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A functional human skin barrier is critical in limiting harmful exposure to
environmental agents and regulating the absorption of intentionally applied
topical drug and cosmetic products. Inherent differences in the skin barrier
between consumers due to extrinsic and intrinsic factors are an important
consideration in the safety assessment of dermatological products. Race is a
concept often used to describe a group of people who share distinct physical
characteristics. The observed predisposition of specific racial groups to certain
skin pathologies highlights the potential differences in skin physiology between
these groups. In the context of the human skin barrier, however, the current data
correlating function to race often conflict, likely as a consequence of the range of
experimental approaches and controls used in the existing works. To date, a
variety of methods have been developed for evaluating compound permeation
through the human skin, both in vivo and in vitro. Additionally, great strides have
been made in the development of reconstructed human pigmented skin models,
with the flexibility to incorporate melanocytes from donors of different race and
pigmentation levels. Together, the advances in the production of reconstructed
human skin models and the increased adoption of in vitro methodologies show
potential to aid in the standardization of dermal absorption studies for discerning
racial- and skin pigmentation-dependent differences in the human skin barrier.
This review analyzes the existing data on skin permeation, focusing on its
interaction with race and skin pigmentation, and highlights the tools and
research opportunities to better represent the diversity of the human
populations in dermal absorption assessments.
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1 Introduction

1.1 Race and skin type

Race is a concept often used to describe a group of people who share distinct physical
characteristics, such as the color of their skin. Ethnicity, alternatively, differentiates among
groups of people according to their cultural expression and identification. In practice, race
and ethnicity are generally associated with a myriad of intrinsic (e.g., genetic) and extrinsic
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(e.g., culture and socioeconomics) factors (Lu et al., 2022). In the
context of pharmacology/toxicology, one’s race/ethnicity can be
considered a determinant in response to medical treatment. A
2015 review conducted by the United States Food and Drug
Administration (US FDA) found that approximately one-fifth of
new drugs approved between 2008 and 2013 showed differences
in exposure and/or response across racial/ethnic groups
(Ramamoorthy et al., 2015). Furthermore, minorities have
been historically under-represented in clinical trials and basic
science research in the United States (Oh et al., 2015). Together,
these realities highlight the importance in considering race and
ethnicity as variables in regulatory and basic science research,
and the need for studies to represent adequately the population
diversity.

Given the complexity surrounding the biological definition of
one’s race/ethnicity, the US FDA has provided guidance to help
standardize the collection of race and ethnicity data across clinical
trials (U.S. Food and Drug Administration, 2016). The
recommended standardized approach is based on the Office of
Management and Budget’s (OMB) Policy Directive No. 15
(Office of Management and Budget, 1997), which provides five
minimum categories for data on race, namely, 1) American Indian
or Alaska Native, 2) Asian, 3) Black people or African American, 4)
Native Hawaiian or other Pacific Islander, and 5) White people,
along with two categories for data on ethnicity, namely, 1) Hispanic
or Latino and 2) Not Hispanic or Latino. Of note, the Chief
Statistician of the U.S. announced recently a formal review to
revise the OMB Policy Directive No. 15 (Orvis, 2022). With
continued improvement, guidelines can help harmonize racial/
ethnic data collection in research and clinical trials. Although the
use of race/ethnicity is useful, it is important to bear in mind the
confounding factors associated with their use. For example, self-
reported race/ethnicity is prone to bias, and population stratification
in ethnically admixed populations is well-documented (Mersha and
Abebe, 2015).

With skin color dominating the current societal designations of
race, skin pigmentation is often the key focus of studies on race and
human physiology (Jablonski, 2021b). Pigmentation of human skin
is directly regulated by the function of specialized dendritic cells
termed melanocytes (Cichorek et al., 2013). Skin melanocytes
primarily reside in the epidermis at the epidermal–dermal
junction flanking keratinocytes (Kolarsick et al., 2011). By the
process of melanogenesis, melanocytes produce melanin, the
chemical responsible for skin pigmentation, in lysosome-related
organelles called melanosomes (Orlow, 1995). Genetics
(Jablonski, 2021a; Feng et al., 2021); melanin quantity and type
(Alaluf et al., 2002); melanosome quantity, size, and distribution
(Thong et al., 2003); and the ability to respond to UV light exposure
(Maddodi et al., 2012) all drive observed differences in skin
pigmentation and, thus, skin color across race.

