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Introduction: Skin sensitization, which leads to allergic contact dermatitis, is a key
toxicological endpoint with high occupational and consumer prevalence. This
study optimized several in vitro assays listed in OECD skin sensitization test
guidelines for use on a quantitative high-throughput screening (qHTS) platform
and performed in silico model predictions to assess the skin sensitization
potential of prioritized compounds from the Tox21 10K compound library.

Methods: First, we screened the entire Tox21 10K compound library using a qHTS
KeratinoSensTM (KS) assay and built a quantitative structure–activity relationship
(QSAR) model based on the KS results. From the qHTS KS screening results, we
prioritized 288 compounds to cover a wide range of structural chemotypes and
tested them in the solid phase extraction–tandem mass spectrometry (SPE–MS/
MS) direct peptide reactivity assay (DPRA), IL-8 homogeneous time-resolved
fluorescence (HTRF) assay, CD86 and CD54 surface expression in THP1 cells, and
predicted in silico sensitization potential using the OECD QSAR Toolbox (v4.5).

Results: Interpreting tiered qHTS datasets using a defined approach showed the
effectiveness and efficiency of in vitro methods. We selected structural
chemotypes to present this diverse chemical collection and to explore
previously unidentified structural contributions to sensitization potential.

Discussion: Here, we provide a skin sensitization dataset of unprecedented size,
along with associated tools, and analysis designed to support chemical
assessments.
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Introduction

Allergic contact dermatitis (ACD) is a common environmental
and occupational health problem. ACD is a delayed allergic reaction
in the skin that comes into contact with a skin sensitizer (Kimber
et al., 2011). The induction phase involves an endogenous protein
reaction with haptens, dendritic cells (DCs) presenting the modified
proteins as an antigen to naive T cells in the local lymph nodes, and
the stimulation of specific T cells (Ainscough et al., 2013).
Subsequent encounters with the same chemicals result in the
elicitation phase, where memory T cells in the lymph nodes are
activated and then recruit a specific T-cell-mediated immune
response in the dermis (Meller et al., 2007). As the initial step in
this immune process, the induction phase of skin sensitization is a
key endpoint for product safety assessment.

The use of animal models for the evaluation of the sensitization
potential of chemicals is being gradually phased out. In the recent
decade, a mechanistic understanding of the causal relationship in
skin sensitization allowed us to dissect the adverse effect to a series of
biological events composed of molecule interactions. When it
translates to risk assessment, a step-by-step evaluation of skin
sensitization potential is based on these key events (KEs) which
form the adverse outcome pathway (AOP), a structured
representation. New alternative approaches are designed to detect
these molecular and cellular signaling, which, when mapped to KEs
in the AOP, have gained regulatory acceptance and are incorporated
into AOP-based integrated testing strategies (Daniel et al., 2018;
Hoffmann et al., 2018).

Currently, the skin sensitization OECD test guidelines are based
on four KEs of the AOP: 1) covalent modification of self-proteins by
sensitizers (haptenation), measured via, e.g., the direct peptide
reactivity assay (DPRA) (OECD, 2019). The DPRA uses two
synthetic peptides which contain a cysteine or a lysine residue to
evaluate a chemical adduct formation ability with the thiol group and
amine group, respectively (Gerberick et al., 2004; Gerberick et al.,
2009); 2) antioxidant response element (ARE) assay monitors the
activation of the Keap1/Nrf2 pathway, which plays a well-established
role of indicating electrophiles, e.g., KeratinoSensTM (KS) (Natsch
et al., 2011; OECD, 2018a); 3) DC activation, which models the
presentation of new antigens (hapten/carrier complexes); e.g., the
human cell line activation test (hCLAT) (OECD, 2023) measures the
induction of CD54 and CD86 in THP1 cells, which indicates the
ability of a substance to activate and mobilize DCs in the skin
(Sakaguchi et al., 2006; Nukada et al., 2012). Also pertaining to
this KE, IL-8 production in THP1 cells following contact allergen
stimulation was reported previously (Nukada et al., 2008). In contrast
to the hCLAT, which detects the expression of cell surface markers, an
IL-8 Luc THP1 cell line was used to quantify changes in IL-8
expression (OECD, 2016a), a cytokine associated with the
activation of DCs (Takahashi et al., 2011); and 4) murine local
lymph node assay (LLNA) measures lymphocyte proliferation,
which represents the activation of the immune system (OECD,
2002). None of the in chemico/in vitro methods (KE 1–3) have
been approved as stand-alone replacements for the LLNA (KE 4),
which is historically the gold standard for assessing skin sensitization
potential. To systematically evaluate and apply four in chemico/
in vitro tests, i.e., the DPRA, KS, hCLAT, and IL-8 homogeneous
time-resolved fluorescence (HTRF) (internal assay which maps to the

same AOP KE as the hCLAT), we validated and adapted them into
high-throughput screening (HTS) platforms and named them
quantitative high-throughput screening (qHTS) KS, solid phase
extraction–tandem mass spectrometry (SPE–MS/MS) DPRA, and
CD86/CD54, and IL-8 HTRF assays accordingly. Among skin
sensitization testing assays, only the qHTS KS assay was adapted
to 1,536-well plates. Therefore, we first screened the Tox21 10K
compound library in the KS assay and then performed follow-up
testing in the other methods and generated hazard predictions using
the OECD QSAR Toolbox (v4.5).

Machine learning classification models are computer algorithms
capable of predicting categories for new unseen data based on
annotated training data and have been widely applied to predict
the skin sensitization potential (Wilm et al., 2018). A few validated
QSAR models with defined applicability domains were developed to
predict skin sensitization based on LLNA results or multiple non-
animal tests (Lu et al., 2011; Alves et al., 2015; Hirota et al., 2015;
Strickland et al., 2016; Braga et al., 2017; Strickland et al., 2017; Zang
et al., 2017; Wilm et al., 2019). The feature sets for building these
classification models included different combinations of in vitro
assays (e.g., KS and hCLAT), in chemico assays (e.g., DPRA), and
physicochemical properties (e.g., molecular weight and vapor
pressure) (Wilm et al., 2018; Golden et al., 2020). Compared with
other types of features, in vitro and in chemico assays can not only be
used to predict the skin sensitization potential of a given compound
with an unknown structure or physicochemical properties but also
provide clues to understand the mechanisms of skin sensitization
(Strickland et al., 2017; Zang et al., 2017). Since the Tox21 10K
compound library is designed to cover a large chemical space (Bell
et al., 2017), the composition of the compound library spans with a
broad range of pharmaceuticals, pesticides, pharmaceutical aids, food
additives, consumer products, industrial chemicals, cosmetics,
household items, herbicides, and others. The KS dataset provides a
valuable annotated dataset with diverse chemotypes that could be
used to train machine learning classification models.

When integrating data from in silico and in vitro tests, regulators
are faced with the question of whether non-animal test-generated
information is reliable and predictive of the outcome in humans.Many
studies have been conducted to validate the use of defined approaches
(DAs) to satisfy specific regulatory needs (Rovida et al., 2015; Casati
et al., 2018; Kleinstreuer et al., 2018). A DA consists of a fixed data
interpretation procedure to interpret data generated with a defined set
of information sources (e.g., in silico, in chemico, in vitro, and physico-
chemical properties). For example, the 2-out-of-3 DA predicts a skin
sensitization hazard by testing in up to three internationally accepted
non-animal methods with OECD test guidelines (TGs) (DPRA, KS,
and h-CLAT (Urbisch et al., 2015)). The sequential testing strategy
(STS) (Nukada et al., 2013) is designed for sensitizing potency
classification based on DPRA and hCLAT data and accepted in US
EPA interim guidance but not included in OECDGuideline 497 due to
the limited specificity against reference data (EPA, 2018). The
integrated testing strategy (ITS) uses DPRA, hCLAT, and in silico
predictions as data inputs (Takenouchi et al., 2015) and is included in
OECD Guideline 497 (OECD, 2021). These DA predictions are rule-
based, not influenced by expert judgment, which are published as case
studies in OECD Guidance Documents (OECD, 2016b) for regulatory
use (EPA, 2018; OECD, 2021). Therefore, the 2 out of 3, STS, and ITS
DAs were applied to the set of compounds identified by the in vitro
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assays to characterize their predicted skin sensitization hazard and
potency. Furthermore, we screened a large set of compounds in qHTS
and in silico test batteries, trained a robust machine learningmodel for
the KS assay, applied OECD-validated defined approaches to predict
their skin sensitization potential, and applied cheminformatics
techniques to characterize the results and yield structural insights
into the skin sensitization potential.

