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Introduction: Many natural or synthetic compounds used in foods, dietary
supplements, and food contact materials (FCMs) are suspected endocrine
disruptors (EDs). Currently, scientific evidence to predict the impacts on
biological systems of ED mixtures is lacking. In this study, three classes of
substances were considered: i) phytoestrogens, ii) plant protection products
(PPP) and iii) substances related to FCMs. Fourteen compounds were selected
based on their potential endocrine activity and their presence in food and FCMs.

Methods: These compounds were evaluated using an in vitro gene expression
assay, the ERα-CALUX, to characterize their responses on the estrogen receptor
alpha. Cells were exposed to fixed ratio mixtures and non-equipotent mixtures of
full and partial agonists. The concentration-response curves measured for the
three classes of compounds were characterized by variable geometric parameters
in terms of maximum response (efficacy), sensitivity (slope) and potency (median
effective concentration EC50). To account for these variations, a generic response
addition (GRA) model was derived from mass action kinetics.

Results: Although GRA does not allow us to clearly separate the concentration
addition (CA) and independent action (IA) models, it was possible to determine in a
statistically robust way whether the combined action of the chemicals in the
mixture acted by interaction (synergy and antagonism) or by additive behavior.
This distinction is crucial for assessing the risks associated with exposure to
xenoestrogens. A benchmark dose approach was used to compare the
response of phytoestrogen blends in the presence and absence of the
hormone estradiol (E2). At the same time, 12 mixtures of 2–5 constituents
including phytoestrogens, phthalates and PPPs in proportions close to those
found in food products were tested. In 95% of cases, the response pattern
observed showed a joint and independent effect of the chemicals on ER.

Discussion:Overall, these results validate a risk assessment approach based on an
additive effects model modulated by intrinsic toxicity factors. Here, the CA and IA
approaches cannot be distinguished solely based on the shape of the
concentration response curves. However, the optimized GRA model is more
robust than CA when the efficacy, potency, and sensitivity of individual
chemical agonists show large variations.
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1 Introduction

Endocrine disruptors (EDs) are substances that affect the endocrine
system and have adverse effects on the health of an organism and/or its
offspring. EDs affect the hormonal balance and impact humanhealth by
modifying functions such as growth, development, sexual and
reproductive function, behavior, obesity, and blood circulation
(Diamanti-Kandarakis et al., 2009; Guarnotta et al., 2022). The
increasing incidence of endocrine diseases and associated disabilities
is assumed related to the increasing exposure of the population to EDs
(Ahn and Jeung, 2023). These chemicals disrupt the body at different
levels, often in discrete ways and in doses as low as the order of
physiological hormone concentrations (Marlatt et al., 2022). The impact
on human health is even more worrying since the effect of these
substances on fetal development may be irreversible. It was estimated
that the annual cost of EDs for European society is of the order of
hundreds of billions of euros per year (Trasande et al., 2016).

According to REACH (updated list in April 2022), 24 chemicals
were identified and legally adopted as endocrine disruptors for humans.
These include phthalates, and the bisphenol and phenol groups.
However, many other compounds are considered potential EDs
including antioxidants, pesticides, biocides, detergents, metals,
plasticizers, and organometallic compounds (Mukherjee et al., 2021;
Wiesinger et al., 2021; Imparato et al., 2022). Diet is an important
exposure route for these known or potential EDs, which enter the food
chain in different ways. They can occur naturally as phytoestrogens,
deliberately added as additives, or can contaminate food through
production, processing, transportation, and migration from food
contact materials (FCM) (Ong et al., 2020; Wiesinger et al., 2021).
One of the major challenges with current testing and regulation of EDs
is that they are assessed on an individual basis, whereas in real life the
population is exposed to multiple compounds (“mixtures”)
simultaneously. EDs enter the human body as complex mixtures,
usually through chronic low-dose exposure. This implies that the
organism may be exposed to the same compound from several
sources or that a consumer product may contain several known or
potential EDs (Kumar et al., 2020; Darbre, 2022).

Current practice is to determine the toxicity of individual
compounds, after which the mixture is considered “tolerable”
when the toxicity or concentration of individual compounds is
below experimentally defined toxicity threshold values (Heys
et al., 2016). However, the fact that the toxicity of a single
compound is known does not guarantee its behavior when
combined with other substances. Compounds that share a
common mechanism of action may be able to cooperate with
each other and induce a measurable effect even if they are
individually present below their No Observed Adverse Effect
Level—NOAEL (Silva et al., 2002). These joint effects therefore
complicate risk assessment, hence the need to extend current
methods of toxicological assessment (Perkins et al., 2019).