To facilitate the execution of studies concerning skin
pigmentation, criteria for the classification of skin pigmentation
levels have been established. In 1975, the Fitzpatrick skin phototype
scale was created to provide a basis on which appropriate dosing of
oral methoxsalen could be determined (Gupta and Sharma, 2019).
Although the original skin classifications, ranging from Fitzpatrick
type I to IV, were based on Caucasian skin and its native reaction to
sun exposure, the scale has since been updated to include two

additional skin types, V and VI, to better represent all
individuals (Fitzpatrick, 1988). One shortcoming of the
Fitzpatrick scale, however, is that the classifications are based on
self-reporting and thus can be subjected to bias (Okoji et al., 2021). A
more objective method to determine skin pigmentation is the
individual typology angle (ITA) measurement of constitutive
pigmentation, which ranges from 55° for very light skin to −30°

for dark skin. The ITA is calculated based on two variables,
luminance and the yellow to blue color of the skin, both of
which can be determined by non-invasive, commercially available
instrumentation (Osto et al., 2022). Importantly, race and skin
pigmentation do not follow a strict correlation. Thus, the
Fitzpatrick scale and ITA may be used in conjunction with
OMB’s racial/ethnic classifications to categorize better patients
and patient samples (Stamatas et al., 2004).

1.2 Overview of skin permeation studies

Understanding how the human skin barrier functions to limit
or permit the passage of specific compounds is of interest to
consumers and regulators alike. Dermal absorption of hazardous
substances is considered one of the key routes of toxicity during
incidental occupational and environmental exposures (Schneider
et al., 1999; Franken et al., 2015b). Furthermore, assessing the rate
and amount of skin permeation of topical drugs and cosmetics is
critical in evaluating their safety and, in the case of topical drugs,
efficacy (Nohynek et al., 2010; Chevillotte et al., 2014; Raney et al.,
2015). In clinical settings, human skin permeation kinetics can be
determined through a set of established methods. These can include
tape stripping, in which layers of the topically exposed stratum
corneum are sequentially removed by using a tape and analyzed for
compound content; dermal microdialysis, where a probe is inserted
near the dermal capillary bed to measure compound levels and
estimate permeation; or systemic analyses, where urine and/or
blood are periodically sampled, following dermal exposure
(Polak et al., 2012; Raney et al., 2015). Pre-clinical studies of
dermal absorption may also be performed, both in vivo with
animal models and in vitro (Jung and Maibach, 2015). In vitro
permeation testing (IVPT), a skin barrier, is mounted on either a
static Franz diffusion cell (Franz, 1975) or a flow-through
Bronaugh-type diffusion cell (Bronaugh and Stewart, 1985), and
the apical surface of the model is exposed to the compound of
interest (Santos et al., 2020).

2 Current perspectives on the
correlation of race and the human skin
barrier

Although studies aimed at relating race and the human skin
barrier exist, they often lack consensus in their findings (Alexis et al.,
2021). In addition, mechanistic studies on the biological factors
regulating skin permeation across skin types are limited. The
consequential gap in knowledge is to the detriment of safety
assessors as it is still unclear whether one’s race may predispose
an individual to a higher level of toxicity via dermal absorption
(Figure 1).
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2.1 The stratum corneum

Several studies have investigated the differences in the stratum
corneum, the apical layer of the skin primarily responsible for the
dermal barrier, across race (Table 1). In a study by Weigand and
others, a cohort of Black and White people’s skin sections was
collected and processed with methylene blue staining for the
visualization of the stratum corneum (Weigand et al., 1974). The
authors reported consistent stratum corneum thickness across the
racial groups investigated but observed that the Black cohort had
more corneocyte layers. These results were in line with their
additional findings that the skin from the Black cohort required
more tape strips to completely remove the stratum corneum when
compared to the skin from the White cohort. Together, these data
suggest the stratum corneum of the Black cohort was denser when
compared to that of the White cohort. In a more recent study, racial
differences in the stratum corneum were again probed, this time
focusing mainly on the cellular constituent itself, the corneocytes