Materials and methods

qHTS KS assay

The Nrf2/ARE-HaCaT-derived KS cell line was maintained in
MEM supplemented with 10% FBS (HyClone), 100 U/mL penicillin,
and 100 μg/mL streptomycin (Invitrogen). THP1 cells were cultured
with RPMI 1640 Medium (Gibco) supplemented with 10% FBS
(HyClone), 100 U/mL penicillin, and 100 μg/mL streptomycin
(Invitrogen). The cells were maintained at 37°C under a
humidified atmosphere in a 5% CO2 incubator.

KS cells were dispensed at 1,500 cells/5 μL/well in 1,536-well white
wall/solid bottom plates using a Multidrop Combi (Thermo Fisher
Scientific, Waltham, MA) dispenser. After the assay plates were
incubated at 37°C/5% CO2 for 5 h, 23 nL of compounds dissolved
in DMSO, a positive control (2,4-dinitrochlorobenzene), or DMSO
only were transferred to the assay plate using a Wako Pintool station
(Wako Automation, San Diego, CA). The chemicals including the
positive control were tested in a 15-point concentration ranging from
2.8 nM to 92 µM. The plates were incubated at 37°C/5% CO2 for 23 h,
followed by the addition of 1 μL/well of CellTiter-Fluor reagent into
the assay plates using a BioRAPTR Flying Reagent Dispenser
(Beckman Coulter, Brea, CA). After 1 h of incubation at 37°C/5%
CO2, the fluorescence intensity was measured using a ViewLux
(PerkinElmer, Shelton, CT) plate reader. Then, 4 μL/well of ONE-
Glo was added using a BioRAPTR Flying ReagentDispenser. After the
plates were incubated at room temperature for 30 min, the
luminescence intensity in the assay plates was measured using the
ViewLux plate reader. A compound is considered positive when the
induction of Nrf2/ARE luciferase is over 1.5-fold of the negative
control when applying the OECD TG criteria. The compound with
curve rank number >3 (defined in qHTS data analysis) is considered
positive in curve rank criteria. The EC1.5 value represents the
concentration for which the induction of luciferase activity is
above the 1.5-fold threshold. Imax indicated the maximal activity
value observed at any concentration of the tested chemical that
was normalized to a percentage of 2-fold of the negative control value.

IL-8 HTRF assay

THP1 cells were suspended in an assay medium (RPMI
1640 containing 10% FBS, 100 U/mL penicillin, and 100 μg/mL
streptomycin) and dispensed at 2,000 cells/4 μL/well in a 1,536-well
white-wall/solid-bottom plate using a Multidrop Combi (Thermo
Fisher Scientific, Waltham, MA) dispenser. Then, 23 nL of
compounds dissolved in DMSO, positive control
lipopolysaccharides (LPSs, Sigma), or DMSO only were transferred
to the assay plate using aWako Pintool (WakoAutomation, SanDiego,

CA). The final compound concentrations in the 4-µL assay volume
ranged from 1.25 nM to 115 μM in 15 concentrations. The plates were
incubated at 37°C/5% CO2 for 18 h, followed by the addition of 1 μL/
well of pre-mixed anti-IL-8 antibodies (Cisbio, Bedford, MA) into the
assay plates using a BioRAPTR Flying Reagent Dispenser. After
incubation at room temperature for 2 h, the HTRF activity was the
ratio of readings at channel 662 nm/615 nm, which was measured
using an EnVision plate reader with the filter setting excitation 320 nm
and emission 615/665 nm. Two criteria were used to identify a positive
chemical in the assay were applied. The first criteria is based on curve
ranking used in qHTS. Compounds with a curve rank number above
3 were considered active (curve fitting procedure defined in qHTS data
analysis). The second criteria is based on, OECD TG 442E, which
identifies a positive sensitizer based on the fold induction of luciferase
activity over the vehicle control. A compound is considered positive
when the induction of luciferase is at least 1.4-fold, and the lower limit
of the 95% confidence interval is over 1.0-fold.

SPE–MS/MS DPRA

A stock solution of the standard cysteine (Ac-RFAACAA-
COOH) or lysine peptide (Ac-RFAAKAA-COOH) in traditional
DPRA was mixed with an internal control alanine peptide (Ac-
RFAAAAA-COOH) and diluted in PBS (pH = 7.5) or ammonium
acetate (pH = 10.2), respectively, to obtain a final concentration of
5 µM of cysteine and 0.5 mM lysine peptide, as reported by Wei et al.
(2021). By using lower peptide concentrations compared with OECD
TG 442C, the high sensitivity of RapidFire-MS/MS and high reactivity
of the thiol group in the cysteine peptide provide sufficient sensitivity
for this qHTS DPRA method. Chemicals dissolved in DMSO with a
concentration ranging from 0.25 μM to 1 mM, or 12 μM to 50 mM
(DMSO final concentration is <0.1%), were added to the peptide
mixtures and incubated at room temperature for 24 h in Nunc 384-
well plates (Thermo Fisher). The compound–peptide mixtures were
then analyzed by RapidFire-MS/MS. The RapidFire system, which
conducts high-speed solid-phase extraction (SPE) (sampling, loading,
washing, and injection) through multiple pumps and a valve system,
delivers eluted analytes directly to the mass spectrometer (RapidFire-
MS/MS) (Clausse et al., 2019). The RapidFire-MS/MS system was
equipped with a C4 type A SPE cartridge. Agilent RapidFire 4.0 and
Agilent MassHunter B.08.00 software were used for instrument
control and data acquisition. Two criteria were used to identify a
positive chemical in the assay. OECD Test Guideline 442C defines
compounds depleting >13.89% cysteine peptide (DPRA-C) or
depleting >6.38% the average of lysine peptide (DPRA-K) and
cysteine peptide (DPRA-C) as active. In qHTS DPRA, the
depletion % of the peptide is reflected as a negative range since
the reduction in the peptide amount is the inhibitionmode. Therefore,
the chemicals with a curve rank less than −3 (inhibitionmode: efficacy
in the negative range) are positive in qHTS curve rank criteria.

CD86 and CD54 surface expression
measurement

Prior to the measurement of CD86 and CD54 surface
expression, all compounds were prescreened for their non-cytotoxic
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concentrations using CellTiter Glo. Cell viability of each compound
was tested in 1536-well white wall/solid bottom plates using a
Multidrop Combi (ThermoFisher Scientific, Waltham, MA)
dispenser. For compounds showing cytotoxicity at < 200 μM, the
highest non-cytotoxic concentration was selected as the single
concentration point to perform CD86 and CD54 measurement in
flow cytometry. If a compound was not cytotoxic, the highest
achievable concentration (100–200 µM) was selected as the test
concentration. THP1 cells were seeded in a round-bottom 96-well
plate at a density of 2 × 105 cells/well and treated with chemicals for
24 h before harvesting. The cells were stained with 3 µL CD54 mAb
(clone 6.5B4 from Agilent, DAKO, Santa Clara, CA) and 6 µL
CD86 mAb (Biosciences, San Jose, CA) separately for 30 min at
4°C. All the samples were stained with live 760 (Biosciences). After
washing and resuspending in PBS, flow cytometry analysis was
performed in a iQue Plus flow cytometry system. The dead cells
were gated out, and a total of 5,000 living cells were analyzed. The
fluorescence intensity of each sample was normalized to as the relative
fluorescence activity (percentage) of the positive control, 200 µM
DNCB-treated group. OECD Test Guideline 442E defines
compounds inducing CD86 > 1.5-fold or CD54 >2-fold above
baseline (DMSO) as active in hCLAT, and the same threshold was
applied here. Since compounds were tested in a single concentration in
the CD86 and CD54 surface expression measurement, it was not
possible to apply curve rank criteria for active call designation.

