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Introduction: While targeted investigation of key toxicity pathways has been
instrumental for biomarker discovery, unbiased and holistic analysis of
transcriptomic data provides a complementary systems-level perspective.
However, in a systematic context, this approach has yet to receive
comprehensive and methodical implementation.

Methods: Here, we took an integrated bioinformatic approach by re-analyzing
publicly available MCF7 cell TempO-seq data for 44 ToxCast chemicals using an
alternative pipeline to demonstrate the power of this approach. The original study
has focused on analyzing the gene signature approach and comparing them to in
vitro biological pathway altering concentrations determined from ToxCast HTS
assays. Our workflow, in comparison, involves sequential differential expression,
gene set enrichment, benchmark dose modeling, and identification of commonly
perturbed pathways by network visualization.

Results: Using this approach, we identified dose-responsive molecular changes,
biological pathways, and points of departure in an untargeted manner. Critically,
benchmark dose modeling based on pathways recapitulated points of departure
for apical endpoints, while also revealing additional perturbedmechanismsmissed
by single endpoint analyses.

Discussion: This systems-toxicology approach provides multifaceted insights into
the complex effects of chemical exposures. Our work highlights the importance of
unbiaseddata-driven techniques, alongside targetedmethods, for comprehensively
evaluating molecular initiating events, dose-response relationships, and toxicity
pathways. Overall, integrating omics assays with robust bioinformatics holds
promise for improving chemical risk assessment and advancing new approach
methodologies (NAMs).
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Introduction

Transcriptomic data has proven to be highly informative in toxicology for determining
cellular modes of action (MOA) and points of departure (POD) for hazard assessment and
the comparative potency of congeners. MOA refers to a sequence of biological events and
processes that occur in an organism upon exposure to a chemical or substance that leads to a
particular toxic effect or adverse outcome. POD, on the other hand, is the reference point or a
dose level on a dose-response curve at which a specific adverse effect or toxic response begins
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to occur. Community standards for best practices in analyzing
transcriptomic data have observed significant convergence in
principles for statistical analyses, use of benchmark dose (BMD)
model fitting, and POD derivation (Farmahin et al., 2017; Johnson
et al., 2022; National Toxicology Program, 2022). Analysis
workflows for transcriptomic data have matured significantly in
the past few years, and these activities can be standardized for most
applications in toxicology. By automating much of the analytical
processing, the efficiency and throughput of transcriptomic data
analysis significantly increase, while the cost decreases. Automation
in a computational pipeline also assures that community best
practices are uniformly applied to data, ensuring that
comparisons across compounds and experiments are unbiased in
terms of quality control assessments, statistical analyses, and data
normalization.

There is significant interest in using transcriptomics, particularly
coupled with in vitro studies, to derive PODs as a means of reducing
costs and time to completion for toxicology applications. With
increasing interest in using transcriptomic data for the read-
across of the MOA and potency of chemicals in cellular response
to in vivo exposure, the use of standard transcriptomic analyses and
relational databases for comparative analyses becomes essential
(Raies and Bajic, 2016; Kleinstreuer et al., 2021). While much
raw transcriptomic data is publicly available (in databases such as
the NIH NCBI Gene Expression Omnibus), the analyzed results and
their interpretation are not. This makes comparison with public or
legacy data cumbersome, as often analyses need to be repeated from
raw data for comparison with any new transcriptomic data.
Addressing the computational uncertainty from transcriptomics
tools is the first of many steps in the acceptance of NAMs for
future risk assessments of compounds. Importantly, how different
bioinformatic approaches affect the interpretation of
toxicogenomics data, such as MOA or POD values, has not
systematically been studied.

In this study, we compare different transcriptomic pipelines to
capture both raw and final processed data used for the interpretation
of MOA as well as POD values derived from BMD analysis and gene
ontology (GO) pathway enrichment (Black et al., 2022). Our
standardized process consists of quality control assessment of the

raw dataset, RNA sequence differential gene expression analysis,
BMD modeling of genes, and ontology enrichment of the gene
related pathways for POD derivation. We performed comparative
analysis of previously published (Harrill et al., 2021) and the current
modeling approaches, and we identified several differences in BMD
pathway- and gene-derived POD values of various compounds
(Table 1).