(Corcuff et al., 1991). Corneocytes were collected from the Black,
White, and Asian subjects via standardized methods and processed
for visualization and size quantification. The authors found that
there were no significant differences in the corneocyte surface area
across the racial groups but that the skin of the Black subject group
had a significantly higher rate of spontaneous desquamation
(i.e., shedding) when compared to the skin of the Asian and
White subject groups. Of note, corneocyte collection was
performed on a partially sun-protected portion of the upper arm
to limit the influence of UV light exposure on desquamation results.
Work by Warrier and others found opposite results when
desquamation was quantified on the cheeks and foreheads of
Black and White individuals (Warrier et al., 1996), highlighting
the influence of skin location on the phenotype.

Studies on lipid content (Jungersted et al., 2010; Muizzuddin
et al., 2010) and pH (Berardesca et al., 1998; Young et al., 2019)
further suggest potential differences in the stratum corneum across
racial groups. Works by Muizzuddin et al. and Jungersted et al.

FIGURE 1
Interest in the interplay between race, skin pigmentation, and the human skin barrier has driven research in this context. A consensus understanding
of how these variables relate and modulate the dermal absorption of topical drugs, cosmetics, or occupational and environmental exposures remains to
be elucidated.
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TABLE 1 Summary of highlighted studies on race and the human skin barrier.

Comparison Reference Subject/donor race (n) Relevant findings

Stratum corneum physiology Weigand et al. (1974) Black (10–17) No difference in the mean stratum corneum thickness across
Black (6.5 µm, n = 17) and White (7.2 µm, n = 18) subjects
(mean); Significantly higher (p < 0.01; Mann–Whitney U test)
mean number of cell layers in Black (21.8, n = 10) vs. White
(16.7, n = 10) subjects stratum corneum (mean)

White (10–18)

Corcuff et al. (1991) Black (18–25) No difference in the mean corneocyte surface area across Black
(911± 20 μm2),White (899 ± 22 μm2), and Asian (909 ± 24 μm2)
subjects (mean ± standard error); 2.5 times higher (p < 0.001)
mean spontaneous desquamation observed in Black
(26,500 ± 4,900 per cm2) vs. White (11,800 ± 1,700 per cm2)
and Asian (10,400 ± 2,100 per cm2) subjects (mean ± standard
error)

White (18–25)

Asian (18–25)

Warrier et al. (1996) Black (30) Significantly higher (p < 0.05; two-tailed Student’s t-test) mean
desquamation index on White subjects’ cheeks and foreheads
compared to Black subjects’ cheeks and foreheads, but no
differences across races when measured on subjects’ legs
(comparisons within anatomical groups)

White (30)

Muizzuddin et al. (2010) Black (73) Significantly fewer (p < 0.001; ANOVA with post hoc Tukey
test) mean C18 phytosphingosine-based ceramides
(normalized to total ceramides) in Black (0.74 ± 0.25 µg/mg)
vs. White (1.18 ± 0.46 µg/mg) and Asian (1.14 ± 0.51 µg/mg)
donor stratum corneum (mean ± standard deviation)

White (119)

Asian (149)

Jungersted et al. (2010) Black (18) Significantly lower (p < 0.001; two-tailed Mann–Whitney test
with Bonferroni correction) mean ceramide/:cholesterol ratio
in Black (0.8) vs. White (1.7) and Asian (2.1) donor stratum
corneum (mean)

White (28)

Asian (25)

Berardesca et al. (1998) Black (8) No difference in the mean baseline stratum corneum pH, but
significantly higher (p < 0.05; Student’s t-test) mean stratum
corneum pH after three tape strips (TSs) in White (5.0 ± 0.7
(baseline) and 4.8 ± 0.3 (three TSs) vs. Black (4.8 ± 0.3
(baseline) and 4.3 ± 0.3 (three TSs) subject skin (mean ±
standard deviation)

