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Introduction: The positive identification of xenobiotics and their metabolites in
human biosamples is an integral aspect of exposomics research, yet challenges in
compound annotation and identification continue to limit the feasibility of
comprehensive identification of total chemical exposure. Nonetheless, the
adoption of in silico tools such as metabolite prediction software, QSAR-ready
structural conversion workflows, and molecular standards databases can aid in
identifying novel compounds in untargeted mass spectral investigations,
permitting the assessment of a more expansive pool of compounds for human
health hazard. This strategy is particularly applicable when it comes to flame
retardant chemicals. The population is ubiquitously exposed to flame retardants,
and evidence implicates some of these compounds as developmental
neurotoxicants, endocrine disruptors, reproductive toxicants, immunotoxicants,
and carcinogens. However, many flame retardants are poorly characterized, have
not been linked to a definitive mode of toxic action, and are known to share
metabolic breakdown products which may themselves harbor toxicity. As U.S.
regulatory bodies begin to pursue a subclass- based risk assessment of
organohalogen flame retardants, little consideration has been paid to the role
of potentially toxic metabolites, or to expanding the identification of parent flame
retardants and their metabolic breakdown products in human biosamples to
better inform the human health hazards imposed by these compounds.

Methods: The purpose of this study is to utilize publicly available in silico tools to 1)
characterize the structural and metabolic fates of proposed flame retardant
classes, 2) predict first pass metabolites, 3) ascertain whether metabolic
products segregate among parent flame retardant classification patterns, and
4) assess the existing coverage in of these compounds in mass spectral database.

Results:We found that flame retardant classes as currently defined by the National
Academies of Science, Engineering andMedicine (NASEM) are structurally diverse,
with highly variable predicted pharmacokinetic properties and metabolic fates
amongmember compounds. The vast majority of flame retardants (96%) and their
predicted metabolites (99%) are not present in spectral databases, posing a
challenge for identifying these compounds in human biosamples. However, we
also demonstrate the utility of publicly available in silicomethods in generating a fit
for purpose synthetic spectral library for flame retardants and their metabolites
that have yet to be identified in human biosamples.
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Discussion: In conclusion, exposomics studies making use of fit-for-purpose
synthetic spectral databases will better resolve internal exposure and windows
of vulnerability associated with complex exposures to flame retardant chemicals
and perturbed neurodevelopmental, reproductive, and other associated apical
human health impacts.
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in silico spectra, metabolite prediction, exposomics, flame retardant (FR), metabolomics,
hazard assessment, risk assessment, chemical classification

Introduction

The human exposome has been described as the totality of
environmental exposures across an individual’s lifespan. It
encompasses external factors including chemical, microbial, and
radiation exposures, as well as internal factors such as metabolism,
microbiome, and nutritional status that may modulate the effects of
xenobiotic stressors on human health (Sillé et al., 2020). In practice,
the positive identification of xenobiotics and their metabolites in
human biosamples, a core element of exposomics, is complicated by
the sheer quantity and diversity of measured compounds, which are
often present at trace concentrations, as well as the absence of a
wholly comprehensive database of chemical structures and
properties to aid in the annotation of suspect compounds with
spectral techniques.

The requisite experimental spectra–spanning multiple collision
energies, polarity modes, and spectrometry platforms–for adequate
compound identification simply does not exist for the universe of
160 million known chemicals and their human metabolites45.
However, several databases enable identification of unknown
compounds in untargeted mass spectrometry experiments from
their m/z values and retention time and/or ion annotation
information. The most comprehensive publicly available
repository of mass spectrometry data is the METLIN database
maintained by the Scripps Research Institute. The library
contains 960,000 compounds annotated with chemical and
molecular formulas, structural identifiers and high-resolution
tandem mass spectral data produced in positive and negative
ionization modes at different collision energies, collectively
comprising over 4 million individual mass spectra (Xue et al.,
2020; Scripps Research Institute, 2023). While substantial,
METLIN chemical coverage represents less than a 1% coverage
of the known chemical universe according to PubChem and consists
mainly of chemicals with low relevance to environmental health
(U.S. National Library of Medicine, 2023; Wang et al., 2022). Other
databases offer substantially narrower chemical coverage. The
Human Metabolome Database (HMDB) contains chemical,
clinical, molecular, and spectral data for roughly 220,000 known
metabolites, and allows users to both obtain a priori predicted or
empirical GC-MS, MS/MS, NMR, and IR spectral information for
target compounds, and to input their own peak lists of unidentified
compounds to compare against the HMDB library (Wishart et al.,
2022). The NIST 23 electron ionization, MS/MS and gas
chromatography libraries cover as many as 347,100 unique
compounds (National Institutes of Standards and Technology,
2020). Where compounds can be identified in biosamples,
exposure databases such as the Blood Exposome Database

(BEDB) and the International Agency for Research on Cancer’s
(IARC) Exposome Explorer database provide indications of internal
exposure over time (International Agency for Research on Cancer
IARC and University of Alberta, 2012).