While past studies have provided important insights by focusing
on particular exposure-relevant processes like estrogen-receptor
alpha (ERα) signaling pathway, our work aims to complement
this understanding through a holistic systems biology approach.
Therefore, in this study, we sought to ask how an unbiased and
holistic analysis of transcriptomic data using integrated
bioinformatic approaches could enhance our understanding of
chemical toxicity, dose-response relationships, and toxicity
pathways, and how this approach compares to traditional
targeted methods in chemical risk assessment. By broadly
profiling transcriptomic changes, we revealed additional pathways
related to nitrogen metabolic processes that warrant further
investigation. This unbiased, systemic perspective allows us to
more fully appreciate the complex interconnectivity and breadth
of biological impacts induced by chemical exposure. Furthermore,
BMDmodeling based on pathways rather than individual endpoints
integrates signals across multiple affected systems to improve dose-
response characterization. Overall, our unbiased system-wide
analysis provides a multifaceted complement to enrich current
knowledge of the diverse processes disrupted by these chemicals.
By combining targeted mechanistic investigation with global omics
profiling will lead to a comprehensive understanding of exposure
effects across biological scales.

Methods

Extraction of publicly available RNA-seq
dataset

The processed gene count data (Harrill et al., 2021) was
downloaded from GEO Database with the accession number

TABLE 1 Flow Chart listing the similarities and differences of the bioinformatic approaches implemented in this study versus Harrill et al., 2021.

Harrill et al This study

Differential Gene Expression Analysis

• I FC I > 1.5, FDR <0.05 cut-off • I FC I > 1.5, FDR <0.05 cut-off

• Single Sample Gene Signature Enrichment Analysis (ssGSEA) of chemical
treatments

• I FC I > 2, FOR <0.01 cut-off

• Analysis of overlap of common DEGs and associated pathways regulated by
different chemicals

BMD pathway Analysis

• BMD distribution of chemical signatures • Systematic analysis of enriched BMD pathways across all chemicals

• Comparison of transcriptomic-derived biological pathway altering concentrations
(BPACs)

• BMDL/BMD/BMDU and gene count distribution of significant pathways

• Focus on estrogen receptor (ER)-related pathways • Assessment of pathway and gene-based BMD values of overlapping pathways

• Focus on nitrogen metabolic processing pathway
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GSE162855 and can be found at the following link (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162855).

Differential gene expression

Counted reads for each annotated transcript feature were
analyzed for differential expression in R (v.3.5.3) using the
BioConductor library DESeq2 (v.1.20.0) (Love et al., 2014).
DESeq2 uses a dispersion correction of the count data based on
the negative binomial distribution and a maximum likelihood model
to impute the prior data distribution for statistical testing. DESeq2
employs a specialized Bayesian statistical approach to assess
differential expression by simultaneously testing multiple pairwise
comparisons of factors through the application of linear
combinations. To avoid bias and unnecessary computation in the
dispersion correction, the data is pre-filtered to exclude any
annotated genomic feature for which there were no counts in
any biological sample. DESeq2 is designed to otherwise deal with
genes for which there are only counts in a very few or a minority of
the samples when performing tasks such as FDR p-value corrections.
The final output of DESeq2 is a table of estimated Log2 fold change,
p-values for the defined contrasts tested, as well as
Benjamini–Hochberg corrected false discovery p-values (FDR) In
our analyses, we use as a statistical criterion, the Benjamini and
Hochberg step-up false discovery rate corrected p-value of less than
0.05 (FDR<0.05) or less than 0.01 (FDR<0.01), and a change in
expression (e.g., the ratio of the mean expression of treated samples
relative to mean expression of control samples), up or
downregulated genes in the compound-treated samples relative to
controls of 1.5-fold (|FC|>1.5) or 2-fold (|FC|>2).

Benchmark dose analysis

Gene expression data were modeled using the BMDExpress
software package (version 2.3, Build 3) (Phillips et al., 2019). Details
of the BMDExpress framework are described in Black et al., 2022.
First, normalized Log2-transformed expression values are computed
for each gene in an RNA-Seq experiment. We have used the raw
gene counts, which is the recommended data type to be used with
DeSeq2 (Love et al., 2014), as an input for gene expression analysis.
For stabilizing the transformation, we have added 0.1 to all the
values in order to be able to handle zeroes in the dataset. Then, an
independent gene pre-filtering, which is a part of the
BMDExpress2 tool suite, is performed using a one-way ANOVA
test. The ANOVA test is used to determine whether the responses to
the various doses are all the same, which is the null hypothesis. With
no restrictions on the direction of change of the responses, the
alternative hypothesis for an ANOVA is that the responses are not
all the same. The genes showing a |FC| > 1.5 and adjusted
p-value <0.05 are retained for the BMD and the subsequent
BMD pathway analysis. The filtered gene set is then fit to a series
of dose-response models—typically the Hill model, Power model,
linear, second-degree, and third-degree polynomials. Model
selection follows a hierarchical approach. Hill models with a
k-parameter estimate that is less than ⅓ of the lowest dose are
excluded from best model consideration. Then, a nested likelihood