White (10)

Young et al. (2019) Black (17) Significantly higher (p < 0.0001, rs = 0.71; Spearman rank
correlation) mean skin surface pH in Black vs. White donors

White (27)

Skin transepidermal water loss (TEWL) Berardesca et al. (1988) Black (10) No difference in the mean basal TEWL between Black (3.3 ±
0.9 g/h) and White (2.7 ± 0.7 g/h) subjects (mean ± standard
error)White (9)

Berardesca et al. (1998) Black (8) No difference in the mean basal TEWL between Black and
White subjects but significantly higher (p < 0.05; Student’s
t-test) mean TEWL in Black vs. White subjects after three and
six tape strips (TSs; mean ± standard deviation; g/m2 h): Black
subjects = 7.7 ± 0.9 (basal), 10.5 ± 1.7 (three TSs), and 12.3 ±
3.2 (six TSs); and White subjects = 7.3 ± 0.9 (basal), 8.8 ± 1.7
(three TSs), and 9.7 ± 1.4 (six TSs)

White (10)

Reed et al. (1995) Black (4) No difference in the mean basal TEWL between Asian (5.1 ±
0.6 g/m2 h) and White (4.8 ± 0.4 g/m2 h) individuals nor
individuals divided based on Fitzpatrick skin type (II/III vs.
V/VI)

White (8)

Asian (6)

Voegeli et al. (2015) Black (not specified, 60 total subjects) No difference in the mean basal TEWL across Black andWhite
individuals but significantly higher (p < 0.01; ANOVA with
post hoc Tukey tests) mean basal TEWL observed in African
subjects with albinism vs. pigmented African subjects

White (not specified, 60 total subjects)

Wilson et al. (1988) Black (10) Significantly higher (p < 0.01) mean TEWL for Black (2.79 µg/
cm2/h) vs. White (2.61 µg/cm2/h) donor skin, as averaged
across five skin temperatures (20, 25, 30, 35, and 40°C; mean)White (12)

Warrier et al. (1996) Black (30) Significantly higher (p < 0.05; two-tailed Student’s t-test) mean
TEWL on the cheeks and legs of White vs. Black subjects (no
difference on forearms)White (30)

(Continued on following page)
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reported reduced ceramide or ceramide:cholesterol levels, respectively,
in the stratum corneum of the skin from Black individuals when
compared to the skin of Asian and White subjects. With regards to
pH, Berardesca and others observed a decrease in surface pH in the
medial layers of the stratum corneum of Black individuals that was
not observed with the White volunteer’s skin, while no difference
in surface pH was observed across groups at the baseline. In
contrast, Young et al. observed a significantly higher surface
pH of Black vs. White individual’s skin at the baseline. Overall,
potential differences in the stratum corneum physiology and
structure across race are derived from a small number of
studies, with a limited number of research subjects. Expanding
these studies to include more volunteers and racial groups, as well
as analyses of sun-exposed and sun-protected regions of the body
and inclusion of skin pigmentation as a biological study variable,
will be critical for a comprehensive understanding of the influence
of race on the outermost layer of the human skin.

2.2 Transepidermal water loss

One of the main functions of the human skin barrier is the “inside-
out” prevention of water loss from the body (Gilaberte et al., 2016).
Non-invasive and easy-to-use tools have been developed to measure
transepidermal water loss (TEWL) and are increasingly accepted as a
means of qualifying the skin barrier, both in vivo and in vitro (Alexander
et al., 2018). These instruments typically report a flux (g/m2 h or mass/
surface area*time) corresponding to the steady-state water vapor flux
passing through the skin barrier (i.e., stratum corneum), as described by
Fick’s first law of diffusion (Machado et al., 2010). Importantly, TEWL
has been shown to correlate with the “outside-in” permeation of
topically applied compounds, suggesting TEWL is relevant to
dermal absorption studies (Fluhr et al., 2006).