Despite open access to these important resources, it is typical for
fewer than 2% of spectra to be successfully annotated in an
untargeted metabolomics investigation (da Silva et al., 2015). In
all cases, existing resources are biased away from compounds that
have yet to be substantially reported in the scientific literature,
creating a chicken and egg scenario for the novel identification of
xenobiotic exposure: if a compound is understudied it is functionally
invisible in untargeted analyses, and it will remain understudied
because its absence as a variable hinders the identification of a
potential adverse biological effect.

This challenge is particularly apparent in the context of adequate
hazard assessment of flame retardants. Flame retardants are a
diverse category of chemicals that alter the normal degradation
or combustion of flammable materials to reduce or eliminate their
tendency to ignite when exposed to heat or flame (Organisation for
Economic Co-operation and Development OECD, 2017). They are
commonly added to furniture, carpeting, textiles, vehicle interiors,
electronics, car seats, mattresses, and other consumer products, and
often in high amounts (National Academies, 2019). Flame
retardants comprise 4%–5% of furniture foam by weight, and
flame retardants in plastic TV casings have been measured at
10%–15% by weight (Dishaw et al., 2014).

Flame retardants are united by common functionality rather
than by a shared chemical structure or molecular composition,
owing to the need to mitigate fire hazards posed by synthetic
polymers with distinct chemical and physical properties and
operating under dissimilar use scenarios (National Academies,
2019). In practical application, commercial flame retardant
formulations use combinations of halogenated and
nonhalogenated compounds, organophosphates, nitrogen-based
compounds, inorganics and organics within the same product to
leverage synergistic effects and combine different mechanisms of
action. Most populations, therefore, are exposed to these chemicals
as complex mixtures (European Chemicals Agncy ECHA, 2023;
Pinfa, 2023).

Biomonitoring studies over the past decade indicate widespread
internal exposure in American adults and children, with roughly a
dozen diverse organophosphate and polybrominated compounds
consistently present in 70%–100% of biofluids (Ospina et al., 2018;
Wang et al., 2019; Eick et al., 2021). Such persistent measurements
are likely a consequence of both flame retardants’ ubiquity, and their
tendency to be physically applied to target materials rather than
reactively integrated into a product’s polymeric backbone to create
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inherently flame-resistant materials. Exposure then results from
diet, inhalation and exposure to dust. Because of their size, hand-
to-mouth behavior, and time spent indoors, children often have a
higher body burden than adults (Lunder et al., 2010; Stapleton et al.,
2014).

Because of the complexity of exposure scenarios, the diversity
of chemicals involved, and the fact that most people are exposed to
multiple flame retardants simultaneously, establishing a clear link
between exposures and outcomes has been challenging.
Nonetheless, human epidemiological studies have implicated
flame retardants as (neuro-)developmental and reproductive
toxicants, endocrine disruptors, and carcinogens, with impaired
outcomes stably observed across chemical subtypes and
independent of whether the parent compound or its
presumptive metabolite are measured. A 2020 review of human
epidemiological literature concluded that pre- and postnatal
exposure to polybrominated diphenyl ethers (PBDE) and their
metabolites negatively impact childhood intelligence, with prenatal
exposures being additionally associated with inattention, poorer
cognition, and externalizing behaviors (aggression, bullying,
defiance, etc.) (Vuong et al., 2018). A 2019 study indicated that
higher concentrations of urinary organophosphate ester flame
retardant metabolites during pregnancy were associated with
impaired fine motor and early language skills in early childhood
(Doherty et al., 2019), while another found additional associations
with reduced IQ and working memory, with the strongest
associations generated from models that considered the molar
sum of flame retardant’s metabolites (Castorina et al., 2017).
Studies have also linked heightened exposure to various
subclasses of organophosphate flame retardants and their
metabolites to reduced maternal and neonatal thyroid hormone
levels (Percy et al., 2021). With higher urinary organophosphate
flame retardant metabolite concentrations, women undergoing
in vitro fertilization are also substantially less likely to
experience successful fertilization, implantation, clinical
pregnancy, and live birth (Carignan et al., 2017).

