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To study the ways in which compounds can induce adverse effects, toxicologists
have been constructing Adverse Outcome Pathways (AOPs). An AOP can be
considered as a pragmatic tool to capture and visualize mechanisms underlying
different types of toxicity inflicted by any kind of stressor, and describes the
interactions between key entities that lead to the adverse outcome on multiple
biological levels of organization. The construction or optimization of an AOP is a
labor intensive process, which currently depends on the manual search,
collection, reviewing and synthesis of available scientific literature. This
process could however be largely facilitated using Natural Language
Processing (NLP) to extract information contained in scientific literature in a
systematic, objective, and rapid manner that would lead to greater accuracy and
reproducibility. This would support researchers to invest their expertise in the
substantive assessment of the AOPs by replacing the time spent on evidence
gathering by a critical review of the data extracted by NLP. As case examples, we
selected two frequent adversities observed in the liver: namely, cholestasis and
steatosis denoting accumulation of bile and lipid, respectively. We used deep
learning language models to recognize entities of interest in text and establish
causal relationships between them. We demonstrate how an NLP pipeline
combining Named Entity Recognition and a simple rules-based relationship
extraction model helps screen compounds related to liver adversities in the
literature, but also extract mechanistic information for how such adversities
develop, from the molecular to the organismal level. Finally, we provide some
perspectives opened by the recent progress in Large Language Models and how
these could be used in the future. We propose this work brings two main
contributions: 1) a proof-of-concept that NLP can support the extraction of
information from text for modern toxicology and 2) a template open-source
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model for recognition of toxicological entities and extraction of their relationships.
All resources are openly accessible via GitHub (https://github.com/ontox-project/
en-tox).
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Introduction

The toxicity of a stressor (e.g., compound or environmental
stressor such as radiation) is defined by its potential for causing
harmful effects on an individual, a population, or ecosystem
(ecotoxicity). In this report, we will focus on the organism level.
Traditionally, the toxic potential of a stressor is evaluated by
performing tests on animals, in particular mammals, and
assuming the obtained results can be extrapolated to humans.
This approach is being increasingly questioned for two main
reasons. First, the ethicality of sacrificing millions of animals
each year (Fernandes and Pedroso, 2017). Second, it is becoming
increasingly clear that the effects on animals often translate poorly to
humans (Van Norman, 2019). Toxicological effects are therefore
preferentially studied in a mechanistic way, where toxicologists try
to understand the cascade of biological events leading to a given
adverse outcome (Hartung et al., 2012), and taking into account the
specificities of human physiology compared to other organisms.
This opens the door to the development of approaches at lower
levels of biological organization, such as toxicogenomics (Waters
and Fostel, 2004), and to start viewing toxicological assessment as
probabilistic rather than deterministic, i.e., toxic vs. non-toxic (Bus,
2017; Maertens et al., 2022).

Such a mechanistic approach is taken in the development of
adverse outcome pathways (AOPs). AOPs are frameworks that link
an initial perturbation, the molecular initiating event (MIE) to an
organ or organism toxicity manifestation or adverse outcome (AO)
through a series of steps at different levels of biological organization,
the key events (KE) (Ankley et al., 2010). Consecutive KEs are linked
by key event relationships (KER) which represent a causal
relationship between two KEs. As such, AOPs provide a way to
organize mechanistic information leading to pathologies in humans,
and to guide the development of new approach methodologies to
evaluate toxicity using human-based in vitro tests and/or in silico
models. Most existing AOPs are gathered in the AOPWiki (https://
aopwiki.org/). Building or expanding them however relies on
gathering, reviewing and synthesizing a wealth of existing
knowledge, very often in the form of loosely structured text such
as scientific literature or regulatory reports. This process is time-
consuming and tedious, and it could be argued a better use can be
made from the time of experts.

We proposed recently that developments in the field of Natural
Language Processing (NLP) could allow toxicologists to screen more
efficiently through literature (Corradi et al., 2022). NLP is a field of
machine learning that focuses on the analysis of text and the extraction
of information from it. Interestingly, models have been developed to
extract biomedically relevant entities from text (Neumann et al., 2019).
However, extracting relationships between these entities, which are
essential for the mechanistic approach in AOPs, proves to be difficult.