ratio test is performed on the linear and higher-order polynomial
models to select the best amongst the polynomial models run. The
Akaike information criterion (AIC) for the selected best polynomial
model is compared with the AIC for the power and non-excluded
Hill models to select the best overall model, which is then used to
calculate a BMD and benchmark dose lower confidence limit
(BMDL). To avoid model extrapolation, genes with a BMD value
greater than the highest concentration used in the experiment were
removed from further analysis, as were poor-fitting best overall
models with a goodness of fit p-value less than or equal to 0.1. The
power parameter was restricted to >1 as values less than 1 have the
potential to create models fit with a slope approaching infinity. We
used 1 standard deviation (1 SD) BMR factor. A BMDU/BMDL ratio
of greater than 40 is also grounds for the rejection of a best-fitting
model, as this indicates an increasingly large 95% CI about the
estimate. The final selection of genes with the best models passing
these quality control thresholds can then be matched to elements in
an ontology enrichment using the publicly available Gene Ontology
Pathway database, including all the BP, CC and MF components
(Ashburner et al., 2000). Various thresholds can be used to define
the significant enrichment of a pathway. In this study, any ontology
category with at least 5 or more best model elements found amongst
the defined ontology category elements and with a Fisher’s exact test
p-value <0.05 was considered enriched. We utilized the average
BMDL, BMD, and BMDU values for assessment. BMDExpress2 is
publicly available through a NIEHS repository (github.com/
auerbachs/BMDExpress-2). The following criteria were used for
filtering the BMD functional category results for all 47 chemicals
tested: FDR<0.05;minimumnumber of genes observed in a pathway>5;
GO category level = 2. The color scale of the heatmap in Figure 1
represents the number of dose-responsive genes observed in a pathway,
and the sizes of the circles represent the -log2(FDR) values. The code for
the BMD analysis can be found at https://github.com/rasimbarutcu/
EPA_Harrill_etal_BMD_Reanalysis_Codes.git. GO analyses were
performed by using the FuncAssociate 3.0 tool (Berriz et al., 2009).
The bubble plots, whichwere generated using an available script (https://
github.com/UBrau/GOplotTools) represent the FDR value and the
number of genes identified for each pathway. All the figures in
the manuscript were generated by using the R-ggplot2 package
(Wickham, 2009).

Results

The extent of significantly differentially
expressed genes

In order to interpret MOA as well as POD values derived from
differential gene expression, BMD, and ontology pathway enrichment
analyses, we re-analyzed the data from Harrill et al. (2021). The authors
have screened 44 chemicals in MCF7 cells with 8 different
concentrations to assess dose-dependent cellular response and
generated highly reproducible RNA-seq data using the BioSpyder
TempO-Seq hWTv1 assay (Yeakley et al., 2017). TempO-Seq is a
gene expression profiling tool designed to monitor hundreds to
thousands of genes at once in a high-throughput manner.

To assess the number of significantly differentially expressed genes
per condition, as performed by Harrill et al., we conducted a pairwise
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FIGURE 1
Heatmap showing the differentially expressed genes as a result of different chemical treatments. The number ofz differentially expressed genes for
each chemical (rows) which were ordered based on unsupervised clustering at each drug concentration (columns). The color of each cell indicates the
number of genes that were significantly differentially expressed (|FC| > 2, FDR <0.01) when compared to the DMSO (vehicle) controls. Ziram, thiram,
clomiphene citrate (1:1), 4-hydroxytamoxifen and amiodarone hydrochloride displayed the largest number of differentially expressed genes at the
highest dose, whereas chemicals such as atrazine and simazine did not display any differential gene expression.
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DeSeq2 comparison for each dose of the drug-treated conditions,
compared to untreated vehicle controls. Different from Harril et al.,
we performed two independent analyses utilizing two distinct
thresholds for a gene to be considered significantly expressed. A
more lenient threshold of Fold Change (FC) greater than 1.5, and a
false discovery rate (FDR) (i.e., p-adjusted) value of less than 0.05, and a
more stringent threshold of |FC|> 2 and FDR<0.01were considered for
a gene to be significantly differentially expressed (see Methods). A non-
supervised hierarchical clustering of the chemicals based on the total