However, no studies to date have comprehensively measured
exposure to all flame retardants or their breakdown products. Our
already limited understanding of the hazards of these compounds
are constrained to investigations into roughly two dozen OFR and
BDE flame retardants and their major metabolites–a small subset of
the 746 unique compounds and mixtures identified as flame
retardants under the joint US Consumer Product Safety
Commission (CPSC)-US Environmental Protection Agency
(EPA) Flame Retardant Inventory22. The majority of flame
retardants have not been investigated for their presence in
human biosamples, do not have a robustly characterized toxicity
profile in human, in vitro animal, or in vivo studies, and do not have
publicly available structural information due to proprietary
protections. In considering the human exposome, the high
correlation of flame retardants uniformly present in human
biosamples and their tendency to metabolize into the same
metabolites, present two particularly relevant challenges in
accurately identifying potential adverse health outcomes
associated with flame retardant exposure (Wang et al., 2019).
Without an a priori appraisal of which compounds to look for,
targeted assessment of the flame retardant and their metabolic
products cannot be adequately measured.

What is clear is that associations with adverse human health
outcomes persist when measuring either parent flame retardant
chemicals or their breakdown products, indicating a potential
etiological role for either state. For instance, in a preliminary
structural analysis of brominated flame retardants by the Danish
EPA, the OECD (Q)SAR Toolbox identified structural alerts for
carcinogenicity with a mutagenic or genotoxic mode of action for
61 structurally related compounds and many of their metabolites,
indicating a common possible mechanism of action between parents
and metabolites (Ministry of Environment and Food of Denmark,
2016). It is also known that some flame retardants are broken down
to products that are themselves flame retardants, as is the case with
diphenyl phosphate (DPHP) and halogenated compounds that
undergo dehalogenation to lighter congerners (Wang et al., 2020).

Owing to concern about human health hazards from flame
retardants and the challenges posed by the sheer number of different
compounds that fall under this classification, in 2019 the NASEM
produced a scoping report to identify known OFRs in commerce,
and analyze whether OFRs can be treated as a single class (National
Academies, 2019). The analysis concluded that OFRs cannot be
distinguished as a single class as they do not have a common
chemical structure or predicted biologic activity. Instead, it was
suggested to proceed with 14 different subclasses, based in part on
common chemical structure and presumed common bioactivity.
However, as the report noted, there was some ambiguity in the class
assignment, and in many instances lack of data prevented them from
making strong conclusions about common biological activity.

Several computational tools exist to predict the phase I and
phase II metabolism products of small organic compounds.
BioTransformer is a publicly available command-line executable
tool that facilitates metabolism prediction and metabolite
identification for organic xenobiotics (Wishart et al., 2022). The
software’s metabolite prediction tool utilizes a machine learning-
enhanced rule-based approach to predict human phase I and phase
II metabolism, promiscuous enzymatic metabolism, gut microbial
metabolism, and abiotic environmental metabolism from reaction
descriptions, rules, and constraints encoded as SMARTS and
SMIRKS strings. Generalized chemical classification guides the
selection of likely biotransformations, while physicochemical
properties and structural fingerprints guide the prediction of
substrate specificity. BioTransformer was trained using the
MetXBioDB database of experimentally confirmed metabolites of
drugs, pesticides, toxicants, and phytochemicals, and their
concomitant biotransformations and biodegradations. While
BioTransformer tends to overpredict the number of human
metabolites generated as compared to other models available at
the time of its publication (Meteor Nexus and ADMET Predictor),
leading to a high false positive rate, the tool achieves far greater
sensitivity (88%–90%) compared to the other models (13%–71%)
(Djoumbou-Feunang et al., 2019). GLORYx is a web-based tool that
operates in two parts: first, a machine learning based prediction
model uses extremely randomized trees classifiers and 2-
dimensional circular descriptors to generate site of metabolism
predictions for phase 1 and phase 2 reactions (de Bruyn Kops
et al., 2021). Then, transformation progressed according to a
SMIRKS-based reaction rule set. GLORYx reaction rules were
trained on the DrugBank and MetXBioDB databases, as well as
tested on a curated dataset consisting of 37 pharmaceuticals.
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GLORYx has the added benefit of including metabolite priority
scores based on the likelihood of generating any particular
metabolite. Both BioTransformer and GLORYx accept structural
input in SDF or SMILES format, and output predicted metabolites
with identifiers, including InChi string, InChiKey, and canonical
SMILES. As an additional benefit, GLORYx also provides metabolite
prediction scores for the likelihood of generating each metabolite.

