematic batch effects across screening sites or even
within a dataset. We therefore strongly advocate for the joint
definition of a set of approximately two to three positive control
compounds that cover all stained cell structures (e.g., nocodazole
and tetrandrine) and these control compounds should be
included on every screening plate in large-scale screens using
the same experimental set-up. An example of how to define and
verify adequate control compounds was presented by Willis et al.
(Willis et al., 2020).

4.2 Batch effects while performing the assay

Image-based screening methods assume that a few
representative images from a well reflect the entire cell
population. To ensure this, homogeneous exposure of the cells to
chemicals during treatment is essential and must consider
partitioning effects and diffusion kinetics within the medium.
Adhering to recommended practices, such as those by Song et al.
(Song et al., 2010), and integrating liquid handling systems in the
procedure can support this. Nonetheless, comprehensive standard
operating procedures for chemical and genetic perturbation of cells
are still elusive and remain a challenge due to diverse technical
equipment and protocols. In contrast, detailed descriptions of CP
staining procedures are available (Bray et al., 2016; Cimini et al.,
2023). Despite this, unintentional changes in cell seeding, growth
rate, and staining concentrations are commonly experienced during
screening between or even within laboratories, and have to be taken
into account during data analysis. Notably, further optimization of
the original protocol (Chandrasekaran et al., 2022; Cimini et al.,
2023) and slight adaptations across screening sites may add further
variation and should be considered when combining historic
datasets with recently published datasets. For the imaging of
treated and stained cells, technical equipment often differs
between screening sites (i.e., microscope, operator, microscopic
settings, and microscopic filters), introducing relevant batch
effects that are difficult to avoid in the first place (Arevalo et al.,
2023; Tromans-Coia et al., 2023). Interestingly, recent efforts
identified relevant intentional choices in imaging settings
(i.e., objective type, objective’s magnification, number and
excitation sequence of channels, binning, number of z-planes,
number of imaged fields and cells) that can contribute to
variability between screening sides (Tromans-Coia et al., 2023).
Authors observed an impact on data performance, especially by
the number of available microscopic channels (four to six) and their
excitation sequence (sequential/simultaneous) during imaging, as
well as the number of cells imaged per condition. Importantly, the
number of imaged cells strongly depends on the objective
magnification and number of imaged fields per well, and
therefore led to the general recommendation of using five
fluorescent and the bright-field channel during imaging with a
magnification of 20X and capturing approximately 2500 cells per
well. Notably, researchers investigating morphological changes in
RNA, ER, actin or Golgi structures, should pay attention to the
selected channel separation options during imaging. This is
important due to spectral cross-talk of dyes, which can influence
the profile’s performance, and dye merging into one channel if less
than six channels are available (Cimini et al., 2023; Tromans-Coia
et al., 2023).

4.3 Pre-processing images obtained from
CP assays

The process of object identification within images as well as their
segmentation and feature extraction require homogeneous
illumination to prevent artifacts introduced by microscopy optics
or light sources. Although nearly all microscope systems used for CP
perform an acquisition of variations in illumination prior to imaging
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of stained cells using an uniformly fluorescent reference sample, it is
common practice to additionally perform a post-acquisition
illumination correction to mitigate remaining illumination bias.
This approach considers all or a sufficiently large subset of
images and computationally improves lightning fluctuations in
images of one plate and for each channel independently using
correction functions (Bray et al., 2004). For this process, open-
source (e.g., CellProfiler (Nyffeler et al., 2020;Willis et al., 2020;Way
et al., 2021)) or proprietary analysis software provided with imaging
systems (e.g., Harmony (Revvity)(Nyffeler et al., 2020; Willis et al.,
2020)) can be used, which however rely on differing functions that
are not always transparently communicated.