While promising approaches have been developed in the field of
Relationship Extraction (RelEx), some even to support AOP
development itself, they tend to be based on co-occurrences of
terms (Zaslavsky et al., 2021; Jaylet et al., 2023), focus on
compound-disease relationships (Katritsis et al., 2022), or rely on
generative models which are “black boxes” and require a lot of
computing power (Huguet Cabot and Navigli, 2021). Here, we used
a comparatively simpler grammatical rules-based approach that
integrates some linguistic information. It allows us to manually
examine the relationships extracted as the results are fully
retraceable to the original scientific abstracts that were used as a source.

While AOPs represent general biological pathways leading to
adverse outcomes, and are hence designed to be stressor-agnostic
(Villeneuve et al., 2014), in practice their MIEs tend to be triggered
by prototypical compounds. We conducted a case study on a collection
of compounds and their expected associated adverse outcome(s)
curated by ASPIS consortium members (https://aspis-cluster.eu/),
and more specifically those included in the ONTOX project (Vinken
et al., 2021). The ASPIS cluster is a collaboration of three European
projects (ONTOX, PrecisionTox, RISK-HUNT3R) with a common
goal towards animal-free chemical risk assessment. ONTOX in
particular is looking to develop a strategy to predict toxicity without
the use of animals driven by mode-of-action ontologies and artificial
intelligence. For that reason ONTOX is looking at multiple case studies
(adverse outcomes in diverse organs).We extracted literature associated
with the entire collection of compounds from PubMed, and analyzed it
using a custom-made NLP pipeline. We then verified whether we were
able to extract relevant information regarding adverse outcomes and the
mechanisms that led to them.

Manifestations of drug or compound adversity are frequently
observed in the liver. The enzymatic processes in the liver, aimed at
detoxifying compounds from the bloodstream, can contribute to
adversities observed in this organ. Two adversities that are generally
observed during post-marketing surveillance are cholestasis and
steatosis. These adverse outcomes are therefore of particular
interest for the ONTOX project. Cholestasis, the accumulation of
bile, is a major drug-induced adverse outcome and can be
responsible for severe liver damage and increased morbidity.
Steatosis is the accumulation of small (microvesicular steatosis)
or larger (macrovesicular steatosis) fat droplets. We will focus in
this study on these two liver adverse outcomes.

Methods

Literature retrieval

We started from a curated list of 813 compounds of interest for
the three projects composing ASPIS (https://aspis-cluster.eu/). This
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list groups different types of compounds associated with one or
multiple adverse outcomes of interest to one of the projects from the
cluster, including cholestasis and steatosis. In the case of cholestasis
and steatosis, these were selected by based on literature. For each
compound, we programmatically retrieved a maximum of the first
100 abstracts found by querying PubMed for: compound name
AND toxic* AND (human OR Animals, Laboratory OR Disease
Models, Animal). For that purpose we used the Python packages
metapub (v0.5.5) for querying and biopython (v1.79) for text
retrieval. The query was restricted to 100 abstracts because of
computational resources and because we intended to carry out a
proof of concept. No minimum number of abstracts per compound
was defined, however we analyzed how many were found for each
compound (see results section). Duplicate abstracts were removed.

Preprocessing

All steps were conducted using the open-source Python package
spaCy v3.0.8 (Honnibal and Montani, 2017). Basic pre-processing
such as sentencizing (breaking an abstract into its individual
sentences), tokenizing (breaking the sentences into words) and
semantic parsing (identifying the grammatical roles of each
token) was performed to support our Named Entity Recognition
(NER) and Relationship Extraction modules.

Named Entity Recognition

Named Entity Recognition refers to the identification of spans of
words in the sentences that refer to concepts of interest. In this case, we
extracted the entities COMPOUND, referring to a chemical compound
or substance, and PHENOTYPE, referring to a biological event. For this
we used a machine learning model. Specifically, the NER model was
trained using scispaCy en-core-sci-lg (Neumann et al., 2019) as a
starting point, which allowed for a vocabulary (word vectors) and
grammar trained on scientific literature. It was re-trained to recognize
mentions of toxicological concepts, including compounds and
phenotypes in scientific texts. This included both PubMed articles
and ECHA reports. The training corpus was annotated by members
of the project team with a background in biology, with a manual
comprising a detailed description of the entities available to annotators.
In particular, we define a phenotype as a biological effect at any level:
molecular, cellular, organ or organism. This NERmodel was trained on
a DART (developmental and reproductive toxicity)—oriented corpus
(Bhalla et al., 2023), but generalizes to most types of organism-level
phenotypes (see results). Cross-validation analysis on the training
corpus showed an F1 score of 56% on phenotypes and 88% on
compounds. As a consequence, we expected the model to identify
compounds better than phenotypes.