Computationally predicted spectra can aid in overcoming
limitations imposed by poor database coverage of the
environmental chemical space. For instance, the Competitive
Fragmentation Modeling for Metabolite Identification (CFM-ID)
web server enables the spectral prediction, compound identification,
and peak assignment of target molecules with known structures
(Wang et al., 2022). Specifically, CFM-ID 4.0 accepts SMILES or
InChI string input and predicts fragmentation patterns and
electrospray ionization quadrupole time-of-flight tandem mass
spectra (ESI-QTOF-MS/MS) in either positive or negative ion
mode, across four different collision energies (Wang et al., 2022).
The server can also annotate target compounds in user-submitted
mass spectral datasets.

Under ideal conditions, a read-across performed for risk
assessment of functionally related compounds will be based on the
molecular features that enable the compounds to have a specific mode
of action. In the absence of a known mode of action for
neurodevelopmental harm, US regulatory authorities are pursuing
subclass-based hazard assessment of organohalogen flame retardants
based on a read-across of compounds subclustered by shared
structural features and limited ToxCast assay activity (National
Academies, 2019). However, this class-based assessment does not
take into consideration the role of potentially toxic metabolites, nor to
expanding the identification of parent flame retardants and their
metabolic breakdown products in human biosamples to better inform
the biology of neurodevelopmental hazards imposed by these
compounds. It is further uncertain whether proposed
organohalogen subclass definitions also sufficiently separate
metabolites, or whether metabolites can originate from several
classes -- including nonhalogenated compounds not covered by
the current regulatory strategy. There are concerns that regulating
compounds as a group, if not clustered on the basis of known, shared
mechanism of toxicity, risks missing potentially bioactive parent
compounds or their metabolites, while simultaneously restricting
access to biologically neutral compounds in a way that incentivizes
use of compounds with overlooked toxicity.

Here, we show that in silico methods commonly used for novel
compound identification can play a useful role in identifying flame
retardants and their metabolites that have yet to be identified in
human biosamples. By using publicly available in silico tools, we
were able to predict the metabolic breakdown products of discrete
organic flame retardant compounds, identify whether these
metabolites were shared across the parent subclasses as put forth
by the National Academies of Science report, assess the existing
coverage of these compounds in mass spectral databases, and
compare the empirical and predicted spectral information of
parent flame retardants and predicted metabolite compounds for
use in untargeted exposomics studies (National Academies, 2019).
We also show that the class-based approach is challenging both in
terms of defining chemical moieties, predicted pharmacokinetics,
and likely metabolic fate, and that while some parent compounds

shared common metabolites there was an enormous diversity of
potential metabolites. More broadly speaking, the sheer quantity and
diversity of metabolites present a challenge analytically, and existing
databases have fairly minimal coverage of potential flame retardant
metabolites. We suggest demonstrate that a priori experimental
integration of publicly available in silico methods for metabolite
prediction can streamline one of the significant bottle-necks of
exposomics studies by improving accuracy of compound
identification in in human biosamples.

Methods

Parent flame retardant chemical space

The inventory of 746 likely flame retardants was obtained from
the Joint US Consumer Product Safety Commission (CPSC)-US
Environmental Protection Agency (EPA) Flame Retardant
Inventory, available through the EPA CompTox Chemicals
Dashboard and described in detail in Bevington et al., 2022
(United States Environmental Protection Agency U.S. EPA, 2023;
Bevington et al., 2022). Filters provided in the Bevington publication
were used to annotate the CompTox inventory list to remove
inorganic compounds and mixtures from the inventory, leaving
601 organic flame retardants.

A QSAR-ready SMILES string is a standardized format for
representing desalted, stereo-neutral molecules for use in
cheminformatics. For inventory compounds exported from
CompTox with no or a corrupted QSAR-ready SMILES string, the
Bevington publication was consulted and QSAR-ready SMILES
strings were obtained for an additional 24 compounds (Bevington
et al., 2022). The webchem R package was used to obtain canonical
SMILES from the NIH Chemical Identifier Resolver (CIR) through
matching CASRN or INCHIKEY for the remaining compounds with
missing QSAR-ready SMILES, and the rcdk R package was used to
convert canonical SMILES to SDF for use in the KNIME
Standardization workflow for QSAR-ready chemical structures
pretreatment. 38 new structures were resolved, permitting a total
of 550 compounds to be assessed for bioavailability and
biotransformation. Of these compounds, 525 were unique.