number of DEGs for the two thresholds (i.e., both up- and
downregulated genes) yielded highly comparable results with the
published data, indicating the reproducibility of our pipelines
(Figure 1). For instance, Thiram and Ziram, chemicals that inhibit
metal-dependent and sulfhydryl enzyme systems, lead to the
dysregulation of thousands of genes, whereas chemicals such as
atrazine or simazine, which are used as herbicides inhibiting the
photosystem II system, led to differential expression of a small
number of genes (Figure 1; Supplementary Figure S1).

FIGURE 2
Overlap of differentially expressed genes upon treatment of different chemicals. (A) Upset plot showing the number of overlapping differentially
expressed genes between different chemicals using the highest concentration versus DMSO control comparison. The overlaps are indicated by
connecting dots below the bar graph, and the numbers on the bar graph indicate the number of overlapping genes. (B) Plot showing the significantly
enriched Gene Ontology (GO) terms associated with the 427 genes commonly regulated between Ziram, Thiram, Clomiphene citrate (1:1), and 4-
Hydroxytamoxifen. Pathways related with phosphatase regulator activity and cadherin binding are associated with these genes. (C) Plot showing the
significantly enriched Gene Ontology (GO) terms associated with 55 genes commonly regulated between the 8 chemicals highlighted. Pathways related
with protein kinase binding and mitotic cell cycle are associated with these genes.
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Next, to assess the common genes that are differentially
regulated upon treatment of each chemical, we generated an
Upset plot which shows the number of differentially expressed
genes (100 µM vs. control comparisons) that are unique to each
chemical, or common between multiple chemicals (Figure 2A). Only

the chemicals with the highest rate of overlaps are shown. We
identified hundreds of genes that were commonly regulated between
ziram, thiram, Clomiphene citrate (1:1), and 4-Hydroxytamoxifen
(4HT), indicating that these drugs with different cellular effects can
lead to the perturbation of similar transcriptional programs

FIGURE 3
Benchmark dose (BMD) analysis (A) BMD Median Accumulation plot, which is a graphical representation of the distribution of BMD values for these
pathways or endpoints, allowing one to assess the dose-response relationships and identify patterns or trends, for the genes in each tested condition. The
ANOVA test (p < 0.05) and a fold-change of >1.5 or < -1.5 were used to pre filter the data. In BMDExpress v2.3, data were also post-filtered for best BMDU/
BMD 40 and best fitPvalue >0.1. (B)Density plot showing themedian pathway BMD levels for all significant BMD pathways for each chemical where a
significant (FDR <0.05, number of genes >5) BMD pathway was observed. Ziram, thiram and cycloheximide showed a lower and narrower BMD
distributionwhen compared to other chemicals, whereasmaneb and amiodarone hydrochloride displayed awider distribution of BMD values. (C) Scatter
plot showing the number of genes as a function of median BMD value for the BMD pathways observed.
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(Figure 2, see Discussion). Pathway analyses of these overlapping
sets of genes suggest that several of these compounds regulate
“phosphatase regulator activity,” or “cadherin binding”.
Interestingly, 55 genes that were commonly regulated by 8 of the
compounds were involved with ‘protein kinase binding’ and ‘mitotic
cell cycle process’ (Figures 2B,C). These analyses therefore highlight
the commonly regulated genes and pathways.

Analysis of gene ontology pathways based
on benchmark dose analyses

To assess the molecular, cellular, and biological pathways
associated with drug-responsive genes, we implemented the
BMDexpress workflow to derive the significant GO pathways
from the transcriptomic data of each chemical (see Methods).

Harril et al. have previously developed a gene expression
signature-based concentration-response modeling approach,
primarily focusing on pathways related to estrogen receptor
bioactivity. As a complementary approach, we performed a series
of systems-based analyses to assess pathway-based, as well as gene-
based BMD and POD values in an unbiased way.