In pursuit of elucidating potential differences in the skin barrier
across race, studies have used TEWL measurements. Several studies
have reported no significant differences in TEWL as a function of
race (Table 1). Berardesca and Maibach (1988) and Berardesca et al.
(1998) reported no difference in basal TEWL between Black and

White volunteers in concurrent studies. However, the latter of
the two studies reported that TEWL was significantly increased
in the Black volunteer skin after three and six tape strips when
compared to the White volunteer tape-stripped skin. In a study
by Reed et al., healthy subjects were divided into groups based on
skin pigmentation (Fitzpatrick skin type II/III vs. V/VI), as well
as race (Asian and White), and skin TEWL was measured (Reed
et al., 1995). Again, no significant differences in basal skin TEWL
were observed across Fitzpatrick skin types or racial groups. A
more recent study categorized subjects based on Fitzpatrick skin
type (II/III or V/VI) and further included an African group of
people with albinism (a genetic disorder that results in a
significant reduction in skin pigmentation). This inclusion
uniquely allowed for the comparison of skin pigmentation
and barrier independent of donor race (Voegeli et al., 2015).
Under this creative experimental design, the authors reported no
significant differences in basal TEWL when comparing the Black
(V/VI) and White (II/III) individual groups but did find
differences between the two African groups, with TEWL
found to be significantly higher in the group of people with
albinism compared to the Black subject group. This result was
observed in both sun-exposed (cheek) and sun-protected (post-
auricular) body sites, suggesting UV light damage alone does not
explain the study findings.

Despite many studies reporting no significant differences in
TEWL across racial groups, others have found significant
differences. However, studies that report changes in TEWL do
not show consensus in determining which racial group has a
higher TEWL. A study by Wilson and others compared the
TEWL of excised human cadaver skin from Black and White
individuals. The authors reported that the Black subjects’ inner
thigh skin had a significantly greater mean TEWL compared to that
of the White subjects (Wilson et al., 1988). On the other hand, work
by Warrier et al. determined that basal TEWL was higher for White
subjects’ skin vs. Black subjects’ skin when measured in vivo on the
individuals’ cheeks and legs (Warrier et al., 1996). Although many
other studies reporting TEWL across racial and skin phototypes
exist (reviewed in depth recently (Peer et al., 2022)), there is still a

TABLE 1 (Continued) Summary of highlighted studies on race and the human skin barrier.

Comparison Reference Subject/donor race (n) Relevant findings

Skin permeation Williams et al. (1991) Black (4) Significantly higher (p < 0.05; ANOVA) mean maximum level
of nitroglycerin metabolites 1,2-glyceryl dinitrate and 1,3-
glyceryl dinitrate in White/Asian subjects (2.72 ± 0.74 ng/mL
and 0.78 ± 0.30 ng/mL, respectively) compared to that of Black
subjects (1.69 ± 0.96 ng/mL and 0.0.41 ± 0.13 ng/mL,
respectively), following topical exposure (mean ± standard
deviation)

White/Asian (12)

Lotte et al. (1993) Black (6–9) No difference in the mean/predicted urine concentration nor
stratum corneum content of benzoic acid, caffeine, or
acetylsalicylic acid between all racial groups tested, following
topical exposure

White (6–9)

Asian (6–9)

Franken et al. (2015a) Black (3) Significantly higher (p ≤ 0.05; ANCOVA with post hoc
Bonferroni test) mean 24-h cumulative permeation of
platinum (delivered as potassium tetrachloroplatinate)
through Black (37.52 ± 10.61 ng/cm2) vs. White (5.05 ±
1.54 ng/cm2) donor skin, as measured in a Franz diffusion cell
(mean ± standard error)

White (3)
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lack of a consensus as to how race or skin pigmentation relates to
TEWL. As withmany studies in this context, larger andmore diverse
cohorts, as well as better standardization of the categorization of
study subjects (e.g., based on racial classification, anatomical
regions, UV light exposure, age, and sex), are needed to fill this
knowledge gap.