Parent flame retardants were assigned to one of fifteen classes
based on the strategy of shared ToxPrint chemotypes and ToxCast
biological activity outlined by the National Academies of Sciences,
Engineering, and Medicine (NASEM) in the 2019 report, “A Class
Approach to Hazard Assessment of Organohalogen Flame
Retardants” (National Academies, 2019). While this report—and
CPSC’s subsequent regulatory strategy—focus primarily on
subclassifying organohalogen flame retardants, our analysis
includes organic nonhalogenated compounds assigned to a single
nonhalogenated class. Since the scope of this paper extends beyond
organohalogenated flame retardants, we will refer to all chemical
groupings as “classes,” rather than “subclasses,” as they are
designated in the NASEM report.

In the course of generating QSAR-ready SIMLES strings,
35 flame retardants with a unique DTXSID were collapsed into
8 compounds. In a single case, two flame retardant compounds from
different NASEM classes were collapsed into a single QSAR-ready
structure (DTXSID201016707, a member of the polyhalogenated
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benzene aliphatics and functionalized class, and
DTXSID501016706, a member of the polyhalogenated
carbocycles class). Such a scenario was not unexpected, because it
was noted by NASEM in their initial exploration of organohalogen
flame retardant classification that some compounds meet the
definition of multiple classes (National Academies, 2019). The
compound was assigned to the polyhalogenated benzene
aliphatics and functionalized class for purpose of this analysis,
because it shares a larger common organic backbone with other
members of this class than the polyhalogenated carbocycles.

Tanimoto similarity

The RDKit chemoinformatics package (v.2022.09.5) was used to
calculate RDKIT-type of fingerprints (maxPath = 5, fpSize = 2048).
Subsequently, the fingerprints were used to obtain pairwise
Tanimoto similarity matrix. Metabolite Predictions.

The open-access BioTransformer 3.1.0 software and GLORYx
tool were used to facilitate in silico metabolism prediction and
identification of organic flame retardants (Stork et al., 2019; de
Bruyn Kops et al., 2021; Wishart et al., 2022). For BioTransformer,
metabolites were predicted from parent QSAR-ready SMILES
strings using the metabolic transformation parameter AllHuman
in combined Cyp450 mode with single step iteration. This effectively
predicts biotransformation products of CYP450s, promiscuous
enzymes, phase II, and gut microbial metabolism in a single
step. Predictions originating from gut microbial metabolism were
not considered in the scope of this publication. For GLORYx, the
products of a single iteration of phase I or phase II metabolism were
predicted. The GLORYx output can be found online at https://
nerdd.univie.ac.at/gloryx/result/6082ad54-a1a7-438a-942c-
f60f1c5fe139. Parent OFR and metabolite InChI Keys were used
sequentially to match metabolites identified across both models.

Parent flame retardant and metabolite
network analysis

Parent-metabolite networks and maximum common
substructure (MCS) of NASEM-defined parent flame retardant
classes were generated from QSAR-ready SMILES strings using
Cytoscape 3.9.1 and the ChemViz accessory application
(Shannon et al., 2003; Morris and Jia, 2023).

Pharmacokinetic predictions

The SwissADME online tool was used to predict gastrointestinal
(GI) absorption and blood brain barrier (BBB) permeability for
flame retardants and their metabolites, using QSAR-ready SMILES
strings as the structural input (Daina et al., 2017).

Database coverage

The Chemical Translation Service (CTS) was used to convert
parent flame retardant and metabolite identifiers (CASRN and

InChiKey where available) to Human Metabolome Database
(HMDB) IDs (Wohlgemuth et al., 2010). All hits were manually
quality checked in HMDB.

Spectral prediction

The CFM-ID 4.0 server was used to generate synthetic spectra
and m/z values for electrospray ionization (ESI) and used as a
comparator for empirical LC-MS/MS data (Wang et al., 2022).
Where possible, synthetic spectra were produced under the same
experimental conditions (spectrum type, ion mode, collision energy)
enumerated in empirical spectra deposited in HMDB.