qHTS data analysis

Data normalization and concentration–response curve fitting
for the data from the qHTS screening and follow-up studies were
performed in a 1,536-well plate, as previously described (Wang and
Huang, 2016). In brief, qHTS KS and IL-8 HTRF assays, raw plate
reads for each titration point, were normalized relative to the
DMSO-only wells as follows: % activity = ((Vcompound–VDMSO)/
VDMSO ×100, where Vcompound denotes the compound well values
and VDMSO denotes the median values of the DMSO-only wells
(DMSO final concentrations ranging from 0.38% to 0.45%) and then
corrected by applying an NCATS in-house pattern correction
algorithm using compound-free control plates (i.e., DMSO-only
plates) at the beginning and end of the compound plate stack (Wang
et al., 2010). Concentration–response titration points for each
compound were fitted to a four-parameter Hill equation yielding
concentrations of half-maximal inhibitory activity (IC50) or half-
maximal stimulatory activity (EC50) and maximal response
(efficacy) values (Huang, 2016).

Compounds were designated as classes 1–4 according to the type
of concentration–response curve observed (Inglese et al., 2006;
Huang, 2016). Curve classes were further combined with efficacy
and converted to curve ranks (Supplementary Table S1), which are
numeric measures of compound activity ranging from −9 to 9
(Huang, 2016). Compounds that showed activation are assigned
positive curve rank values, and compounds that showed inhibition
are assigned negative values. Inactive compounds are assigned a curve
rank of 0. Each compound was assigned an activity outcome, inactive,
active, or inconclusive, based on the type of concentration–response
curve and reproducibility (three independent runs), as described
previously (Huang, 2016). For each assay run in multiple

concentrations, chemicals with a curve rank below −3 or above
3 are considered actives. Activity calls were also applied based on
criteria from the respective OECD guidelines, as described above. For
assays with both OECDTG calls and curve rank calls (DPRA andKS),
the two methods were assessed for concordance.

Clustering and compound selection
by chemotype

The active compounds from the Tox21 10K qHTS KS screen
were analyzed for chemotype composition based on ToxPrint
definitions. ToxPrint is composed of 729 uniquely defined
chemical features coded in XML-based Chemical Subgraphs and
Reactions Markup Language (CSRML), which were generated
within the publicly available ChemoTyper application (https://
chemotyper.org/) (Yang et al., 2015). Each compound was
assigned to one chemotype cluster so that all compounds in that
cluster share the same chemotype. As one compound could have
multiple chemotypes, to select one chemotype for each compound,
medium-sized chemotypes (shared by 10–20 compounds) were
preferred over large chemotypes (shared by < 10 compounds)
and over small chemotypes (shared by > 20 compounds). For
small clusters with <3 compounds, compounds with AC50 <
10 μM and efficacy >50% were selected. Compounds were then
selected from each chemotype cluster based on cluster size and
primary KS assay activity. Chemotypes were sorted by cluster size-
based order, and the top chemotype was then selected for each
compound. The sorting and selection process starting with the most
potent and efficacious compounds was selected from each cluster,
and more compounds were selected from larger clusters. This
process resulted in 288 compounds covering 141 representative
chemotype clusters (column D in Supplementary Table S2),
which were tested in offline qHTS KS assay again and then
plated for follow-up testing in the SPE–MS/MS DPRA,
CD86 and CD54, and IL-8 HTRF assays and prediction using the
OECD QSAR Toolbox v4.5.

Machine learning models

To model the KS assay results, the Tox21 10K KS dataset was
downloaded from Tripod (https://tripod.nih.gov/tox/). The compound
quality control (QC) results and additional annotations for each
individual compound are publicly accessible at https://tripod.nih.
gov/tox21/samples. The compounds that passed the QC test were
split into two parts, approximately two-thirds of the dataset for model
training and cross-validation, and the other one-third for external
validation. Then, the desalted simplified molecular-input line-entry
system (SMILES) structures were converted to ToxPrint fingerprints
using ChemoTyper. The structure for each compound was represented
as a bit vector where the presence or absence of the feature was
recorded in a binary system as 1 or 0, respectively (Yang et al., 2015).

The ToxPrint fingerprints were used as input features to build a
model to predict the KS assay results (active/inactive calls).

Five different classification algorithms were used, namely, Naïve
Bayes (NB), neural networks (NNET), random forest (RF), support
vector machine (SVM), and eXtreme Gradient Boosting (XGBoost).
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Models were built and tested using R version 3.4.2 with the “e1071”
package for NB and SVM classifiers (Dimitriadou et al., 2005),
“Random Forest” package for RF classifier (Liaw andWiener, 2002),
“nnet” package for NNET (Ripley, 2002), and “xgboost” package for
the XGBoost classifier. The implementation of the NB classifier was
adapted with the settings of Laplace smoothing, and the Gaussian
Radial Basis Function kernel was used for the SVM classifier. In
addition, the other parameters were set to default for the SVM, RF,
and NNET classifiers. The optimal constant parameters for the
XGBoost classifier were as follows: control the learning rate (0.01),
maximum depth of a tree (3), and subsample ratio of columns when
constructing each tree (0.5).

Models were built using the best practices (Tropsha, 2010). In
brief, feature selection (on the training set only) as a preprocessing
step prior to modeling was performed using four methods, namely,
Fisher’s exact test with p-value, area under the receiver operating
characteristic curve (AUC-ROC) value, importance scores from
XGBoost (gain score), and RF (Gini score) algorithm. Fisher’s
exact test evaluates the enrichment of every feature in the active
compounds. Features were selected at five different p-value cutoffs
ranging from 0.01 to 0.05 with an interval 0.01. The AUC-ROC
method evaluates every feature for its predictive value of the
endpoint being modeled. An AUC-ROC value was calculated for
every feature. Features were selected at five different AUC-ROC
cutoffs ranging from 0.52 to 0.60 with an interval of 0.02 using
“pROC” packages (Sing et al., 2005; Robin et al., 2011). The
“xgboost” (Chen et al., 2015) and “Random Forest” (Liaw and
Wiener, 2002) packages were applied to retrieve feature
importance scores. Features ranked with gain or Gini scores were
picked at 10 intervals from the top 10 to top 50. After feature
selection, models for the qHTS KS assay endpoint were built using
the selected feature subsets via supervised machine learning.

To evaluate model performance, the dataset was randomly
divided into 70% (4,564 compounds) as a training set and 30%
(1956 compounds) as a test set. Each model was evaluated by the
internal 3-fold cross-validation on the training set. To ensure the
robustness of our results, each training model was repeated 20 times.
Due to the imbalanced class distributions of active and inactive
compounds, the training set was rebalanced using four different
subsampling methods, namely, downsampling, upsampling, random
oversampling examples (ROSE), and the Synthetic Minority
Oversampling TEchnique (SMOTE) via the “ROSE” and “DMwR”
packages in R (Torgo and Torgo, 2013; Lunardon et al., 2014). Model
performance on the test set was measured by the AUC-ROC, balanced
accuracy (BA) using the “ROCR” and “pROC” package (Sing et al.,
2005; Robin et al., 2011), and Matthews correlation coefficient (MCC)
using the “mltools” package in R. The plots were generated using the
“ggplot2” package in R. Representative structures containing any of
these significant features were drawn using the ChemDraw
Professional software (version 17.1).