Relationship extraction

Weestablished a semantic rules-basedmodel for causal relationship
extraction between identified entities, using spaCy’s Dependency
Matcher. Two entities were considered causally related if they had a
common causal verb ancestor in their semantic tree. The list of causal

verbs contained the following terms: “increase”, “produce”, “cause”,
“induce”, “generate”, “effect”, “provoke”, “arouse”, “elicit”, “lead”,
“trigger”, “derive”, “associate”, “relate”, “link”, “stem”, “originate”,
“lead”, “bring”, “result”, “inhibit”, “elevate”, “diminish”. More
precisely, we verified whether the lemma of the verb, in other terms
its base form, was a common ancestor in the semantic tree. Using the
lemma prevents the conjugation of the verb to affect the results. We
extracted relationships between identified phenotypes, possibly at
different levels of biological organization, as well as between
compounds and phenotypes (Figure 1). For further information
about the model please review the readme on the GitHub repository
(https://github.com/ontox-project/en-tox).

Neo4j network

The resulting entities and their relationships were then
organized into a Neo4j database (version 4.4.5), where each node
was an entity (phenotype/compound) and each edge an identified
relationship between two entities. The edges also referenced the
article the relationship was extracted from. We explored the graph
by querying it for specific adverse outcomes of interest. The queries
can be found in the GitHub repository (https://github.com/ontox-
project/en-tox). We verified whether we were able to find
compounds associated with the liver adverse outcomes of
interest, by querying for cholestasis or steatosis and finding the
first level connections in the network.

Results

Automatic literature retrieval

Table 1 summarizes the number of articles found per compound
in the ASPIS list. We note that for a significant amount of
compounds, about 34%, no abstract was retrieved, which means
wemost likely will not be able to extract any information about them
(there is a small chance there will be information about them in an
abstract designated to another compound). For compounds
associated with a liver adverse outcome (cholestasis or steatosis)
in the ASPIS curated list (see methods), this number is close to 20%.
For 35% of compounds (50% for cholestasis/steatosis compounds)
we reached the maximum number of abstracts we could extract,
which means there is most likely more literature available.

We further investigate the results in two different directions.
First, we verified whether we were able to find compounds associated
with a given liver adverse outcome, cholestasis or steatosis. Second,
we evaluated how much mechanistic information we were able to
retrieve in the process. For that purpose, we query sub-parts of the
graph obtained in Neo4j.

NLP supports compound selection for liver
adverse outcomes

As discussed, we queried our Neo4j database for “cholestasis”
(respectively “steatosis”) and all its neighbor nodes labeled
as “COMPOUND”.
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Cholestasis

We observed that all 10 compound nodes found with the
cholestasis query were indeed identified as positive controls
known to trigger a cholestasic adverse outcome (Figure 2A). The
only notable exception was the node “oxygen”. This refers to the
production of reactive oxygen species (Yu et al., 2017), e.g., event
249 in the AOPWiki, and is a known artifact of our model that tends
to identify compounds better than phenotypes.

Steatosis

The results when querying for “steatosis” were a bit more nuanced
(Figure 2B). We found 11 compound nodes. Two of the compounds
were associated with steatosis as described in the ASPIS list: TBT
(tributyltin) and Valproate, while another two (Pb—lead and PFOS -
Perfluorooctanesulfonic acid) were related to cholestasis. Five
compounds were not explicitly associated with steatosis, but were
indeed associated upon verifying literature manually: BDE-47 (Wang
et al., 2018), PFHxS (Perfluorohexane sulfonic acid) (Jin et al., 2020),

Tebuconazole (Ku et al., 2021), FIAU (fialuridine) (Cui et al., 1995) and
chloroethanol (Anders et al., 2016). FMAU is not per se a compound
but a metabolite of fialuridine, which is linked to steatosis (Cui et al.,
1995). Interestingly, chloroethanol was found in theNLP pipeline, but is
not (yet) included in the ASPIS list. Finally, naringin was found, which
is described as protective for steatosis/liver damage (Guan et al., 2023).
Our NLP pipeline could thus extract information from the abstracts
about 10 known steatosis related compounds, only 2 of which were
explicitly expected. We thus identified 8 possible candidates to be
considered in AOP development. In addition, we retraced the result
about naringin back to the original scientific abstract which showed that
naringin was mentioned in the same sentence as valproic acid and
wrongly lumped together as associated with cholestasis. This indicates
that when using machine learning to identify possible KEs, data lineage
and using explainable AI methods are important.