First, we visualized the BMD accumulation plots for pathways that
have less than the maximum dose tested for each chemical (Figure 3A).
A pathway was considered significant if it contained at least 5 genes and
had a Fisher’s exact test p-value <0.05. This analysis demonstrated that
8 chemicals—4-Hydroxytamoxifen, Clomiphene citrate (1-1), Thiram,
Ziram, Amiodarone hydrochloride, Cycloheximide, and
Maneb—regulated significant numbers of BMD pathways
(Figure 3A). We plotted the median BMD value of each pathway
for each chemical to determine whether each chemical had a specific
BMD value for the pathways it controlled. The results showed that

FIGURE 4
Overlap of BMD pathways (A) Bar graph showing the number of significant BMD pathways detected with each chemical using BMDExpress v2.3. (B)
Upset plot showing the number of overlapping BMD pathways between different chemicals. The overlaps are indicated by connecting dots below the bar
graph, and the numbers on the bar graph indicate the number of overlapping pathways. Similar to the overlap of differentially expressed genes (Figure 2A),
ziram, thiram, clomiphene citrate (1:1), 4-hydroxytamoxifen and amiodarone hydrochloride displayed the largest number of BMD pathways. (C)
Network graph showing the overlap of BMD pathways, pre-filtered with the threshold of FDR <0.01, number of genes >5, GO level >11, across the
chemicals. There were several unique, as well as overlapping pathways. Overlapping pathways included terms such as “protein ubiquitination”, “histone
H3-K4 methylation” and “regulation of cytosolic calcium ion concentration”.
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certain chemicals, such as Maneb or Amiodarone hydrochloride, led to
the regulation of certain pathways at various doses, while other
chemicals, such as Ziram or Thiram, had specific BMD values for
controlling the majority of BMD pathways (Figure 3B).

To gain further insight into the number of genes each pathway
consisted of as a function of BMD values, we next plotted the
number of genes per pathway across the BMD doses and identified
that, consistent with the pathway BMD analysis (Figure 3B), a subset
of pathways regulated by Ziram, Thiram, 4-Hydroxytamoxifen and
Clomiphene citrate (1-1) showed a drastic number of genes, whereas

pathways regulated by other compounds harbored a few number of
genes (Figure 3C).

Overlap of BMD pathways across the
chemicals

We next analyzed the BMD pathways, defined as a pathway or
biological process that is identified or characterized through
Benchmark Dose (BMD) modeling analysis, that were commonly

FIGURE 5
BMDL/BMD/BMDU values of overlapping pathways derived (A) Plot showing the average BMDL, BMD and BMDU values derived from overlapping
BMD pathways for the chemicals in which there was a significant GO term. The BMD levels of certain chemicals such as amiodarone hydrochloride
displayed a larger distribution than others such as ziram. (B) Plot showing the pathway-specific BMDL, BMD and BMDU values derived from each of the
overlapping BMD pathways.
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shared among all the cell type vs. chemical conditions and identified
that, consistent with the DEG overlap analyses (Figure 2A), Ziram,
Thiram, 4-Hydroxytamoxifen and Clomiphene citrate (1-1)
displayed the highest number of overlapping BMD pathways
(Figures 4A,B).

By visualizing the pathways based on the thresholds mentioned
above, and by further filtering the data to include only GO category
level 11 and above pathways and have a more stringent value FDR
value <0.01, we identified that genes that are dose-responsive to
thiram, ziram, Clomiphene citrate (1-1) and 4-Hydroxytamoxifen,
which is a selective estrogen receptor modulator (SERM) and acts as
an agonist or antagonist depending on the target tissues (Lonard
et al., 2004), shared pathways such as “positive regulation of histone
H3-K4 methylation,” “regulation of calcium ion concentration,” or
“positive regulation of protein ubiquitination” (Figure 4C).

Moreover, to gather information about the BMD values that
are related to different biological pathways, we plotted the lower
BMD (BMDL), BMD and upper BMD (BMDU) values derived
from the average of the significant GO pathways that were shared
among the chemicals (Figure 5A). Furthermore, we plotted the
individual pathway BMD values for the 7 overlapping pathways
across the chemicals, and we identified similar ordering of the
chemicals by mean BMD (Figure 5B). Importantly, we identified
BMD values which—although similar in terms of ranking the
chemicals by mean BMD values - are orders of magnitude
higher than those observed by Harrill et al. (2021) where the
authors derived the BMD values based on gene-level
quantifications and gene signatures of biological pathway
altering concentrations (BPACs). The source of these
discrepancies is further discussed below (see Discussion). As a
result, our findings indicate that BMD analysis derived from GO
enrichments can yield different results based on which level the
BMD values are extracted from (I.e., genes versus pathway levels).
The ranking (from low to high values) of only a subset of the
chemicals remains similar based on both our and Harrill et al.
BMD approaches. Since our and Harrill et al. classification from
DGE and BMD steps have some similarities, it is the final
derivation of POD based on ontogeny which likely contributed
to the different final quantified outcomes.