The twomost usedmodels to predict joint effects in mixtures are
concentration addition (CA) and independent action (IA), both
having various names in the literature (Cedergreen et al., 2008;
Medlock Kakaley et al., 2019; Hsieh et al., 2021). The theoretical
principle of CA is that the chemicals in the mixture share the same
target molecule (same mode of action) and dose-response curves
differ only in potency (Gottschalk and Dunn, 2005). They can,
therefore, be considered as dilutions of each other. In the IA model,

the chemicals in the mixture are assumed to have different modes of
action, thus affecting different potential biological target sites. Since
they act independently, the overall mixture might show no response
when the compounds are present below their NOAEL (Martin et al.,
2009). A common assumption between CA and IA is that chemicals
in a mixture do not interact physically, chemically, or biologically.
However, interactions between different chemicals are possible and
can have a substantial impact on the overall potency or toxicity of
the mixture. Either the result of the mixture exceeds that predicted
by the sum of the individual effects, which is called synergy, or the
result of the mixture is less than that expected, which is called
antagonism (Cedergreen et al., 2017; Martin et al., 2021). A
thorough study of the literature shows that cocktail effects for
EDs with interactions are only observed in 11% of the cases
studied. Overall, the deviations were small, and very often
additivity could be used as the default concept to predict mixture
outcomes (Martin et al., 2021).

In this study, to better appreciate these possible cocktail effects, the
estrogenic activity of mixtures consisting of several known and/or
potential EDs related to food and FCM was studied using the bio-
ERα-CALUX assay. The experimental results were compared to the
activity predicted by models derived from CA and IA concepts, to test
whether the mixtures followed the additivity principle or showed signs
of interaction.Mixtures have also been prepared containing compounds
below their activity threshold to determine if the overall mixture activity
was significant, illustrating the so-called “something out of nothing”
paradigm (Silva et al., 2002).

2 Material and methods

2.1 Prioritization of potential estrogenic
disruptors

Potential endocrine active substances present in foods for study
come from the categories: i) phytoestrogens, ii) biocides and
phytosanitary products and iii) substances present in the form of
additives or present in FCMs. For each of these categories, a list
based on the presence on the Belgium food market was established
(see Bel et al., 2016), and a selection based on the potential for
endocrine disruption was made after literature review (ex. Brouwers
et al., 2009; EFSA, 2019). The selection of these compounds of
interest guided the selection of foods and FCMs, which were
analyzed by LC/GC-MS/MS as part of the FPS Public Health
project ENDFOODTOX (RF 18/6326).

2.2 Analytical standards

The following analytical standards were purchased: i) from
Sigma Aldrich: butylated hydroxytoluene (BHT), Benzophenone,
Bis (2-ethylhexyl) phthalate (DEHP), Dibutyl phthalate (DBP),
Diisobutyl phthalate (DIBP), Kaempferol, and Equol, ii) from
Phytilab: Dadzein, Genistein, 6-Prenylnaringenin (6-PN), 8-
Prenylnaringenin (8-PN) and Enterolactone and iii) from LGC:
Benzyl butyl phthalate (BBP) and Triadimenol.

Each reference material was solubilized in appropriate solvents
to make stock solutions at a concentration of 1 mg/mL. Most
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compounds were solubilized in MeOH, except daidzin and genistin,
which required DMSO. BHT is soluble in MeOH, but anhydrous
ethanol or hexane is required to prevent its degradation. Working
standards at 20 μg/mL and 10 μg/mL were prepared in MeOH and
ACN. Stock and working standards were stored at −20°C and
retained for a maximum of 6 months.

2.3 Assessment of endocrine activities using
the ERα-CALUX assay

The recombinant human breast cancer cell line VM7Luc4E2
(variant MCF7, formerly known as BG1Luc4E2) was used to
determine estrogenic activities. These cells express ERα
endogenously but lack any functional ERβ (Rogers and Denison,
2000; Brennan et al., 2016). The bioanalytical procedure and data
analysis are described in (Elskens et al., 2023).