Missing compounds

We did not find 53 of the 81 compounds (65%) that could be
expected based on the ASPIS list. For 14 of those (17%) 0 abstracts

FIGURE 1
Information extraction workflow, from a list of compounds to the abstracts associated with them, to relationships between toxicological-relevant
entities in these abstracts. Insert (1) shows the PubMed query used to find articles associated with toxicity for a certain compound.We restricted ourselves
to human or animal-associated results as they are still the gold standard for now. Insert (2) details the relationship extraction mechanism: a relationship
between two given entities is identified if a (predetermined) causal verb is a common ancestor in the semantic tree of the phrase containing
both entities.

TABLE 1 Number of abstracts retrieved per compound.

Number of abstracts retrieved Number of compounds (complete list/Liver AO-related)

0 278/14

0 < n < 10 68/5

10 ≤ n < 100 185/22

100 282/40

The first number refers to the number of compounds in the complete list, the second number to the compounds associated with a liver adverse outcome (cholestasis or steatosis) only. For

example, 278 compounds in the ASPIS list had no abstract associated to them, 14 of these compounds were cholestasis or steatosis-related.
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were found. Manually querying the other missing compounds and
their direct neighbors in the Neo4j network showed that in fact 16 of
them (20%) were found to be related to a more general form of liver
damage such as “hepatotoxicity” or “liver injury.” We expect that
more specific information would be contained in the full text papers.
Overall, the pipeline thus retrieved 44 out of 81 compounds,
which is 54%.

We observed that complicated compound names (e.g., “5-
Amino-6-chloro-o-cresol”) are not always used in abstracts of

their papers, and therefore are not extracted by the NER
pipeline. Similarly, very general compound names (e.g., “Basic
brown 17”) tended to be not recognized as compounds. Also,
compound names that include other compounds (e.g., “valproic
acid sodium salt” containing “valproic acid”) tended to get
overlooked.

Overall, these results show that our approach can contribute to
identifying compounds associated with adverse outcomes of interest,
maybe including different stressors than the ones toxicology experts

FIGURE 2
Compounds associated with cholestasis (A) and steatosis (B). Blue nodes refer to compounds while green nodes refer to phenotypes. The causal
verbs connecting the entities are depicted on the arrow between them.
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traditionally consider. We do remark that entities could be better
unified: “steatosis” triggered five separate entities that could be
merged into one or two. For example, “liver steatosis” and
“hepatic steatosis” are virtually synonyms. This highlights the
need for disambiguation and normalization of entities, possibly
by linking them to existing identifiers.

NLP pipeline extracts mechanistic
information at a high level of biological
organization

From AOPWiki, we extracted all events (MIE, KE and AO)
pertaining to all AOPs related to our liver adverse outcomes of

TABLE 2 Current available AOPs in AOPWiki related to either cholestasis or steatosis.

AOP AO Title

27 Cholestasis Cholestatic Liver Injury induced by Inhibition of the Bile Salt Export Pump (ABCB11)

421 Cholestasis PPARG activation leading to intrahepatic cholestasis

34 Steatosis LXR Activation to Liver Steatosis

36 Steatosis Peroxisomal Fatty Acid Beta-Oxidation Inhibition Leading to Steatosis

57 Steatosis AhR activation to steatosis

58 Steatosis NR1I3 suppression to steatosis

59 Steatosis HNF4A suppression to steatosis

60 Steatosis PXR activation to steatosis

61 Steatosis NRF2/FXR to steatosis

62 Steatosis AKT2 activation to steatosis

232 Steatosis NFE2/Nrf2 repression to steatosis

318 Steatosis GR activation leading to hepatic steatosis

Note that there are more AOPs available for steatosis. PPARG, Peroxisome Proliferator-Activated Receptor Gamma; LXR, Liver X Receptor; AhR, aryl hydrocarbon receptor; NR1I3, Nuclear

Receptor Subfamily 1 Group I Member 3; HNF4A, Hepatocyte Nuclear Factor-4 alpha; PXR, Pregnane X Receptor; NRF2/Nrf2, Nuclear factor erythroid 2-related factor 2; FXR, Farnesoid X

Receptor; AKT2, AKT Serine/Threonine Kinase 2; NFE2, nuclear factor, Erythroid 2; GR, glucocorticoid receptor.