Analysis of gene-level BMD values

Next, among the overlapping pathways, we have decided to
focus on the “nitrogen metabolic processing” pathway (GO:
0006807), since this process plays an extensive role in several
carcinogenic and immune-related processes (Kurmi and Haigis,
2020; Zhang et al., 2022). In addition, nitrogen metabolism is
essential for the biosynthesis of nucleotides, amino acids, and
neurotransmitters (Brosnan, 2003; Wu, 2021). Disruption of this
process can affect cell growth, protein synthesis, and nervous system
function. Furthermore, chemicals that cause nitro-oxidative stress
can impair nitrogen metabolism enzymes through protein damage
or cofactor depletion. This leads to the buildup of ammonia and
reactive nitrogen species, further amplifying cellular damage (Pacher
et al., 2007). Nitrogen oxides generated during inflammation and
immune responses to toxins can impact nitrogen metabolic
processing. This interplay is important in chemical-induced

immunotoxicity (Miller and Grisham, 1995). Finally, changes in
nitrogen utilization and excretion in response to chemical exposures
can serve as key event biomarkers indicating disruption of normal
nitrogen homeostasis and variations in nitrogen metabolic genes
may contribute to individual susceptibilities to certain chemical
toxicities. Taken together, given the fundamental role of nitrogen
metabolism in mediating biosynthesis, oxidative stress,
immunotoxicity, and overall cellular homeostasis, characterization
of the nitrogen metabolic processing pathway offers critical insights
into mechanisms of toxicity and dose-response relationships for
adverse chemical exposures.

We first plotted the gene-level median BMD values for each gene
in the nitrogen metabolic pathway for each chemical and have
identified that different sets of genes within this pathway harbor
varying levels of median BMD values. The result indicates that
although different chemicals lead to downregulation of the
“metabolic nitrogen processing” pathway, it does so by regulating
different sets of genes from the same pathway (Figure 6A).

We next plotted the average gene expression profile of the genes
within this pathway as a function of dose for the chemicals with the
lowest 3 median BMD values, Thiram, Ziram and Cycloheximide,
and identified a consistent downregulation of these genes (Figures
6B–D). By selecting the top 10 most-regulated genes in terms of
differential gene expression between the lowest and highest chemical
doses, we plotted the gene expression levels and, consistent with all
the genes in the pathway, we identified a consistent downregulation,
and in some cases, upregulation of genes such as BIRCH3, PDE4B or
JUN with Cycloheximide (Figures 6E–G). Finally, plotting the top
10 gene lists within the “metabolic nitrogen processing” pathway
together for each chemical, we identified that each chemical
regulates a distinct set of genes within this pathway (Figure 7).
This chemical-specific gene expression signature within a shared
perturbed pathway highlights the potential for toxicogenomic
profiling to elucidate both common and unique mechanisms of
action across related toxicants.

We also adopted two additional strategies to interpret the
functional categories with regards to BMD values. In the first, the
mean BMD of each pathway is plotted along the lowest 20, 10, or
5 BMD GO pathways. The second method, which we have
previously implemented in Black et al., 2022, involves plotting
the mean BMD values of each gene within the top 20, 10, or
5 lowest BMD pathways (Figure 5; Supplementary Figure S3).
Our findings, particularly the gene-based analyses, point to the
possibility that some chemicals, like Maneb, contain two
populations of genes with distinct BMD values, as suggested by
the bimodal distribution. This result is in line with the quantity of
active signatures discovered by Harril et al., who also found that
drugs like Fulvestrant and Cycloheximide have a bimodal
distribution with some signatures having lower BMD values.

Discussion

Toxicogenomics is emerging as a valuable systems science
approach to inform chemical risk assessment across diverse
applications. By providing insights into molecular mechanisms of
biological effects, toxicogenomic profiling can enhance hazard
characterization and derive points of departure to support safety
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determinations. Furthermore, the increasing interest in new
approach methodologies (NAMs) has motivated efforts to
establish robust and reproducible computational pipelines to
analyze these complex genomics datasets. However, the field
currently lacks consensus regarding optimal bioinformatics
strategies, especially for benchmark dose modeling and derivation
of points of departure from transcriptomics data. To address this
need, we leveraged a recently published toxicogenomics dataset
assessing dose-responses for 44 chemicals in MCF7 cells (Harrill
et al., 2021). By performing complementary systems-level analyses
using our validated pipeline (Black et al., 2022), we aimed to evaluate
concordance and provide a reproducible workflow for pathway-

based benchmark dose modeling from toxicogenomic dose-curves.
Our unbiased characterization of differentially expressed genes,
enriched ontologies, and pathway dose-dependencies highlights
the power of holistic transcriptomic profiling to elucidate
mechanisms of action and biological point of departures. Overall,
this case study supports the reliability of our bioinformatics
approach, while demonstrating the utility of toxicogenomics and
robust computational methods to enhance chemical safety
assessment.