2.4 Interpretation of concentration-
response curves for mixtures

A growing body of experimental evidence indicates that the
in vitro activities of chemical mixtures can be predicted from the
overall response of their individual components using the concept
of the concentration addition model-CA (Evans et al., 2012).
Mathematically, CA models assume that all dose-response
curves are characterized by similar threshold values and similar
efficacy and that their slope-values are not significantly different
from 1.

ECXMIX � ∑n

1�1
f i

ECXi

( )
−1

(1)

where ECXi is the effective concentration of compound i alone
causing an effect X, fi is the fraction of i present in the mixture and
ECXMIX is the effective concentration of the mixture causing the same
effect X. To apply Eq. 1, the individual potencies of the compounds
present in the mixture are required (Supplementary Table S1).

Assumptions that all concentration-response curves are
characterized by similar threshold, efficacy and slope-values are not
valid for phytoestrogen response on ER (Supplementary Table S1). The
Hill slope are frequently different from 1, and the maximum response
fluctuate depending on the presence of full-, partial-, or supra-agonists.
To correct for these inconsistencies, a logistic function was derived from
the mass action kinetics using chemical equilibrium reactions:

R +∑n

i�1ni · Li5∑n

i�1RLni (2)

where R is the receptor protein concentration, Li the free unbound
ligand concentration with ni binding sites. From the law of mass
action, the apparent dissociation constantKi for ligand Li is given by:

Ki � R[ ] · Li[ ]ni
RLini[ ] (3)

The ratio of occupied receptor to total receptor is then:

Φ � ∑n
i�1RLini

R +∑n
i�1RLini

(4)

Solving for the receptor activity, one finally obtains:

yi � y0 + m − y0( ) · ∑
n
i�1ai · xi

ci
( )ni

1 + ∑n
i�1

xi
ci
( )ni (5)

which is a generic formulation of the Hill equation for several
binding ligands. In Eq. 5 y0 and m are the lower and upper
asymptote for E2, ai = efficacy, ci = EC50, ni = Hill slope of
ligand Li.

The parameter ni represents a “sensitivity coefficient” describing the
slope of the tangent to the dose response curve at its inflection point for
each ligand. Eq. 5, referred to as GRA, is hereafter considered equivalent
to a mixed CA/IA approach, because it makes possible to consider the
variability of the parameters defining the potency, sensitivity, and
amplitude of the concentration-response curves for each compound
tested in a mixture. Values for ai, ci, and ni are summarized in
(Supplementary Table S1). CA and IA models assumes the additivity
principle between tested compounds. It is the default assumption for
predicting and evaluating the mixing effect. The accuracy of these
models was assessed by comparing the predicted curves against the
observed values with the root mean square error (RMSE), which
measures the average difference between a model’s predicted values
and the actual values. In addition, the measured concentration-response
curves of the mixture are compared with those obtained by modelling,
and the equivalence hypothesis rejected if the measured curve is outside
the 95% confidence interval of the theoretical models obtained bymeans
of Monte-Carlo simulations carried out using XLSTAT-Sim (XLSTAT
version 2023.1.5) according to normal and/or uniform distribution laws.

2.5 Quality control and quality assurance
(QC/QA)

The best-fit parameters for the concentration response-
curves were obtained by minimizing the least squares residuals
using a Levenberg-Marquardt algorithm in R version 4.1.1-2021-
08-10 (Elskens et al., 2011). For the standard E2 curves, the
parameter-values (95% CI) under repeatability conditions and
the goodness of fit criteria (min—max) are given in
Supplementary Table S1. Sample activity below the threshold
values of 20% was designated as < LoQ. Sample activity below the
threshold values of 10% was designated as not detectable (<LoD).
Quality control samples were systematically performed in
triplicate on the 96-well plates. They consisted of standard at
the half maximal effective concentration (EC50). The recovery
rates were between 89% and 120% for E2, results which can be
considered as satisfactory.

3 Results and discussion

3.1 Rationale and assumption behind the
derivation of the Ca and GRA models

Concentration-response curves were used to study the in vitro
effects of mixtures, assuming that the bioactivity of these mixtures
followed by default the principle of additivity according to Eq. 1.
This model assumes that all the ligands act in the same way as
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dilutions of each other. While the binding affinity on the receptor
may differ between compounds (i.e., relative potency), they all
exhibit the same slope (i.e., Hill coefficient) and maximum
response (i.e., efficacy), resulting in parallelism between sets of
concentration response curves (Gottschalk and Dunn, 2005).
However, for the chemicals investigated in this study, the
parallelism hypothesis is not valid; the efficacy (a) varying
between 0.5 and 2 and Hill coefficient (n) between 0.5 and 5
(Supplementary Table S1). Consequently, a generalisation of the
Hill-Langmuir function (Eq. 5) was derived from the mass action
kinetics (Eq. 2) assuming that each ligand is characterised by an
intrinsic potency (ci), sensitivity (ni) and maximum response (ai),
providing a generic response addition model (GRA).