2.3 Compound permeation

Although dermal absorption studies are common practice in
safety assessment, few studies have investigated compound
permeation with the skin from donors categorized by race/
ethnicity and skin pigmentation (Table 1). In a report by Williams
and others, a small cohort of healthy subjects was exposed topically to
two standardized formulations of nitroglycerin and blood was
analyzed for nitroglycerin and its metabolites over 24 h. Although
tangential to the primary objective of the study, the authors did report
that the Black subjects had lower circulating levels of nitroglycerin
metabolites when compared to the White and Asian subjects
combined, suggesting physiological differences in the absorption
and processing of topically applied nitroglycerin across these racial
groups (Williams et al., 1991). Conversely, a subsequent study by
Lotte et al. set a primary objective to compare dermal absorption
across racial groups. Radiolabeled caffeine, acetylsalicylic acid, and
benzoic acid were applied topically on Asian, Black, and White
volunteers, and dermal absorption was estimated by urine
collection and tape stripping (Lotte et al., 1993). No differences in
compound permeation were observed across racial groups for each
chemical tested.

In addition to consumer-applied topical drugs and cosmetics,
the skin is continuously unintentionally exposed to numerous
agents. Although determining all unanticipated exposures to the
skin can be challenging, one example of occupational/environmental
exposures of continued concern is heavy metals (Franken et al.,
2015b). How skin pigmentation may influence the dermal
absorption of heavy metals is of particular interest as melanin is
negatively charged and capable of binding to cationic chemicals,
including heavy metals (Potts and Au, 1976). Thus, one could
hypothesize that individuals with higher levels of skin
pigmentation could retain a higher level of heavy metals through
interactions with melanin. In a study by Franken and colleagues, the
permeation of potassium tetrachloroplatinate (platinum in salt
form) was quantified in vitro through the excised abdominal skin
of three Black and three White donors (Franken et al., 2015a). The
authors reported a significant increase in the 24-h mean cumulative
permeation of platinum through the Black donor skin when
compared to the White donor skin. Although these data are
limited by the relatively small sample size and lack of donor age
matching across racial groups, they urge future investigation into the
influence of melanin and race on the dermal absorption of heavy
metals. Overall, the current works highlight the importance of
including a diverse subject/donor cohort in dermal absorption
studies. Conversely, it may also be appropriate to favor
volunteers or donors based on the primary race/ethnicity of the
expected users of the dermatological product undergoing assessment
or their predisposition to be exposed to the concerning
environmental or occupational hazard.

3 Future perspectives on the
opportunities for reconstructed human
pigmented skin models

One of the major challenges in performing non-animal, large
scale dermal absorption studies is the recruitment of volunteers (in
vivo) or the collection of excised human skin (in vitro). As for the
latter, the excised human skin is often obtained from donors
undergoing elective surgery involving skin removal, such as
abdominoplasties and face lifts. Consequently, the excised human
skin is inherently costly and acquiring sufficient samples can be
challenging. In studies concerning race/ethnicity and the skin
barrier, procuring excised skin samples from multiple human
donors belonging to varying racial/ethnic groups is a major
barrier to experimentation. One approach to overcome these
hurdles may be the use of alternative reconstructed human
pigmented skin models. In recent years, researchers have
developed advanced techniques to permit the co-culture of
human keratinocytes and melanocytes in a three-dimensional
configuration (Hedley et al., 2002; Duval et al., 2012; Gledhill
et al., 2015; Schmid et al., 2018; Zöller et al., 2019; Hall et al.,
2022). These models often contain physiological ratios of
keratinocytes:melanocytes and are grown at the air–liquid
interface to facilitate the stratification of the epidermis and
eventual stratum corneum development (Hedley et al., 2002; Zoio
et al., 2021; Goncalves et al., 2023), giving them a similar overall
structure to that of the human epidermis in vivo. With the
production of these models, largely optimized, commercially
available reconstructed human pigmented epidermal models have
become more accessible (Table 2), including models incorporating
melanocytes from donors of varying skin type and race. Thus, their
use is no longer reserved to research groups familiar with high-level
mammalian cell culture techniques and specialized equipment.
Importantly, these models have been used successfully in studies
aimed at investigating the biology of skin pigmentation (Itoh et al.,
2020) and pigment disorders (Kang et al., 2020), and have been
evaluated for use in the development of pigment modulators (Yoon
et al., 2003). As such, these will likely be useful also for a variety of
other applications, including IVPT.