Our re-analysis of the TempO-seq dataset from Harrill et al.
provides important insights into the diversity of transcriptional
responses induced by different chemical exposures. While some

FIGURE 6
Gene-level BMD analysis for the nitrogen compound metabolic process pathway (A) Heatmap showing unsupervised hierarchical clustering of
gene-level BMD patterns between genes within the nitrogen compoundmetabolic process pathway for each chemical. Scale: BMD values expressed as a
z-score. The data suggests that different subsets of genes within the same pathway harbor distinct BMD levels among the chemicals. (B) Plot showing the
log10 average gene expression of the genes within the nitrogen compound metabolic process pathway across the doses tested for Cycloheximide
treated samples. (C) Plot showing the log10 average gene expression of the genes within the nitrogen compound metabolic process pathway across the
doses tested for Thiram treated samples. (D) Plot showing the log10 average gene expression of the genes within the nitrogen compound metabolic
process pathway across the doses tested for Ziram treated samples. (E)Heatmap showing the log10 gene expression values of the top 10 genes within the
nitrogen compoundmetabolic process pathwaywhich show the highest rate of regulation across the doses tested for Cycloheximide treated samples. (F)
Heatmap showing the log10 gene expression values of the top 10 genes within the nitrogen compound metabolic process pathway which show the
highest rate of regulation across the doses tested for Thiram treated samples. (G)Heatmap showing the log10 gene expression values of the top 10 genes
within the nitrogen compound metabolic process pathway which show the highest rate of regulation across the doses tested for Ziram treated samples.
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compounds like the herbicides atrazine and simazine elicited
minimal gene expression changes, others including the
dithiocarbamate fungicides thiram and ziram (Fanjul-Bolado
et al., 2020) dysregulated thousands of genes. PFOA and
simvastatin showed a relatively small number of differentially
expressed genes at 3 µM, however they did not show any gene
expression at higher doses. This may be either due to the saturation
effect, where at higher doses, the biological systems or molecular
pathways affected by the chemical may become saturated. This
means that the maximum response or effect has already been
achieved at lower doses, and further increases in dose do not
lead to additional changes in gene expression. Interestingly, we
identified hundreds of genes commonly perturbed across distinct
chemicals such as the endocrine disruptors clomiphene and 4-
hydroxytamoxifen. Pathway analysis revealed these shared gene
expression signatures were enriched for processes like cell cycle
regulation. This suggests certain core pathways may respond in a
stereotypical manner to cellular stress, irrespective of whether the
initial molecular initiating event is mitochondrial dysfunction,
hormone receptor antagonism, or electrophilic reactivity.
However, our Upset plot also indicated predominantly unique
transcriptional profiles for most chemicals. Overall, these findings
reveal both conserved and divergent transcriptomic effects across
exposures, highlighting the value of toxicogenomic profiling for
elucidating mechanisms of action. Our benchmark dose modeling
based on pathways rather than individual genes leverages these
shared and unique expression patterns to improve dose-response
assessment.

We have identified that tens to hundreds of differentially
expressed genes that are associated with “mitotic cell cycle
process,” “phosphatase regulator activity” and “protein kinase
binding” overlap across the chemicals at the highest 100 µM
dose (Figure 2A). It is important to note that at concentrations
as high as 100 µM, many chemicals are expected to elicit cytotoxic
effects, which can overshadow the underlying biological
mechanisms operative at lower, more biologically relevant
concentrations. This may explain the observed overlap in gene
expression profiles related to the “mitotic cell cycle process”

ontology, as cytotoxicity-induced cell cycle arrest is a common
outcome. Similar to the “mitotic cell cycle processes,” “protein
kinase binding” and “phosphatase regulator activity” pathways
play a crucial role and are biomarkers for cellular stress
(Hotamisligil and Davis, 2016). Indeed, when we examine the
individual genes overlapping between the 8 chemicals in
Figure 2A, several genes, such as BCL2L11, AKT1, DDIT3,
GADD45A, VEGFA, MAPK1, and JUNB, all of which are
related to the kinase pathways, are found, indicating that these
pathways may relate to chemical-induced cytotoxicity.