Binding curves showing the characteristically sigmoid generated
by CA and GRA for an equipotent binary mixture of fictitious
agonists are illustrated in Figure 1. The effect of random noise (7%)
on the shape of the response curve and the empirical adjustment of
parameters was investigated (Supplementary Table S2). Bothmodels
give non-statistically different values for the fitted parameters when
compared to actual values at the 5% level of significance. CA is a
special case of GRA for (ai = 1, ni = 1) but as ni or ai increases, the
saturation curves become steeper or higher for GRA (Figures 1A, B).
The question arises as to the physiological significance of these
parameters in the CALUX assay. The Hill coefficient plays a leading
role in the study of ligand-receptor interactions, measuring the
number of binding sites in cooperating systems (Abeliovich, 2005).
For ni >1, when a ligand is bound to the receptor, its affinity for other

ligands increases. For ni <1, once a ligand is bound to the receptor,
its affinity for other ligands decreases. Finally, for ni = 1, the affinity
of the receptor for a ligand does not depend on whether other
ligands are already bound to the receptor. In practice, however, ni in
the CALUX assay is an ‘apparent coefficient’ reflecting a series of
processes. After ligand binding to the cytosolic receptor,
translocation of the newly formed dimeric complex in the
nucleus and binding to DNA, the CALUX cells induce different
protein activities via transcription, translation, and enzymatic
expression. While we cannot rule out positive or negative
cooperative binding for ni ≠1, neither can we rule out indirect or
cumulative effects on either of the reaction sequences. The same
reasoning applies to ai. The concept of “super agonism” was
described in the early 1980 s, in relation to peptide hormone
analogues that produced greater functional responses than
endogenous agonists. Whether these compounds can actually be
more effective than endogenous agonists have long been debated,
but relatively recent pharmacological evidence has indicated that
super agonists may be more than an artefact (Langmead and
Christopoulos, 2013). Consequently, it is risky to assume that the
functional affinity operating at the level of the whole cell reflects the
molecular ligand-receptor binding affinity; care must be taken not to
over-interpret the significance or reliability of the fitted parameters,
even if it can be shown empirically that ai and ni are statistically
different from 1. Moreover, the GRA model allows the effect of
antagonism to be considered.Whether ai of a given compound tends
towards 0, it can bind to the receptor but does not activate it

FIGURE 1
Concentration response-curves generated by CA and GRA for equipotent binary mixtures of fictitious agonists/antagonists (see Supplementary
Table S2).
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(Figure 1C). This results in a decrease in agonist activity in the
presence of increasing concentrations of antagonist, the inhibitory
effect of which being estimated by the IC50 (concentration of
antagonist inhibiting 50% of the agonist response).
Supplementary Table S2 shows how the parameters fitted with a
background of 7% compare with the actual model outputs. As
previously, the shape of the concentration-response curves is
modulated by ni. The inhibition reflects a reversible competitive
antagonism. The latter can be overcome. At high concentrations, the
effect of the antagonist is no longer observed but the sigmoid agonist
curve shifts to the right and its “apparent” potency is, therefore,
reduced (EC50 increases). The higher the antagonist concentration,
the greater the displacement (Figure 1D).

GRA, therefore, appears to be a generalisation of CA and, like it,
assumes an additive pattern. The concentration-response curves being
modulated by the intrinsic ai and ni values, allow us to consider both
mixtures of competing agonists and agonists/antagonists. However, this
approach does not allow us to assess the synergy between endogenous
and exogenous agonists, i.e., the sigmoid curve of the mixture shifts to
the left and its “apparent potency” increases (EC50 decreases). Such
synergies have been less frequently reported and might occur at lower
concentration ratios (Cox et al., 2021). Interaction is, therefore,
expressed as changes in amplitude (increase/decrease in efficacy),
potency (increase/decrease in binding affinity to the receptor),
sensitivity (increase/decrease in slope response) or all three together
(Indurthi andAuerbach, 2021). It is essential to assess these interactions,
for example, when antagonists or toxic compounds are present in a
sample, the CALUX response may be partially masked or amplified.
The aim is to determine i) which CA or GRA approaches give the best
description in mixture of real life food samples, and ii) whether the
investigated chemicals follow an additive pattern or show signs of
synergistic and/or antagonistic activity. A random noise of 7% on the
CALUX experimental data is close to reality for triplicate
measurements. This results in RMSE values between 2.7 and
4.9 and RSQ values greater than 0.9903 (Supplementary Table S2).
These goodness-of-fit parameters summarise the difference between the