OECD QSAR Toolbox automated workflow
prediction

The 288 compounds identified by the application of chemotype
clusters to the primary KS screen were run through the OECDQSAR
Toolbox v4.5 automated workflow to predict the skin sensitization

potential (Yordanova et al., 2019). In brief, the SMILES specifications
of the chemical structure for each compoundwere used as inputs. Skin
sensitization hazard predictions (positive or negative) were made
using the automated workflow for “EC3 from LLNA or skin
sensitization from Guinea Pig Maximization Test (GPMT) for
defined approaches (SS AW for DASS).” If the automated
workflow could not make a prediction because the compound was
a salt, the salt was dissociated, and the automated workflow was
applied to the organic portion of the compound to make a hazard
prediction. The QSAR Toolbox does not make skin sensitization
hazard predictions for inorganic substances.

Application of defined approaches

While none of the OECD-validated in vitro or in chemico assays
are considered adequate to predict the skin sensitization potential as
stand-alone methods, data generated with tests addressing multiple
KEs of the skin sensitization AOP can be used together, as well as
with information sources such as in silico and read-across
predictions from chemical analogs, within DAs. The first OECD
guideline on DAs for skin sensitization was recently approved
(OECD, 2021) and includes multiple rule-based DAs that provide
predictions of potential dermal sensitization hazard classification
and potency category. These validated DAs were extensively
characterized and shown to either provide the same level of
information or be more informative than the murine LLNA
(OECD TG 429) for hazard classification (i.e., sensitizer versus
non-sensitizer) and for Globally Harmonized System of
Classification and Labeling of Chemicals (GHS) potency
subcategorization (Secretariat, 2015). The “2o3” DA provides a
prediction for hazard classification based on majority concordant
results of the DPRA, KS, and hCLAT, and the integrated testing
strategy “ITSv2” DA predicts the GHS potency category (1A, 1B, or
not classified [NC]) based on the DPRA, hCLAT, and OECD QSAR
Toolbox in silico prediction. An additional DA for hazard
prediction, the STS, was included in an interim science policy
published by the US EPA (EPA, 2018) as an alternative to the
animal test. These three DAs were applied here to chemicals with the
requisite information sources based on the OECD TG criteria.

Results

qHTS KS screen and model performance

The qHTS KS primary screening tested ~8,300 unique
compounds at 15 concentrations ranging from 0.04 nM to 92 μM
in three independent runs. To evaluate qHTS performance, a set of
parameters were calculated, as described previously (Huang, 2016).
For primary screening, the signal-to-background (S/B) ratio was
2.89 ± 0.22, the coefficient of variation (CV) was 4.66% ± 1.16%, and
the average Z′ factor was 0.76 ± 0.03. The cell viability assay was
measured simultaneously in the same well with KS. For the cell
viability assay, the S/B ratio was 166.80 ± 4.64, CV was 7.18% ±
0.68%, and Z’ factor was 0.79 ± 0.03. The qHTS reproducibility
parameters given in Supplementary Table S3 showed that the three
independent runs reproduced well, and nearly no mismatch was
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found. As described in the section on data analysis, each compound
activity from three independent runs was defined as an active,
inconclusive, or inactive based on curve classes. Most of the
compounds (75.74%) were inactive in qHTS KS assay. The
676 active compounds and 5,844 inactive compounds which
served to balance the dataset were selected for qHTS KS
computational modeling.

The full qHTS KS assay dataset (a total of 6,520 compounds
given in Supplementary Table S4) generated from screening the
Tox21 10K compound library was split into two parts,
approximately two-thirds for model training and cross-validation
and one-third for external validation, as described in Materials and
methods. AUC-ROC, BA, and MCC were used to measure model
performance, which exhibited the same trend (Table 1). The cross-
validation results showed that the optimal models for each feature
selection method all achieved good performances with AUC-ROC
value >0.69 (Table 1). The overall best model achieved an AUC-
ROC of 0.81 ± 0.01, which was generated by a combination of
Fisher’s exact test with p-value ≤0.05 (feature selection method), RF
(machine learning algorithm), and upsampling (rebalancing
strategy). The optimal models from each feature selection
method were employed to predict the external validation dataset.
The external validation AUC-ROC values ranged from 0.73 to 0.81
(Figure 1), and the optimal parameter combination that produced

the best external validation AUC-ROC is consistent with the cross-
validation results given in Table 1 (i.e., Fisher’s exact test with
p-value ≤0.05, RF algorithm, and upsampling). Fisher’s exact test
evaluates the enrichment of every feature in the active compounds
and showed the best performance in four statistical tests. The
chemotype features with p-value <0.05 using Fisher’s exact as a
feature selection are given in Supplementary Table S5.

Comparison among in vitro and in
silico results

As shown in Figure 2, after the primary screen of the Tox21 10K
compound library in qHTS KS assay, a total of 288 compounds were
selected based on primary qHTS KS assay activity and chemotype
diversity and then tested in SPE-MS/MS DPRA, CD86 and
CD54 surface expression, and IL-8 HTRF assays. The original
in vitro skin sensitization test battery assays were optimized to
qHTS testing to accommodate the compound plate, which are in
1,536- or 384- or 96-well plates. The difference in the testing
conditions and threshold for positive/negative calls of each assay
is given in Table 2 accordingly. The key limitation is the fixed test
compound concentration (up to 100–200 µM) which impacts the
sensitivity of CD86 or CD54 surface expression.

TABLE 1 Optimal classification performance (AUC-ROC, BA, andMCC values) of each feature selectionmethod for predicting KS using a cross-validation of
training set results.

Feature selection method Machine learning
algorithm

Rebalancing
method

Cutoff AUC-ROC BA MCC

AUC-ROC NB ROSE 0.52 0.72 ± 0.03 0.69 ± 0.02 0.27 ± 0.02

AUC-ROC NNET Original 0.52 0.70 ± 0.03 0.68 ± 0.02 0.28 ± 0.03

AUC-ROC RF Upsampling 0.52 0.76 ± 0.02 0.72 ± 0.02 0.32 ± 0.03

AUC-ROC SVM Upsampling 0.52 0.74 ± 0.02 0.70 ± 0.02 0.29 ± 0.03

AUC-ROC XGBoost Original 0.52 0.76 ± 0.02 0.71 ± 0.02 0.31 ± 0.03

Fisher’s exact test NB Original 0.01 0.78 ± 0.01 0.73 ± 0.01 0.33 ± 0.02

Fisher’s exact test NNET ROSE 0.05 0.74 ± 0.02 0.70 ± 0.02 0.28 ± 0.04

Fisher’s exact test RF Upsampling 0.05 0.81 ± 0.01 0.75 ± 0.01 0.35 ± 0.02

Fisher’s exact test SVM Upsampling 0.03 0.78 ± 0.01 0.73 ± 0.01 0.32 ± 0.02

Fisher’s exact test XGBoost Upsampling 0.05 0.79 ± 0.01 0.73 ± 0.01 0.32 ± 0.03

RF NB Original 40 0.74 ± 0.02 0.69 ± 0.02 0.28 ± 0.03

RF NNET Upsampling 50 0.69 ± 0.02 0.66 ± 0.01 0.23 ± 0.03

RF RF Original 50 0.77 ± 0.02 0.71 ± 0.02 0.32 ± 0.04

RF SVM Upsampling 50 0.73 ± 0.02 0.69 ± 0.02 0.28 ± 0.04

RF XGBoost Original 50 0.75 ± 0.02 0.70 ± 0.02 0.30 ± 0.04

XGBoost NB Original 50 0.76 ± 0.02 0.71 ± 0.02 0.30 ± 0.03

XGBoost NNET Original 40 0.72 ± 0.02 0.69 ± 0.02 0.29 ± 0.03

XGBoost RF Original 50 0.79 ± 0.02 0.74 ± 0.02 0.35 ± 0.04

XGBoost SVM Upsampling 50 0.76 ± 0.02 0.71 ± 0.02 0.30 ± 0.02

XGBoost XGBoost Upsampling 50 0.77 ± 0.02 0.71 ± 0.02 0.30 ± 0.02
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Positive/negative outcomes of each compound in different
assays based on the curve rank criteria qHTS and OECD TG
criteria are given in Supplementary Table S6. The concordance of
the activity calls based on the two criteria for qHTS KS assay was

86% in balanced accuracy, and for SPE-MS/MS DPRA assay, it was
90% in balanced accuracy; the comparison of activity calls is given in
Supplementary Table S7. OECD TG criteria have more positive calls
than the curve rank criteria. This is because the curve rank has an
additional criterion, curve class, to measure the dose–response curve
quality based on the curve fitting. The curve rank criteria are more
suitable for qHTS data since the curve class values the data
confidence as an important factor in large-scale data interpretation.