Results

Parent flame retardant chemical space

The Joint US Consumer Product Safety Commission (CPSC)-
US Environmental Protection Agency (EPA) Flame Retardant
Inventory contains 746 likely flame retardants, 601 of which are
discrete, organic compounds. All 601 compounds were identifiable
by EPA’s DSSTox substance identifier (DTXSID), 599 were
identifiable by CAS registry number (CASRN), 533 by SMILES
string, and 513 by QSAR-ready SMILES string. Of these flame
retardants, identifier matching and the KNIME standardization
workflow was successful in resolving QSAR-ready SMILES strings
for 550 compounds, 525 of which were unique (Figure 1A).
Compounds for which a QSAR-ready SMILES string could not
be resolved were either mixtures such as Firemaster 550
(DTXSID70880073) and Antiblaze 19 (DTXSID80107622),
inorganic compounds such as Titanium tetrachloride
(DTXSID8042476) and Ammonium phosphate
(DTXSID5029689), or poorly defined compounds with highly
variable structures, such as Chloroalkanes C10-14
(DTXSID70872670) and Hexabromobiphenyl (DTXSID3025382),
for which no SDF structure was available.

All parent compounds were assigned to a single class for the
purpose of this analysis (Figure 1C). Polyhalogenated diphenyl
ethers were overrepresented with 221 member compounds,
comprising 42% of the chemical space. Nonhalogenated
compounds were the next most abundant at 97 (18%), followed
by polyhalogenated benzenes at 48 (9%), and polyhalogenated
organophosphates at 37 (7%). The remaining eleven classes
(polyhalogenated aliphatic carboxylates, polyhalogenated benzene
alicycles, polyhalogenated triazines, polyhalogenated phenol
derivatives, polyhalogenated alicycles, polyhalogenated phenol-
aliphatic ether, polyhalogenated bisphenol aliphatics and
functionalized, polyhalogenated aliphatic chains, polyhalogenated
carbocycles, polyhalogenated phthalates/benzoates/imides,
polyhalogenated benzene aliphatics and functionalized) contained
19 or fewer compounds and each represented less than 5% of the
parent flame retardant chemical space.

Intra-class Tanimoto similarity indicates that the
polyhalogenated diphenyl ethers form the largest and most
homogenous group of flame retardants (mean = 0.87, N = 221)
(Figure 1D). Though smaller, the polyhalogenated bisphenol
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FIGURE 1
(A)Discrete organic flame retardant chemical space. (B) Abbreviation of National Academies of Science Engineering and Medicine (NASEM) defined
classes. (C) Number of flame retardant chemicals by NASEM-defined class. (D) Intra-class Tanimoto similarity. Overall, 525 chemicals were used in this
analysis, and (A) summarizes the procedure to prune the initial data set of 746 chemicals from the US CPSC/US EPA Flame Retardant inventory down to
the final data set of 525 unique chemicals QSAR-ready SMILES. (B) presents the abbreviations of National Academies of Science Engineering and
Medicine (NASEM) defined class names. (C) presents the distribution of the number of chemicals by class according to NASEM, with the majority of the
chemicals belonging to the polyhalogenated diphenyl ethers class. The structural similarity within each class is displayed in (D). Despite chemicals
belonging to the same chemical class, there is quite a range of structural similarity (using Tanimoto distance) within each class (e.g., 0%–100% in the
polyhalogenated carbocycles), with the exception of the polyhalogenated benzene alicycles, which were 85% or greater structurally similar to one
another.
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aliphatics and functionalized (mean = 0.68, N = 14) and
polyhalogenated benzene (mean = 0.62, N = 48) classes are also
quite homogenous. Unsurprisingly, the large nonhalogenated class
is very heterogeneous. It should be noted that the structural
homogeneity varied between flame retardant classes. For instance,
the group of polyhalogenated organophosphates had both aliphatic
and various aromatic substituents (Figure 2).

These structural differences within a group, despite sharing
common substructure, may lead to significant differences in
xenobiotic metabolism. This may result in the presence of
metabolites with relatively large differences in ADMET profiles.
Considering this, it could be argued that some of the original clusters
could be further subclassified.

Our analysis of the MCS of each parent flame retardant class
showed the challenge of making consistent distinctions amongst a
relatively diverse group of organic chemicals. While for some of the
smaller and less diverse classes (for example, benzene alicycles) the
MCS did identify the common organic backbone that would be
considered the defining feature of the class (Supplementary Figure
S1). However, for the larger and more diverse classes the MCS was
minimal–for example, for the polyhalogenated aliphatics and
functionalized class the common backbone was benzene, and for
the polyhalogenated organophosphate class it was only oxygen as
the organophosphate structure were differently substituted.
Moreover, while the presence of an organophosphate moiety
might seem like a reasonable criterion for a class membership,
two of the organophosphates were aromatics and structurally would
be equally well placed in a category with more aromatics.