Chandrasekaran et al. (Chandrasekaran et al., 2023),
Hofmarcher et al. (Hofmarcher et al., 2019), and Gabriel et al.
(Gabriel et al., 2023) discuss various overlapping data processing
steps. Foremost, high-resolution 16-bit TIF images are lowered to 8-
bit PNG images, which mainly serves to compress the data, but can
also serve to deal with image artefacts. For example, Gabriel et al.
(Gabriel et al., 2023) normalized the 16-bit images to 8-bit images by
rescaling the images from the 0th to 99th pixel intensity onto a
0–255 scale (i.e., 8-bit). This was done to remove outlier pixels with
high intensities due to overexposure or other illumination effects.
Normalization to the 8-bit range helps to further reduce variations
attributable to image acquisition. Furthermore, the authors centre,
crop and resize the images to a lower dimensionality. Hofmarcher
et al. (Hofmarcher et al., 2019) describe a similar threshold for pixel
intensity, and remove 0.0028%, presumably also the top percentile,
of pixels with the highest values. Removing outliers and normalizing
the data helps to standardize the image data. This helps to ensure
that models later trained on these images learn from the actual
content of the images, instead of artifacts introduced by the data
collection process.

4.4 Pre-processing morphological
fingerprints

A standardised workflow for pre-processing data, before
downstream analysis, typically involves quality data checks,
scaling, and dimensionality reduction (Figure 5). However, the
specificity of CP data requires an additional step: aggregation.

Quality control of molecular fingerprints involves removing
missing values and identifying outliers to eliminate unusual
phenotypes. While this step needs to be performed in each study,
there is often little information about the exact details and no
specific protocol available to assure comparability.

4.4.1 Dealing with outliers and different scales
Outliers may arise from experimental factors such as lab

environment or manipulation errors as mentioned previously.
However, unusual phenotypes can also result from dead cells. To
identify these, one could examine the features related to the
number of object (e.g., number_of_object where object can be
nuclei, cytoplasma, cells). When the value of these features falls
below a certain threshold relative to median value of the negative
control (such as DMSO), it typically indicates dead cells. This step
is a common step to reduce noise in the dataset. Statistical
methods (standard deviation rules and box-plot rules, median
and the median absolute deviation and Mahalanobis-based
outlier detection) and model-based methods (supervised-
machine-learning classifier) are also employed to remove
outliers within the dataset. Despite the different methods
available to identify outliers, this step is preferably performed
on the whole population, considering all replicates without
differentiation of plate, well, or treatment. Scaling involves
adjusting data to a common scale facilitating statistical and
computational operations. Various scaling metrics used with
CP data include z-score (standardization used by Lapins and
Spjuth (Lapins and Spjuth, 2019)) mad-score (robust
standardization less sensitive to outliers as used by Pahl et al.
(Pahl et al., 2023)), B-score (median polish-based algorithm
notably used in (29)) and others (Bray et al., 2004). Once the
metric is chosen, three normalization schemes are possible: 1)
between plate normalization also known as normalization across
all plates; 2) whole plate normalization, where normalization
occurs within each plate, possible if samples are randomly
scattered across the plate and if all plates have a similar
proportion of active/inactive treatments; and 3) relative
normalization, which normalizes all samples to controls or
sham treatment depending of the number (preferably
> 16/plate) and position across plate (preferably randomly
scatters). As normalization across all plates is not

FIGURE 5
Flowchart illustrating morphological fingerprint pre-processing with metric examples, including quality control, outlier detection, scaling, and
aggregation from single-cell to well to treatment levels, followed by dimensionality reduction for downstream analysis.
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recommended (Bray et al., 2004; Caicedo et al., 2017), the choice
narrows down to the other two possibilities.

4.4.2 Aggregation from single-cell to well
to treatment

The morphological profiles extracted from images are at the
single-cell level, meaning that a profile of features is extracted for
each of the cells contained in a well. Population-level profiles (i.e.,
well level profiles) are obtained by aggregating these features into a
single profile to facilitate population comparison and downstream
analysis. Similarly, treatment-level profiles are obtained by
aggregating all population-level profiles characterizing a
treatment. Mean, median and Kolmogorov-Smirnov metrics are
three commonly used strategies to create population- and/or
treatment-level profiles. However, the median profile, which is
less sensitive to outliers, is more often encountered (Caicedo
et al., 2017). Finally, dimensionality reduction can occur
either before or after single-cell aggregation. This process is
intended to eliminate collinearity, gather or drop redundant
correlated features, to decrease the number of features
while retaining the most relevant and informative ones.
Minimum redundancy–maximum relevance (Ding and Peng,
2005), support-vector-machine-based recursive-feature
elimination,PCA and pearson correlation are metrics that can
be employed.