Despite shortcomings in the ability of reconstructed human
pigmented skin models to replicate all features of the human skin
(Bouwstra et al., 2021; Salminen et al., 2023), these experimental
platforms do have selected advantages over the use of excised human
skin for IVPT. A major benefit is the ease of obtaining samples.
Depending on the location, excised human tissuesmay be significantly
challenging to obtain under local research restrictions (Allen et al.,
2010). As for the reconstructed skin models, primary human
keratinocytes and melanocytes can be banked frozen, thawed, and
expanded, allowing for commercially reconstructed tissue providers to
produce models in a relatively quick amount of time, and with cells
from multiple donors. Furthermore, in the pursuit of elucidating
potential race-associated idiosyncrasies in compound dermal
absorption, the highly controlled nature of these models may be of
substantial benefit. For example, melanocytes from a single donor of a
particular race may be incorporated into multiple constructs. These
constructs can be cultured further with varying levels of
melanogenesis-inhibiting or melanogenesis-promoting factors. The
end result is tissue models with theoretically identical genetic make-
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up, only differing in their levels of pigmentation, thus providing a
unique means of investigating the confounding effect of pigmentation
alone. Together, these benefits ultimately support the inclusion of
reconstructed human pigmented skin models in dermal absorption
studies going forward. Developing rigorous methodologies for the
qualification of suchmodels will be critical to build confidence in their
potential for risk/safety assessment (Salminen et al., 2023). Of note, no
full thickness (epidermis and dermis) reconstructed human
pigmented skin models are currently available commercially.
Furthermore, in certain cases (e.g., safety assessment), the inherent
biological variability of excised human skin obtained from multiple
donors may be desired as it represents the general population more
accurately. Developing or obtaining reconstructed human pigmented
skin models comprising primary cells from multiple donors may help
such models reflect some of this biological variability.

4 Conclusion

Assessing the rate and amount of dermal absorption of
compounds of interest is a critical step in the safety assessment
of topical drugs, cosmetics, and occupational and environmental
exposures. As with much of the pharmacological/toxicological
research to date, skin permeation studies have largely relied on
White subjects or samples fromWhite donors, limiting the relevance
of these works’ findings to a racially/ethnically diverse population.
The existing studies aimed at elucidating a link between race, skin
pigmentation, and the human skin barrier show varying and
sometimes contradictory results but encourage future work on
this topic. Advances in laboratory instrumentation and
techniques, including the development of reconstructed human
pigmented skin models, may facilitate better permeation studies
and ultimately contribute to our understanding on the role of race/
ethnicity and skin pigmentation on dermal absorption.
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TABLE 2 Examples of commercially available reconstructed human pigmented epidermis models.

Reconstructed human pigmented epidermis models

Name Manufacturer Description

SkinEthic™ RHPE Episkin Reconstructed human pigmented epidermis consisting of normal human keratinocytes cultivated in the presence of melanocytes
from phototype II, IV, or VI donors, localized in the basal layer in a 9-mm diameter transwell

Phenion® epiCS-M Phenion Highly differentiated model of the human epidermis consisting of human keratinocytes and melanocytes cultured in a 9-mm
diameter transwell

MelanoDerm™ MatTek Normal, human-derived keratinocytes and melanocytes cultured in a 9-mm diameter transwell to form a multilayered, highly
differentiated model of the human epidermis. Melanocytes from individual Caucasian, African American, or Asian donors
available. Three pigmentation media containing varying levels of β-FGF and α-MSH are available

Information provided on vendor websites, as of September 2023; β-FGF, beta-fibroblast growth factor; α-MSH, alpha-melanocyte-stimulating hormone.
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