Metabolism predictions

After removing metabolites originating only from gut microbial
metabolism, BioTransformer was able to identify metabolites for
494 parent compounds. 3,311 individual reactions resulted in
2,912 unique metabolites identified in total. 309 metabolites
originated from multiple parent OFRs, while 2,603 metabolites
originated from a single parent OFR. Comparatively, GLORYx
was able to positively identify metabolites for 523 parent
compounds. 7,704 individual reactions resulted in 6,213 unique
metabolites identified in total. 537 metabolites originated from

multiple parent OFRs, while 5,676 metabolites originated from a
single parent OFR. 3,007 parent-metabolite pairs were predicted in
both models, while BioTransformer alone identified an additional
304 pairs and GLOXYx alone identified 4,697 pairs. In total,
6,474 unique metabolites were predicted between both models
(Figure 3A). GLORYx predicted 14.7 metabolites generated per
flame retardant compared to 6.7 by BioTransformer (Figure 3B).
The discrepancy between models can likely be explained by
GLORYx’s inclusion of more low probability biotransformation
products in its predictions. While all metabolites were considered
in this analysis, it is important to note that among the products
predicted by GLORYx as the most likely metabolites to be generated
(i.e., those with a priority score above 0.5), over 90% of were also
predicted by BioTransformer, indicating a high concordance among
the most likely candidate compounds.

Under both models, the majority of metabolites originate from a
single parent compound (Figure 3C). However, 309 BioTransformer
metabolites and 537 GLORYx metabolites were predicted to form
from the metabolism of more than one flame retardant parent
compound. This suggests that coexposure to multiple flame
retardants, as occurs in contemporary exposure scenarios, may
result in exposure to the same biotransformation product. For
the more extreme scenario presented by 6 of these metabolites,
more than 20 parent compounds can potentially contribute to their
generation.

In terms of metabolite commonality between disparate flame
retardant sublass designations, the vast majority of metabolite
products (6,429; 99%) were unique to a single flame retardant
class, while 48 products (1%) were generated from parent
compounds in different classes (Table 1). Where class overlap
exists in metabolite generation, flame retardants from the same
two or three classes often produce several shared metabolite
products among them (Figure 4). For instance, the
polyhalogenated bisphenol aliphatics and functionalized class
shares 14 metabolites with the polyhalogenated phenol-aliphatic
ethers and 8 with the polyhalogenated diphenyl ethers.
Nonhalogenated compounds also shared 13 metabolites with
members of 9 polyhalogenated classes. While most of these are
low molecular weight compounds (i.e., Formaldehyde, carbon
monoxide), some such as phosphoric acid, 2-ethylhexan-1-ol,
acetaldehyde, and phenol may be of toxicological relevance.

FIGURE 2
Chemical structure of three members of the polyhalogenated organophosphates class. (A) Tris (2,4,6-tribromophenyl) phosphate, (B) Tris (2-
chloroethyl) phosphate and (C) Dimethyl (4,6-dichloro-1,3,5-triazin-2-yloxy)methylphosphonate are all classified under the NASEM strategy as
polyhalogenated organophosphates despite containing either aliphatic or aromatic substituents.
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FIGURE 3
(A) Metabolite-parent predictions from BioTransformer and GLORYx. (B) Number of metabolites produced by each parent flame retardant. (C)
Number of individual parent flame retardants contributing to each metabolite. (A) presents the overlap of the metabolites produced by the two in silico
metabolism simulators, BioTransformer and GLORYx. GLORYx predicted far more metabolites than BioTransfomer (N = 3,313 vs. N = 7,705). Nearly all
metabolites predicted to form according to BioTransformer were also predicted by GLORYx (N = 3,007 overlap). (B) shows the distribution of parent
flame retardant compounds that generate a given number of metabolites. GLORYx (teal) on average predicts the formation of more metabolites per
compound than BioTransformer (red) due to its inclusion of lower probability products (μ= 14.7 vs. 6.7metabolites per parent flame retardant). (C) depicts
the number of individual parent flame retardants that generate each unique metabolite. Under both models, the vast majority of metabolites originate
from a single parent compound, or from a limited number of parent compounds.
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In rare cases, single metabolites are generated from numerous
classes. Model predictions indicate that 11 flame retardants from
7 distinct parent classes were capable of generating 2,3-Dibromo-1-
propanol (2,3-DBP, DTXSID7021817), which the US National
Toxicology Program (NTP) classifies as reasonably anticipated to
be a human carcinogen (National Toxicology Program NTP, 2021).
2,3-DBP is also a known human metabolite of the flame retardant

tris(2,3-dibromopropyl) phosphate, but is not present in HMDB and
has not yet been empirically associated with the remaining
10 generating parent flame retardants either in human
biosamples or in vitro assessments.