observed and predicted values that can be expected if the CA or GRA
models describe the set of observations satisfactorily.

3.2 Mixture effects of phytoestrogens at
EC10 and EC50 in the presence and absence
of E2

In these experiments, a mixture of 4 phytoestrogens (8-PN,
daidzein, kaempferol and equol) was studied using the benchmark
dose (BMD) approach. The concentration-response curves measured at
low dose (EC10) and at their half-maximal responses (EC50) were
compared with those predicted by the CA and GRA models (Eqs 1,
5), respectively). All measured activities were expressed as % relative to
the maximum response of the reference ligand E2; the negative control
is represented by the DMSO blank.

Figure 2A depicts that joint effects were detected at EC10 and
there were no statistical differences between the GRA-predicted and
observed curves. The two curves overlap, and the observations are
within the interval defined by the two models. RSQ and RMSE
values are reported in Supplementary Table S3. At EC50, the
observed curve is slightly shifted to the left and the fit is better
with the CA model (Figure 2B). However, the observations are most
always included in the interval defined by GRA and CA.

We then checked whether the presence of phytoestrogens could
modify the response of E2 tested at its EC50 (Figure 2C). At high
dilutions of the phytoestrogen mixture (≤0.1 μM), the E2 response
was not significantly modified. At higher concentrations (≥1 µM), the
presence of phytoestrogens strengthens the E2 agonist response.
Again, the observations are included in the interval defined by
GRA and CA, and the RSQ & RMSE-values of both models are
comparable (Supplementary Table S3). The mixture does not strongly
modify the activity of E2. At high dilutions, there is a slightly higher
overall activity of the mixture compared to the predictions, which
decreases approaching saturation (Figure 2C). The fact that
concentration-response curves can be steeper at lower exposure

FIGURE 2
Luciferase activity in VM7Luc4E cells for phytoestrogens. #a: 8-PN, daidzein, kaempferol and equol at EC10; #b: 8-PN, daidzein, kaempferol and
equol at EC50; #c: E2 at EC50 + Mix daidzein, kaempferol and equol (see Supplementary Table S3).
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levels has been described for a variety of environmental toxicants,
including lead, arsenic, and benzene (Hornung and Lanphear, 2014).
Overall, current research on synergistic mixing effects is limited, and
when discussed in the literature, their occurrence is low. A study on
pesticide mixtures, for example, which examined the effects of mixing
in realistic low-dose mixtures, reported that only 5% of the mixture
combinations tested exhibited synergistic interactions (Cedergreen,
2014). Here, if there is a synergistic effect, it remains weak, and the
GRA model provide overall a reasonable approximation of the
behavior of the mixtures.

3.3 Mixtures at observed concentration
ratios in food samples

Twelve mixtures of 2–5 compounds of phytoestrogens,
phthalates, food additives and plant protection products were
prepared according to concentration ratios found in real food
samples, and their estrogenic activities were tested using ERα-
CALUX. Concentration ratios were determined by LC/GC-MS/
MS. as part of the ENDFOODTOX project funded by FPS Public
Health (RF 18/6326). More information about how the food
samples were selected can be found in the Supplementary
Material section. The concentration-response curves obtained
for the 12 mixtures and the corresponding model predictions are
shown in Figure 3. Overall, the GRA model gave better results for
these mixtures than the CA model (Supplementary Table S3).
The observed experimental results are within the 95% CI of the
prediction model. Consequently, no statistically significant
differences between observation and prediction could be
reported. There were some deviations from the expected mean
activity with mixtures #1, #2, and #3 (Daidzein, Genistein)
showing slightly below-average activities and mixtures #5
(Daidzein, Genistein, 6-PN, Kaempferol) and #6 (Daidzein,
Genistein, 6-PN, Enterolactone) showing slightly above-
average activities. Mixtures #10 (Daidzein, Genistein, 6-PN,
Enterolactone, BHT) and #11 (Daidzein, Genistein, DIBP,
Benzophenone, Triadimenol) show observations that fall on
the leftmost edge of the 95 CI %, which could suggest the
possibility of synergy in these mixtures.