FIGURE 3
Number of key events found with the NLP pipeline and manual curation.
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interest, steatosis and cholestasis. The corresponding AOPs are
listed in Table 2. AOPs 59 and 421 both comprise only one key
event, respectively a MIE and a KE. We excluded them from
further analysis.

We first examined manually how many of the events described
in the AOPs we found back with our NLP pipeline. This is depicted
in Figure 3.

For each AOP, we retrieved between 40% and 80% of events.
When looking more closely at what type of events we were able to
extract, we observed that all events that were not identified are

related to a higher level of biological detail. They are mostly
associated to a specific gene or protein, e.g., a change in its
activation or expression, and often belong to the MIE type. For
example, none of the activations of peroxisome proliferator activated
receptors (PPAR-alpha, beta and gamma), the MIEs of AOP 36,
were recognized by our model (see also Figure 4B). This can be
partially explained by the fact that our NER pipeline recognizes
higher (biological) level phenotypes better. It might be remedied by
re-training our model on a corpus containing more mentions of
molecular or cellular level phenotypes.

FIGURE 4
Information extracted for AOPs. (A) AOP27 [Cholestasis and Cholestatic Liver Injury induced by Inhibition of the Bile Salt Export Pump (ABCB11)]. (B)
AOP36 (Peroxisomal Fatty Acid Beta-Oxidation Inhibition Leading to Steatosis). (C) AOP318 (GR activation leading to hepatic steatosis). Green and yellow
boxes represent MIEs and AOs, respectively. Blue circles show the key events between them. Black arrows depict established KERs. Events circled in red
were also found by our NLP pipeline uponmanual curation. Red dashed arrows represent relationships extracted by theNLP pipeline (including non-
adjacent ones, e.g., relationships between an MIE and an AO).
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Figure 4 depicts the events and KER extracted with our NLP
pipeline for cholestasis (AOP 27) and steatosis (AOP 36 and 318,
where we found the lowest and highest percentage of events,
respectively). Each panel is a representation of an established
AOP adapted from AOPWiki and depicts in green and yellow
boxes the MIE(s)/AO, respectively, in blue circles the key events
between them, and in black arrows the KERs. Events circled in red
were also found by our NLP pipeline upon manual curation. Red
dashed arrows represent relationships extracted by the NLP pipeline
as well. While we found a number of key events, we did not always
directly extract the links between them (i.e., the KERs). This seems to
point to a necessary refinement of our relationship extraction
module, in particular again between molecular-level phenotypes.
Interestingly, in two instances we did find a link directly between an
event and the adverse outcome this event would trigger after a
cascade of other events, such as between bile accumulation and
cholestasis (Figure 4A).

Discussion

We showed that NLP can help extract mechanistic information
from text, as well as provide a screening of stressors and their
associated adverse outcomes from the literature, possibly unearthing
less commonly used stressors for testing by toxicologists. We
provide the model used for entities and relationship recognition
in a reproducible container. We foresee the use of NLP allowing the
AOP framework to exist more as a living, dynamic systematic
review, where new information about MIEs or KEs could be
integrated (almost) as soon as it is published.

However, our results show that several steps are still needed. Firstly,
the automation of disambiguation and unification of biological events
and compounds as well as their linking to semantic ontology terms
would help make the extracted data more interoperable and reusable.
For example, by connecting a phenotype entity directly to the
corresponding KE in AOPWiki, this technique would allow the
researcher to record evidence pertaining to KERs easily. Only if an
event does not exist, would a new identifier be created, perhaps in first
linking it to other ontologies such as Gene Ontology, UMLS, or
Mammalian/Human Phenotype Ontology. We noticed with this
study that a number of KEs seem to be very similar, only having
slightly different phrasings, for example, events 459 (“Increased, Liver
Steatosis”) and 1,418 (“Increased, steatosis”), or 115 (“Increase, FA
Influx”) and 465 (“Increased, FA Influx”). This might be a consequence
of manually building AOPs, as it can be time-consuming to verify every
key event that already exists. In that regard, NLP could help AOP
developers not to duplicate existing information.