The same set of chemicals was also run through theOECDQSAR
Toolbox DASS automated workflow, which provides the prediction
of skin sensitization hazards based on a read-across approach from a
large reference database of animal and human data. The concordance
of active and inactive outcomes between each of the non-animal
test methods and with OECD QSAR Toolbox predictions is
shown in active/inactive concordance tables (Tables 3, 4). The
active or inactive outcome shown in Table 3 was based on the
curve rank number (0 is inactive; >3 or < −3 as active), and Table 4
was based on the OECD TGs criteria (described in methods of each
assay). The number of concordant active and inactive hits is shown in
the column and row intersections; the higher numbers indicate
better concordance of the assay pairs. SPE–MS/MS DPRA-C
(cysteine depletion) and SPE–MS/MS DPRA-K (lysine depletion)
were evaluated separately in terms of curve rank criteria. When
considering the concordance of compounds with active outcomes in
SPE–MS/MS DPRA-C/K, we used OECD TG 442C criteria to make

FIGURE 1
Example ROC curves of the optimal QSAR models on the
external validation dataset.

FIGURE 2
Schematic charts for screening, chemical prioritization workflow and qHTS data interpretation.
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the call. Overall, qHTS KS and SPE–MS/MS DPRA have the highest
active correlation among all in vitro assays regardless of different
active/inactive outcome criteria. When comparing in vitro assays
with OECDToolbox predictions, DPRA-C demonstrated the highest
concordance of actives based on the curve rank criteria, and
DPRA-C/K was most concordant with the OECD Toolbox when
using OECD TG criteria for actives.

The 288 chemicals were described by chemotypes to study structural
alerts, as described in Clustering and compound selection by chemotype,
and the representative chemotype is shown in Supplementary Table S2

column D. The distribution is shown as a chemical count in each
chemotype in Supplementary Table S8. The curve rank is a
measurement of compound activity based on the curve class and
efficacy, as described in Materials and methods and Supplementary
Table S1. To visualize different chemotype activities in each assay, the
average curve rank of chemicals containing a representative chemotype
in KS, DPRA-C, DPRA-K, and IL-8 assays was plotted against the
activities in qHTS KS, SPE–MS/MS DPRA-C, SPE–MS/MS DPRA-K,
and IL-8 HTRF assays (Figure 3). The raw data are shown in
Supplementary Table S9. The gradient red and blue color indicates

TABLE 2 Comparison of assay conditions of skin sensitization in vitro assays and their qHTS versions.

Culture time Exposure time Maximal test
concentration

Negative/positive threshold

KS 24 h 48 h 5,000 mg/L 1.5-fold induction

qHTS KS 5 h 24 h 92 µM Curve rank number >3 in curve rank
criteria

1.5-fold induction in OECD TG criteria

C/K-peptide
concentration

Exposure time Test method Prediction model

DPRA-Cys 0.667 mM in pH 7.5 phosphate
buffer

24 h HPLC Negative: Cys % depletion <13.89%

Low reactivity: 13.89 < Cys %
depletion <23.09%

Moderate reactivity: 23.09 < Cys %
depletion <98.24%

High reactivity: Cys % depletion >98.24%

SPE–MS/MS
DPRA-C

0.5 µM in pH 7.5 phosphate
buffer

24 h MS-MS Same as above

DPRA-Lys 0.5 mM in pH 10.2 ammonium
acetate buffer

24 h HPLC Negative: mean Cys and Lys %
depletion <6.38%

Low reactivity: 6.38% <mean Cys and Lys %
depletion <22.62%

Moderate reactivity: 22.62% < mean Cys
and Lys % depletion <42.47%

High reactivity: 42.47% < mean %
depletion <100%

SPE-MS/
MS-
DPRA-K

0.5 mM in pH 10.2 ammonium
acetate buffer

24 h MS-MS Same as above

Culture time Exposure time Test
concentration

Negative/positive threshold

hCLAT-
CD86

24 h 24 h Up to 5,000 mg/L RFI 150

CD86 24 h 24 h Up to 100 µM RFI 150

hCLAT-
CD54

24 h 24 h Up to 5,000 mg/L RFI 200

CD54 24 h 24 h Up to 100 µM RFI 200

Cell line Exposure time and test
concentration

Assay type Negative/positive threshold

IL8-Luc THP1-Luc 24 h, 20 mg/mL Luciferase reporter assay 1.5-fold

HTRF IL8 THP1 16 h, up to 100 µM HTRF immune assay 1.5-fold
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the range of the average curve rank number (9 to −9). SPE–MS/MS
DPRA-C and SPE–MS/MSDPRA-K are inhibitionmode assays, so dark
blue (−9) means that most of the peptides are depleted. Bright red (9)
indicates agonists in qHTS KS and IL-8 HTRF assays. Due to the single-
concentration test condition of CD86 and CD54 surface expression
(limited by test concentration), the results were not shown in the heat
map. The threshold in OECD TG 442E (OECD, 2023) to define a
positive is that a compound increases by 2-fold the fluorescence intensity
of DMSO for CD54 or by 1.5-fold for CD86. We marked those
compounds with an asterisk (*) after the compound name in
Supplementary Table S6. In Figure 3, the qHTS KS assay detects
54 chemotypes (117 chemicals) as actives, and the SPE–MS/MS
DPRA-C assay detects 65 chemotypes (126 chemicals) as actives. The
common active chemotypes in both qHTS KS and SPE–MS/MSDPRA-
C are highlighted in columnA of Supplementary Table S9. Although the
qHTSKS assay found fewer actives than SPE–MS/MSDPRA-C,most of
the chemotypes, which were only active in qHTSKS assay, were negative
in the OECD Toolbox, except chemotype “ring:hetero_[3]_O_epoxide”
and “bond:S(=O)O_sulfuricAcid_generic which are positive in qHTSKS
only.”When clustered by chemotypes in the dendrogram, the branch of
the dendrogram labeled with the red box indicates a better correlation
between SPE–MS/MS DPRA-C and qHTS KS assays. The chemotypes
in the branch of the dendrogram labeled with the green box were mostly
actives in qHTS KS but not in SPE–MS/MS DPRA-C.

Defined approaches for predicting the
sensitization potential

Three DAs (2o3, ITSv2, and STS) with varying degrees of
regulatory acceptance were applied to the chemical set tested here.
The in chemico, in vitro, and in silico information sources were
combined as outlined in the data interpretation procedures in
OECD GL 497 (i.e., 2o3, ITS) or the EPA Interim Science Policy
(i.e., STS). The data interpretation decision trees for the ITS and STS
are shown in Figures 4A, B accordingly. The results are shown in
Venn diagrams as positive concordance (Figure 5A) and negative
concordance (Figure 5B), and DA calls of each compound are shown
in detail in Supplementary Table S6 (column AK–AO). Across the
three DAs that provide hazard predictions, 82 chemicals were positive
in all the DAs, 157 chemicals were positive in at least two DAs, and
172 chemicals were positive in at least one DA (Figure 5A). A total of
96 chemicals were consistently predicted to be negative across the
DAs, with an additional 72 predicted negative by 2o3 and/or ITS
(majority by 2o3 only) (Figure 5B). Potency predictions provided by
the ITS and STS DAs were extremely consistent across the tested set,
with 82% agreement between the two approaches (Table 5).
Consistent predictions from both ITS and STS DAs yielded
96 chemicals predicted as NC, 133 chemicals predicted as GHS 1B,
and 6 chemicals predicted as GHS 1A. One chemical predicted as

TABLE 3 Concordance of qHTS KS, SPE–MS/MS DPRA-C, SPE–MS/MS DPRA-K, and IL-8 HTRF assays (based on the curve rank criteria) and OECD Toolbox
automated workflow predictions for 288 chemicals. CD86/CD54 surface expression is not included for curve rank criteria because it was tested at a single
concentration. The compounds detected as active and inactive assays were counted separately. The gray area is for concordance of compounds detected
as active in assays. The blue area is for concordance of compounds detected as inactive in assays.