However, the experimental uncertainties (particularly for
#9), do not allow us to conclude that there is a significant
difference amongst the observed results. Triadimenol is
present only in #11, while #10 and #12 are the only ones to
contain BHT. Mixture #12, however, contains a lower BHT
concentration, which might suggest that the potentially
increased potency compared to the expected activity could be
due to the antioxidant BHT in #10 and the fungicide triadimenol
in #11. Synergistic effects with fungicides have already been
described (Rondeau and Raine, 2022). This has been
documented for triadimenol, which exhibits synergy effects
when used in combination with other triazole-based fungicides
(Li et al., 2018). For BHT, no description of synergistic activity in
mixtures has been reported in the literature. Overall, our results
show that the additive model is a sufficiently robust default model
to describe mixture effects. Similarly, Yu et al. (2019)
determinized the estrogenic activity of environmental EDs
using the yeast estrogen screening test (YES) which suggested
additive effects best described the observed results. Furthermore,
more recent work on the combined toxicity of EDs revealed that
the CA approach provided reliable estimates for describing joint
effects when the compounds tested shared a common mode of
action (Hamid et al., 2021).

The CA model assumes, however, that all the chemicals in
the mixture behave as a dilution of each other. Mathematically,
this implies that the concentration-response curves for each
compound follow a parallel-line logistic regression model
(Gottschalk and Dunn, 2005). It also means that the Hill
slope is not significantly different from 1 and that all the
concentration-response curves of the compounds in the

FIGURE 3
Luciferase activity in VM7Luc4E cells for Mix #1 to #6 (see
Supplementary Table S3). Luciferase activity in VM7Luc4E cells for Mix
#7 to #12 (see Supplementary Table S3).
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mixture have equivalent background and maximum responses
(Cedergreen et al., 2008). These assumptions do not apply to our
CALUX measurements, where the Hill coefficient may differ
from 1 and the maximum responses may fluctuate greatly,
particularly in the case of phytoestrogens (Supplementary
Table S1). Daidzein and genistein, for example, are supra-
inductive agonists (180%–200% efficacy), while kaempferol
(60% efficacy) is a partial agonist. An additive model was
therefore adapted, to simultaneously consider variations in
the efficacy, potency, and sensitivity of the different
compounds. Monte Carlo simulations were then used to test
the robustness of the additivity hypothesis. This made it possible
to reconstruct concentration response curves for highly variable
experimental conditions and to accurately predict the activity of
the mixtures in most cases. The GRA approach therefore appears
to be a suitable complement to the CA approach and can be used
when the assumptions of parallel response curves are not met.

4 Conclusion

Overall, the GRA model developed as part of this research
successfully predicts the effects of the mixtures, with the % of
variance explained (RSQ-values) ranging from 84% to 99%.
Furthermore, GRA outperforms the CA model applied by
default (% variance explained 23%–98%) in describing the
responses of non-equipotent mixtures of partial and complete
agonists. The assumption that each component of the mixture
can be considered as a dilution of the other is therefore not
validated. This does not necessarily exclude the CA hypothesis,
nor does it validate the IA ones. Recombinant cells used in the
ERα-CALUX bioassay contain a stably transfected firefly
luciferase reporter gene that responds to chemicals that can
bind to the ER and activate it, resulting in the induction of
luciferase gene expression. This induction occurs in a time-,
concentration- and chemical-specific manner, which could
lead to dissimilarities depending on the mixtures of agonists
tested (Rogers and Denison, 2000; Besselink, 2015).

These results highlight the importance of applying an additive
model for xenoestrogen risk assessment, but that care should be
taken at low doses, as mixtures may exhibit joint behaviour if the
chemicals are combined below their individual level with no
observable adverse effects (NOAEL). Additionally, the
compounds Triadimenol and BHT should be studied more
intensely, as they show potential signs of synergy when tested
in combination. Taken together, these results also underscore the
need to broaden the approach to ED risk assessment, going
beyond the treatment of individual compounds, for example,
using adverse reaction pathways (AOPs) as tools to support
cumulative risk assessment of co-exposure in food and food
contact materials.
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