Secondly, the relationship extraction model can be improved.
While our NLP pipeline can extract relational information from
abstracts, it clearly did not find all the information that could have
been expected. We suggest training the model on lower level
information. In addition, linguistically complex (sub)sentences
are difficult to identify.

Recent developments in the field of Large Language Models
(LLMs) could be of use, as some promising results have been
achieved in the field of relationship extraction, and in generally
finding information in, e.g., scientific documents (retrieval
augmented generation) (Bran et al., 2023). We remain cautious

though as the large generative models have been known to
“hallucinate”, giving factually wrong answers to queries (Ji et al.,
2023). The model should then be restricted to find answers in the
given text(s) as our model is currently doing. A possible tool to do so
would be a similar approach to Lála et al. (2023), which answers
questions by looking in documents and finding the most relevant
passages, thanks to similarity in embeddings between the question
and the text in documents. LLMs are also computationally
expensive, and therefore tend to be run in the cloud. This has by
extension a larger environmental impact (Monserrate, 2022). An
approach using them should hence be preceded by a cost/benefit
evaluation.

We envision a model where a relationship is not expressed as a
binary event (existing/non existing), but where a probability of existence
is associated. We could also record when an event is explicitly NOT
happening, or counteracted in some way. In addition, the incorporation
of contextual and/or quantifiable events, such as the administration
dosage and route of a compound, the type of test performed (in vitro/in
vivo/in silico), relevant biological information (sex, organism), or change
in the amount of an event, should also be incorporated into the model,
contributing to this probabilistic prediction. The extraction of
additional context could also support the development of
quantitative AOPs and/or Physiologically-Based Kinetic (PBK) models.

We furthermore expect we could have been able to reconstruct
better the AOPs had we not limited ourselves in the number of articles
we analyzed. Here, the amount of evidence will be a key factor in
determining the solidity of the mechanism. A possible follow-up would
be to apply our NLP pipeline to the entirety of PubMed. We could also
consider applying it to the entirety of PMC (PubMed Central), to
analyze full text rather than only abstracts. However, this would come
with its own set of challenges. First, our model was trained on abstracts,
and is not guaranteed to generalize well to full text or Results sections, as
these might be written in a different style than abstracts (Westergaard
et al., 2018). Secondly, we would be limited and biased by the fact that
we would only be able to analyze Open Access articles, as for articles
behind paywalls only the abstract is available. Third, we suspect the
computing time necessary to analyze all PubMed/PMC is considerable
(as of August 2023, there are over 36 million papers on PubMed), and
therefore not necessarily in line with an environmentally mindful
approach. We would therefore need to implement some screening
procedure beforehand. We could, for example, use existing resources
linking compounds and PubMed articles such as Chembl (Mendez
et al., 2019) or ctdbase (Davis et al., 2023), to query articles related to
prototypical stressors.

It would be wiser at this stage to keep a human in the loop to
verify the quality of the information extracted, because we observed
that one compound was retrieved that is actually known to be
protective for liver damage. This NLP model could be used as an aid
for AOP building, where the toxicologist can spend their valuable
time controlling and assembling the information automatically
extracted from literature, instead of reading dozens of articles.

In this report we demonstrate how the information generated
via our NLP pipeline can aid in the creation of AOPs. The
application of this information, including physical-chemical
properties, cross-species toxicity, exposome, pathology, etc., is
limited only by the needs of the user. For example, our NLP
pipeline can be applied to larger-scale extraction of chemical
effects to supplement QSAR, read-across approaches, as well as

Frontiers in Toxicology frontiersin.org08

Corradi et al. 10.3389/ftox.2024.1393662

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2024.1393662


contributing to next-generation risk assessment frameworks. By
extracting adverse effects associated with various chemicals from
the existing literature, we can supplement databases with structural,
physico-chemical and biological properties to facilitate the
development of models predicting the toxicity of (new) chemicals
with a similar structure or properties. It is likely that the information
collected from the literature using the NLP pipeline can be applied to
and impact virtually all aspects of toxicology and risk assessment.
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