Curve rank criteria Number of chemicals detected as active in assays

Method qHTS KS (117) SPE–MS/MS DPRA-C (128) SPE–MS/MS DPRA-K (8) IL-8 HTRF (52) OECD TB*(174)

qHTS KS (171) 60 1 24 80

SPE–MS/MS DPRA-C (149) 97 8 28 88

SPE–MS/MS DPRA-K (269) 158 149 1 6

IL-8 HTRF (236) 143 128 221 33

OECD TB* (32) 23 19 30 27

Number of chemicals detected as inactive in assays

*71 out of domain chemicals are not included.

TABLE 4 Concordance of qHTS KS, SPE–MS/MS DPRA-C/K, IL-8 HTRF, and CD86/CD54 surface expression assays (based on OECD TG criteria) and OECD
Toolbox automated workflow predictions for 288 chemicals. The compounds detected as active and inactive were counted separately. The gray area is for
concordance of compounds detected as active in assays. The blue area is for concordance of compounds detected as inactive in assays.

OECD TG criteria Number of chemicals detected as active in assays

Method qHTS KS (143) SPE–MS/MS DPRA-C/K (146) CD86/CD54 IL-8 HTRF (81) OECD TB*(174)

qHTS KS (145) 84 11 45 96

SPE–MS/MS DPRA-C/K (131) 80 14 52 100

CD86/CD54 (239) 130 123 6 11

IL-8 HTRF (207) 109 105 177 51

OECD TB*(32) 21 18 27 26

Number of chemicals detected as inactive in assays

*71 out of domain chemicals are not included.
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GHS 1B by ITS was predicted as GHS 1A by STS. Twelve chemicals
deemed inconclusive and five NC in the ITS DA were predicted as
GHS 1B by the STS. Among the six compounds which were predicted
as GHS 1A compounds by both DAs, some were substantiated by the
literature (daunorubicin) or are identified here for the first time as
potential strong sensitizers (pirarubicin, 1,4-dihydroxy-2-naphthoic
acid). Particularly, three GHS 1A compounds (doxorubicin,
daunorubicin, and pirarubicin) were assigned with the chemotype
“ring:fused_[6_6]_tetralin” which has the highest ITS DA score
among all the chemotypes (structures shown in Figure 6A). There
are four chemicals with this chemotype. Daunorubicin, doxorubicin,
and pirarubicin are GHS 1A, and only tolciclate is GHS 1B. Although
these chemicals tested positive in KS and DPRA, the potency
difference of GHS 1A and GHS 1B is clearly separated, as shown
in Figures 6B, C. Tolciclate is inactive in qHTS KS (Figure 6B) and
CD86/CD54 surface expression assays (Figures 6D, E) and showed
weak depletion in the SPE–MS/MS DPRA-C assay (Figure 6C).

Selected chemicals to represent chemotype
features with the skin sensitization potential

A total of 141 representative chemotypes (column D in
Supplementary Table S2) are assigned to the 288 chemicals. We
presented two chemotypes associated with most of the chemicals
that were positive in two assays of three key events (SPE–MS/MS
DPRA, qHTS KS, and IL-8 HTRF or CD86/CD54 surface
expression). The chemotypes “bond:CN_amine_pri-NH2_
aromatic” and “bond:QQ(Q~O_S)_sulfhydride” represent
electrophiles which are well-known structural alerts of sensitizers.
The structures of these chemicals are shown in Figures 7A, 8A

(representative chemotype highlighted in red). There are four
chemicals in each chemotype. All four chemicals in the “bond:
CN_amine_pri-NH2_aromatic” were active in SPE-MS/MS DPRA-
C and qHTS KS assays (Figures 7B, C). Although all were inactive in
the IL-8 HTRF assay, a small increase in the IL-8 expression level
was observed at the highest concentration (Figure 7D). 1,2-
Phenylenediamine and 4-chloro-1,2-diaminobenzene were active
in the CD54 and CD86 surface expression assay (Figures 7E, F).
The compounds represented by the chemotype “bond:QQ (Q~O_S)
_sulfhydride” are 2-methyl-3-furanthiol, 2-mercaptobenzothiazole,
4-tert-butylbenzenethiol, and thioglycolic acid anilide, which
showed depletion in the SPE-MS/MS DPRA-C assay (Figure 8B)
but a relatively marginal induction of the ARE gene in the qHTS KS
assay (Figure 8C). They also induced IL-8 protein expression
(Figure 8D) or CD54/CD86 surface expression in THP1 cells
(Figures 8E, F).

Discussion

A number of non-animal alternative methods have been recently
evaluated for regulatory use to assess substances for skin
sensitization potential. OECD has adopted nine non-animal
methods addressing mechanisms under the first three KEs of the
skin sensitization AOP. No single assay is sufficient to fulfill
regulatory requirements on the skin sensitization potential and
potency of chemicals comparable to that provided by the
regulatory animal tests. This study used a tiered strategy to
evaluate the Tox21 10K compound library by using OECD-
recommended in vitro tests to first screen the full chemical
library (qHTS KS) and perform follow-up testing (SPE–MS/MS

FIGURE 3
Activities of chemotypes found in compounds tested in qHTS KS, SPE–MS/MS DPRA-C, SPE–MS/MS DPRA-K, and IL-8 HTRF assays. The average
curve rank number of qHTS KS, SPE–MS/MS DPRA-C, SPE–MS/MS DPRA-K, and IL-8 HTRF assays was plotted against the chemotypes assigned to the
288 compounds.
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DPRA, IL-8 HTRF, and CD86/CD54 surface expression) for the skin
sensitization potential. The prioritized chemicals were predicted by
the DASS automated workflow in the OECD QSAR Toolbox and
three DA strategies (2 out of 3, ITS, and STS), and the full qHTS KS
dataset was used to build a machine learning model. This study
provides a novel skin sensitization dataset on a wide range of
chemicals, delivers an in silico tool that can be used for
structure-based screening, and serves to demonstrate the benefits
of integrating different elements in chemical safety assessment.

Since the qHTS platform performed assays in miniaturized wells,
we adapted the OECD TG in vitro assays to achieve the best assay
performance. There are a number of technical considerations that go
along with adapting the assays to the qHTS format. The qHTS KS
assay was performed in a 1,536-well plate with a co-measurement of

cell viability. The simultaneous measurement of the reporter gene and
cell viability ensures monitoring of cytotoxicity of each compound at
all tested concentrations. SPE–MS/MSDPRAwas measured using the
RapidFire-MS/MS method in a 384-well plate. Compared to HPLC-
based DPRA, the RapidFire-MS/MS DPRA renders high sensitivity
and efficiency, which also lowers peptide usage concentrations to
5 µM. The RapidFire-MS/MS method was validated with known
sensitizers and highlighted by the high accuracy because of an
internal control alanine peptide (Wei et al., 2021). The CD86 and
CD54 surface expression assay was conducted in a single non-toxic
concentration due to the highest test concentration range limit in
qHTS (the highest test concentration of nine common chemicals with
OECDDASS is below hCLATMIT). That’s because compounds from
the Tox21 10K compound library were prepared as 10–20 mM stock