Our unbiased BMD modeling of pathways reveals both shared
and unique dose-responsive profiles across diverse chemical
exposures. The striking perturbation of numerous pathways
enriched for processes like cell cycle regulation highlights the
power of omics data to capture system-wide effects missed by
individual endpoint analysis. Furthermore, the chemical-specific
pathway modulation underscores the potential to leverage
transcriptomics to delineate mechanisms of action and address
the long-standing challenge of heterogeneity in dose-response. By
objectively integrating signals across the inter-connectome,
toxicogenomic BMD analyses offer a robust data-driven approach
to chemical safety evaluation.

By performing an in-depth analysis of the nitrogen metabolic
processing pathway, our study demonstrates the value of
toxicogenomics for elucidating chemical mechanisms of action.
While this fundamental pathway was perturbed across several
compounds, our gene-level modeling and expression plots
revealed chemical-specific BMD values and transcriptomic
signatures. These nuances underscore the complexity hidden
within shared perturbed pathways, and the need for systems-level
perspectives.

It is important to note that in toxicity risk assessment,
bioinformatics approaches play a crucial role (Stucki et al.,
2022), however, one should keep in mind that they should be
viewed as prioritization methods for further toxicity testing
rather than standalone tools for definitive risk assessment
(Harrill et al., 2019). Although bioinformatics approaches
provide valuable insights into the potential toxicity of

FIGURE 7
Top 10 genes within the nitrogen compound metabolic process pathway regulated by each chemical. Graph showing the top 10 genes within the
nitrogen compound metabolic process pathway that are most drastically regulated across the doses.

Frontiers in Toxicology frontiersin.org11

Barutcu et al. 10.3389/ftox.2023.1272364

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2023.1272364


chemicals, elucidate underlying molecular mechanisms, and help
identify potential hazards (Joseph, 2017), they have certain
limitations that necessitate follow-up in vitro or in vivo
research to establish concrete risk assessments (Andersen
et al., 2019). For instance, if a chemical exposure leads to the
dysregulation of genes, or BMD pathways or PODs associated
with oxidative stress response, it suggests that the compound may
induce oxidative damage. However, this hypothesis warrants
further experimental testing. In addition, when dealing with a
large number of chemicals, bioinformatics methods can help
prioritize which ones warrant further investigation. If a
transcriptomic analysis suggests that a chemical may disrupt
key cellular pathways linked to adverse health effects, it becomes
a higher priority for more detailed toxicological evaluation. In
addition, using the average BMD values across overlapping BMD
pathways (Figure 5) has certain limitations, as it may dilute the
signals from the most sensitive pathways and miss unique
molecular initiating events. Finally, transcriptomic data alone
cannot capture all aspects of toxicity, such as non-genomic
responses, epigenetic changes, or post-translational
modifications (Baccarelli and Bollati, 2009; Lee, 2013;
Tretyakova and Wang, 2018). Therefore, further experimental
assays may be needed to validate findings and assess additional
facets of toxicity.

Conclusion

Overall, coupling unbiased pathway analysis with targeted
follow-up of key processes provides multilayered insights into
the molecular initiating events and dose-dependencies of
adverse effects. Our integrated approach therefore leverages
the depth of omics data to link pathway perturbations to
underlying genomic biomarkers and biological mechanisms.
Looking forward, systematic application of these
bioinformatics workflows will add enhanced resolution of
pathway dose-response, improving chemical risk assessment
and advancing mechanistic toxicology.
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SUPPLEMENTARY FIGURE S1
Heatmap showing the differentially expressed genes as a result of different
chemical treatments. The number of differentially expressed genes for each
chemical (rows) which were ordered based on unsupervised clustering at
each drug concentration (columns). The color of each cell indicates the
number of genes that were significantly differentially expressed (|FC| > 2,
FDR < 0.01) when compared to the DMSO (vehicle) controls.

SUPPLEMENTARY FIGURE S2
Pathway-and gene-based BMD values. Boxplot showing the best BMD value
distributions for the (A) lowest 5 pathways, (B) lowest 10 pathways. Ridge
plots showing the best BMD value distributions per gene for the (C) lowest 5
pathways and (D) lowest 10 pathways.
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