4.5 Addressing CP data challenges with DL
and other approaches

Despite CP assays and their use in DL being a relatively novel
field without a universally solution for batch effects, there are
options available. One can leverage noise mitigation tools
developed for similar data types, such as microarray data
(Chen et al., 2011). Recent work by Arevalo et al. (Arevalo
et al., 2023) illustrates that computational batch correction
methods developed for mRNA profiles can also mitigate batch
effects in image-based data to some extent. However, their
efficacy diminishes as scenarios become more challenging to
align. Furthermore, validation of batch correction methods
can be performed using gold-standard datasets, as
demonstrated by Sypetkowski et al. (Sypetkowski et al., 2023).
Moreover, the robustness of training contrastive learning models
against batch effects can be enhanced by employing suitable
learning strategies, as discussed in Section 3.2.3 by Gabriel
et al. (Gabriel et al., 2023). They introduced two novel loss
functions aiding contrastive learning approaches to disregard
some variations in data attributed to batch effects.

It is crucial to acknowledge that there is no universal solution for
handling batch effects. Thus, it is imperative to highlight potential
batch effects in data through comprehensive metadata annotation.
Furthermore, the identification of batch effects can be strengthened
by incorporating a standardized set of compounds with diverse
mechanisms of action in every batch of new CP assays. This
facilitates batch comparison and correction across different assay
settings. Establishing standardized preprocessing protocols and
adopting a minimum information format to describe CP datasets
is essential for enhancing reproducibility and making CP datasets

more FAIR (Jacobsen et al., 2020). Therefore, both scientists
performing the screens and bioinformaticians or computational
chemists can contribute to improving the performance of models
built on CP datasets in data across labs and studies when working
closely together.

Machine learning models for risk assessment, trained on CP
data, are showing promising results, though they are still in the early
stages of proving their practical value. However, our analysis of
various proof-of-concept studies suggests that CP data contains
transferable information. This means that the results from one study
can be used to train a better model to help predict the outcome of
another study. We consider CP’s integration into the bio-activity
screening pipeline valuable for risk assessment, yet its primary
challenge remains to be effectively exploiting data aggregation. As
more CP assays will be performed, and more CP data will become
publicly available, ensuring effective data aggregation becomes
increasingly important.

5 Conclusion

The integration of cell painting assays with computational
methods shows encouraging promise for predicting compound
activities and hazards in drug discovery and toxicology. By
leveraging CP-based phenotypic data alongside structural
information from compounds, machine learning and deep
learning models can be developed to predict compound activities
across various human-relevant disease endpoints and uncover
underlying MoA. CP data offers potential advancements in
comprehending compound responses within cells, thereby
guiding therapeutic development and risk assessment while
mitigating reliance on animal testing. It thereby provides
complementary information to classically used descriptors such
as molecular fingerprints. Although CP data provides undeniable
information, such recent method comes with its sets of challenges
and limitations. Addressing them calls for a collective effort to
standardize protocols, promote reproducibility through the
adoption of FAIR principles, and establish benchmark datasets
for method evaluation. Additionally, efforts to improve
understanding of image-based features and their biological
interpretation are crucial. Identifying and prioritizing the most
informative features will help optimise predictive models and
enhance their interpretability. In summary, while CP offers
significant potential for advancing compound evaluation and
toxicology research, addressing the associated challenges is
paramount to unleashing CP’s full benefits. By fostering
collaborative work, advocating for standardisation, and
improving pre-processing/methodological approaches, the
scientific community could harness the power of CP data to
drive innovation and advancement.
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