FIGURE 4
Decision tree for categorizing sensitization potency in defined approaches. (A) ITS is a score-based system used to evaluate different test strategies.
It requiresmultiple tests conducted before the result interpretation. The sumof the score of assay activity or/and predicted outcome determines the GHS
category. (B) STS is a fixed stepwise approach to decide the sensitization potency. The flowchart provides the designation of sensitization potency based
on hCLAT and DPRA.
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in DMSO, which limits the highest test concentration to 100–200 µM
in hCLAT assays. The cytotoxic compounds are tested at the highest
non-cytotoxic concentration for CD54/CD86 activation. If a
compound shows no cytotoxic effect or CD54/CD86 activation at
the highest achievable concentration, the compound is classified as
negative for sensitization. Inevitably, some false negatives are most
likely due to the concentration limit. The hCLAT assay needs to be
run in a higher concentration range in the future. In this study, the IL-
8 protein expression was measured by an HTRF-based technology
instead of a luciferase reporter assay. It largely reduces the
background signal compared with the IL-8 luciferase reporter assay

(Takahashi et al., 2011). The IL-8 luciferase reporter assay and hCLAT
were previously reported to be similar because they assess the sameKE
in the AOP (Wilm et al., 2018). Evenwith test concentration limits, we
found that the IL-8HTRF assay detects more positives than CD86 and
CD54 surface expression and is more sensitive most of the time. The
modifications in qHTSKS, SPE–MS/MSDPRA, and IL-8HTRF assay
protocols would not impact data interpretation since all assays are
monitored with negative and positive controls, and the results are
applied to OECD TG criteria, as well as qHTS curve rank criteria to
define the assay call. Curve rank criteria weight more on reproducible
curves and tend to prioritize compounds with high efficacy and
potency. Generally, the curve rank criteria display a higher bar to
define a chemical as positive because the original design is for potent
drug candidate selection.

In addition to the qHTS-adapted in chemico and in vitro
techniques, we also leveraged in silico methods in this study. The
Tox21 10K compound library is designed to cover a large regulatory
relevant chemical space, and the qHTS KS assay screen on the
Tox21 chemicals represents the largest skin sensitization dataset
ever generated. These data were used to train and test a robust QSAR
model that demonstrated good performance metrics when applied to
the test set, such as anAUC-ROC of 0.81, a BA of 0.75, anMCC of 0.30,
a sensitivity of 0.63, and a specificity of 0.86 for the optimal model.
Based on the cross-validation results, the optimal models for each
feature selection method all achieved good performances with AUC-
ROC values >0.69, BA > 0.66, and MCC >0.23 (Table 1). The overall
best model achieved an AUC-ROC of 0.81 ± 0.01 with a BA of 0.75 ±
0.01 and anMCC of 0.35 ± 0.02, which was generated by a combination
of Fisher’s exact test with p-value ≤0.05 (feature selection method), RF
(machine learning algorithm), and upsampling (rebalancing strategy).
Consistent with our previous report on constructing and optimizing
classification models for predicting skin toxicity endpoints (Xu et al.,
2020), the optimalmodel performance also depended on a combination
of the specific machine learning algorithm, rebalancing strategy, and
feature selection method (Table 1). The key structural features are
widely applicable for predicting the bioactivity of a given compound
(Xu et al., 2023a; Xu et al., 2023b). In this study, the chemical features
with p value < 0.05 were associated with skin sensitization
(Supplementary Table S5), and some of them have literature
support. For example, the feature “ring:hetero_[5_6]_N_S_
benzothiazole_(1_3-)” was found significant for skin sensitization
(p-value = 6.34 × 10−8) in this study. Consistent with this finding,
benzothiazole and benzotriazole derivatives, widely used as industrial
chemicals (e.g., plasticizers), are closely associated with many biological
effects such as skin sensitization (Carlsson et al., 2022). The feature
“bond:COH_alcohol_aromatic_phenol” was found significant for skin
sensitization (p-value = 7.76 × 10−12) in this study. Consistent with this
finding, chemicals with this chemotype such as hydroquinone, 5-
chlorosalicylanilide, and 5-amino-2-methylphenol have been
reported to cause skin sensitization in LLNA (Kern et al., 2010;
Basketter et al., 2014). In the future, without performing KS in a
wet laboratory, this QSAR model based on the Tox21 10K data in
this study can be used as a prescreening step. Themodel code is publicly
available via GitHub (https://github.com/TX-2017/machine-learning/
blob/main/R_code.R) and will be part of future updates to the
Integrated Chemical Environment (https://ice.ntp.niehs.nih.gov). The
complete code package and the training dataset are accessible for any
researcher who is interested in predicting the skin sensitization of other

FIGURE 5
Concordance of hazard predictions in 2 out of 3, STS, and ITS
DAs. (A) Positive concordance among DA hazard predictions. (B)
Negative concordance among DA hazard predictions.

TABLE 5 Concordance of STS and ITS DA-predicted sensitization potency
based on the GHS category.

DA STS

DA ITSv2 GHS NC GHS 1B GHS 1A

GHS NC 96 5 0

GHS 1B 0 133 1

GHS 1 0 12 0

GHS 1A 0 2 6
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compounds. It is important to note that our predictive model was
constructed based on the results obtained fromHTS of the KS assay, so
it can only be used to predict the skin sensitization potential of
compounds as indicated by the KS assay alone. While the KS assay
serves as a guideline for skin sensitization in regulatory decisionmaking,
the HTS version we utilized does not adhere to OECD guidelines.
Additionally, it is crucial to highlight that the predictive results
necessitate experimental validation.

The existing in silico tool we applied was the OECD Toolbox DASS
automated workflow, which uses a read-across approach based on
animal data to predict the skin sensitization potential. We compared
SPE–MS/MS DPRA, qHTS KS, CD86/CD54 surface expression, and
IL-8 HTRF assay results with OECD Toolbox DASS automated
workflow prediction. Among these assays, DPRA and KS detected
most actives compared to OECD Toolbox prediction. This was
expected because SPE–MS/MS DPRA and qHTS KS assays depend

FIGURE 6
In vitro assay results of compounds containing chemotype “ring:fused_[6_6]_tetralin.” (A) Structures of daunorubicin, doxorubicin, pirarubicin, and
tolciclate. (B)DPRA-C assay data were normalized to the percentage activity of positive control MDG. (C) KS assay data were normalized to the activity of
positive control DNCB. (D) CD86 expression level was normalized to the percentage activity of 1.5-fold of the DMSO vehicle control. The asterisk *
indicates significantly different from DMSO control in Student’s t-test (n = 3). (E)CD54 expression level was normalized to the percentage activity of
2-fold of the DMSO vehicle control. The data were expressed as themean ± SD from three independent experiments. The asterisk * indicates significantly
different from the DMSO control in Student’s t-test (n = 3).
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largely on chemical reactivity, which aligns with QSAR-based
automated flow prediction. qHTS KS and SPE–MS/MS DPRA-C
assays both evaluate a chemical’s reactivity with the thiol
group. Most of the well-characterized sensitizers have electrophilic
reactivity, so it was also expected that qHTS KS and SPE–MS/MS
DPRA-C assays have similar active distribution patterns of chemotype
activity (Figure 3). It was interesting that the KS assay detects more

actives than the DPRA-C assay in the curve rank criteria. For example,
the chemicals with chemotypes in the green box (Figure 3) activated KS
but showed no activity in the DPRA-C assay. For example, four
chemicals, 5-azacitidine, ouabain, proscillaridin, and digoxigenin in
the chemotype “bond:COH_alcohol_diol_(1_3-),” induce Nrf2-ARE
gene expression without cytotoxicity at low concentrations (positive in
both OECD TG and curve rank criteria when only considering the KS

FIGURE 7
In vitro results of compounds containing chemotype “bond:CN_amine_pri-NH2_aromatic.” (A) Structure of 4-chloro-1,2-diaminobenzene, 1,2-
phenylenediamine, 5-amino-2-methylphenol, and 1,4-benzenediamine. (B) SPE–MS/MS DPRA-C assay data were normalized to the percentage activity
of positive control MDG. (C) qHTS KS assay data were normalized to the activity of positive control DNCB. (D) IL-8 protein level was normalized to the
percentage activity of 2-fold of the DMSO vehicle control. (E) CD54 expression levels were normalized to the percentage of 1.5-fold of DMSO
vehicle control. The asterisk * indicates significantly different from the DMSO control in Student’s t-test (n = 2). (F) CD86 expression levels were
normalized to the percentage of 2-fold of the DMSO vehicle control. The asterisk * indicates significantly different from the DMSO control in Student’s
t-test (n = 2). The data were expressed as the mean ± SD from three independent experiments.
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assay outcome). However, they start to show cytotoxicity at higher
concentrations (curve rank number −7 to −9 in the cytotoxicity assay)
(Supplementary Table S6).

The DAs combine results from biological endpoint in vitro and/or
in silico predictions in a rule-based judgment to predict the sensitization
potential of compounds. Here, we used assays that align to the AOP and

FIGURE 8
In vitro results of compounds containing chemotype “bond:QQ (Q~O_S)_sulfhydride.” (A) Structure of 2-methyl-3-furanthiol, 2-
mercaptobenzothiazole, thioglycolic acid anillide, and 4-chloro-1,2-diaminobenzene. (B) SPE–MS/MS DPRA-C assay data were normalized to the
percentage activity of positive control MDG. (C) qHTS KS assay data were normalized to the activity of positive control DNCB. (D) IL-8 protein level was
normalized to the percentage activity of 2-fold of the DMSO vehicle control. (E)CD 54 expression level was normalized to the percentage activity of
1.5-fold of the DMSO vehicle control. The asterisk * indicates significantly different from the DMSO control in Student’s t-test (n = 2). (F)CD86 expression
levels were normalized to the percentage activity of 2-fold of DMSO vehicle control. The asterisk * indicates significantly different from DMSO control in
Student’s t-test (n = 2). The data were expressed as the mean ± SD from three independent experiments.
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OECD QSAR Toolbox automated workflow predictions to apply the
2 out of 3, STS, and ITSDA strategies. The decision trees of ITS and STS
strategies are shown in Figure 4. The 2 out of 3 needs DPRA, KS, and
hCLAT assay results, which require more test systems than STS and
ITS, and has the potential drawback ofmisclassifying weak sensitizers as
non-sensitizers. DA 2 out of 3 provided 67 negative calls, which
disagreed with ITS and STS (Figure 5B). A common reason for this
mismatch was that a compound showing strong peptide depletion
(>23.09%) in the DPRA assay but negative in qHTS KS and CD86/
CD54 surface expression assays would be classified as a non-sensitizer
by the 2 out of 3 but not by the ITS or the STS. This is amplified by the
low sensitivity of qHTS assays of CD86/CD54 due to the limited
concentrations tested in qHTS assays. In this study, DA ITS and
STS showed strong concordance in GHS potency categorization
(Table 5), which was unsurprising since they are based on two of
the same in vitro assays. STS tends to classify marginal effects to
sensitization, while ITS has a buffering category for inconclusive
decisions based on the decision tree in GL 497. We found that
5 STS-predicted GHS 1B sensitizers were ITS-predicted non-
sensitizers because they are negative in CD86/CD54 surface
expression and weakly depleted peptides in DPRA. There were nine
chemicals in common with the OECD DASS database (Supplementary
Table S10). When comparing the qHTS version with traditional
guideline assay result in DASS, the qHTS DPRA peptide assay and
qHTS KS detect six out of eight and seven out of nine positives in
traditional DPRA and KS assay, respectively. Only three out of nine
chemicals showed marginal CD86 or CD54 activation because their
hCLATMIT is higher than the highest test concentration in this study.
When it comes to the defined approach, the concordance of our ITS and
STS for hazard classification with that of the OECD DASS was 8/9 and
7/9, accordingly. The concordancewithOECDDASS results was 7/9 for
the 2o3 DA. However, ITS and STS potency categorization from the
OECD DASS was not concordant with our qHTS ITS and STS
approaches, which was 1/9 for ITSv2 and 5/9 for STS. The low-
potency concordance is due to the missing hit in the hCLAT assay.
Additionally, this paper does not consider the borderline ranges since
OECD TG 497 determined the borderline ranges based on the log
pooled median absolute deviation from ring trial laboratory test results.
However, the deviation of the qHTS assay result is already counted in
the evaluation of concentration–response curve reproducibility (curve
classification and curve class rank number).

We used several compounds to show the benefits of sequentially
performing in vitro assays based on ITS or STS DA strategies. For
example, the compounds shown in Figures 7, 8 are all predicted as
sensitizers in the OECD QSAR Toolbox automated workflow. In the
ITS DA strategy, performing the DPRA assay alone is often sufficient
to determine the sensitization hazard potential. These compounds all
showed depletion activity in the SPE–MS/MS DPRA-C assay (Figures
7B, 8B). In this way, these compounds could be identified as
sensitizers in the most cost-efficient way. If aiming to categorize by
potency, first performing the CD86/CD54 surface expression assay
can determine the potency of these sensitizers when applying the STS
DA strategy. This is especially true for a situation with known
structural alerts of chemicals which are expected to react with
DPRA peptides. For example, the chemicals with chemotype
feature “bond:CN_amine_pri-NH2_aromatic” (Figure 7) have
primary amine and chemotype “bond:QQ (Q~O_S)_sulfhydride”
(Figure 8) have a thiol group. The compounds in these two

chemotypes showed activity in IL-8 HTRF or CD54 or
CD86 assays. Due to the concentration limits in the qHTS
platform, the marginal effect at the current tested concentration in
hCLAT could not be performed at a higher concentration. However,
we confirmed their activity in IL-8 assay. If run in a traditional
hCLAT, they could be identified as GHS 1B. Indeed, among them, 2-
mercaptobenzothiazole, 1,2-phenylenediamine, and thioglycolic acid
anilide were reported as strong sensitizers in humans (McCord, 1946;
Kligman, 1966; Nalluri andWilliams, 2014). Therefore, IL-8 HTRF is
a more sensitive assay and can be used under the condition which has
a limitation of achieving a higher concentration of the test article.

LLNA is the gold standard of the skin sensitization animal test, and
LLNAonly correctly predicts 70%–80%human skin allergic response in
the human repeat insult patch test (HRIPT) (ICCVAM, 2011). Among
the 288 chemicals tested in the current study, 15 were reported with
LLNA results, 16 were reported with HRIPT results, and 4 chemicals
were tested in both HRIPT and LLNA methods (Supplementary Table
S11). DA 2 out of 3 is a hazard identification process instead of potency
prediction compared to STS and ITSv2. The sensitivity and specificity
analysis of DA2 out of 3 with LLNA andHRIPT shows thatDA2 out of
3 is more accurate in predicting HRIPT (sensitivity: 62.5%; specificity:
75%) rather than LLNA (sensitivity: 46.2%; specificity: 100%).

Here, we screened a large set of compounds using in vitro qHTS
and in silico test batteries, applied OECD-validated defined
approaches (2o3 and ITSv2) and STS published in the EPA
Interim Science Policy to predict their skin sensitization potential,
and used a subset of the data to train a machine learningmodel for KS
assay. The current study provides a valuable dataset (Supplementary
Table S4) with diverse chemicals that associated chemotypes with
assay activities. The successful implementation of OECD in vitro test
battery assays into the qHTS platform renders the opportunity to
rapidly generate more useful datasets for in silico modeling in the
future. The machine learning-based QSARmodel provides an in silico
tool to predict the KS assay activity. Even though some assays have a
relatively low hit rate partly due to the limited test concentrations in
this platform, the use of various assays in the skin sensitization test
battery combined with automated workflow prediction in the DA
strategy provided predictions of skin sensitizer hazard and potency.
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