While we initially anticipated a relatively consistent set of
reaction types within each parent class due to some degree of
shared molecular structure, both GLORYx and BioTransformer
predicted parent flame retardants to be subject to an extremely
diverse set of metabolic reactions. The most commonly
occurring reaction types within each class are presented in
Figure 5. Both models predicted a relatively high number of
phase II reactions resulting in the direct conjugation of parent
flame retardants to highly polar antioxidants, with 1,595 phase
II reactions predicted by GLORYx and 1,137 predicted by
BioTransformer. In terms of reaction types common to those
metabolites that are generated from multiple different classes,
the most prominent across both models were O-dearylation,
O-dealkylation (both aliphatic and aromatic), oxidative cleavage
to an alcohol and one aldehyde or ketone, oxidation to a
quinone, phosphoester cleavage, and hydrolysis of esters and
other less common functional groups.

Interestingly, 7 flame retardants were predicted to be
metabolized–typically via dealkylation, phosphoester cleavage, or
hydrolysis–into structures that were other flame retardants. This

TABLE 1 Metabolites classified according to parent compound class. Most
predicted metabolites (N = 6,429) were unique to a single compound class,
while a minority (N = 48) were capable of being generated from parent
compounds in multiple classes.

Unique classes Number of metabolites %

1 6,429 99.25

2 29 0.44

3 10 0.15

4 5 0.07

5 3 0.04

6 0 0

7 1 0.02

The italic values as indicated the % is percent of total metabolites generated.

FIGURE 4
Network of commonmetabolite generation across flame retardant classes. All parent flame retardant compounds (525) are arranged as nodes in the
outer ring and colored according to their corresponding class. Edges connect flame retardant parents to their metabolite product, arranged as nodes in
the center pool. Metabolite node color indicates the number of different parent compound classes (1–7) capable of generating this specific metabolite,
with brighter red nodes indicating more classes contributing. Metabolite node size indicates the total number of flame retardant parent compounds
(1–26) capable of generating this specificmetabolite. Onlymetabolites that are the product of two ormore distinct parent classes are pictured in order to
demonstrate cross-class production of metabolites.
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would significantly complicate measuring exposure as it would be
difficult to isolate exposures vs. metabolites; moreover, exposure
could be potentially underestimated if, for example, only one parent
compound was analyzed in a dust sample without appreciating that

another flame retardant, after biotransformation, could result in a
significantly elevated internal dose. This is particularly relevant for
the flame retardant 2,3-DBP, which is itself a metabolite of 11 other
compounds across 7 classes.

FIGURE 5
Prominent reaction types in BioTransformer (A) and GLORYx (B) predicted metabolism. Despite structural similarity, flame retardant class members
were subject to a diversity of reaction types. The top 5 most common reaction types (6 where there was a tie) predicted by each model cover only 50%–
80% of all reactions within most classes. GLORYx predicted an outsized number of phase II reactions compared to BioTransformer.
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We validated our predicted metabolites against experimentally
observed metabolites for two well-studied flame retardant
compounds: 2.2′, 4.4′-Tetrabromodiphenyl ether (BDE-47) from
the polyhalogenated diphenyl ether class, and 3.3′, 5.5′-
Tetrabromobisphenol A (TBBPA) from the polyhalogenated
bisphenol aliphatics and functionalized class. We first searched
PubChem for PubMed literature indexed to each metabolite, then
expanded our search to PubMed for non-indexed studies using
search terms inclusive of proposed general reaction types (i.e., (“3.3′,
5.5′-Tetrabromobisphenol A” OR “TBBPA”) AND
“glucuronidation”). For BDE-47, 8 phase I metabolites were
predicted by BioTransformer and GLORYx. All but one
metabolite were found in the literature, and of those found all
7 were of mammalian origin. No phase II metabolites were found by
querying on structure, but an EPA toxicological summary of
possible metabolic routes did mention potential glutathione
conjugates (Supplementary Data). The models identified
9 purported metabolites of TBBPA, including the known primary
human glucuronidation and sulfation products. In total,
experimental evidence was found for 3 products of phase I
metabolism and 4 products of phase II metabolism (Schauer
et al., 2006; Zalko et al., 2006; Jaro et al., 2019). Evidence for two
TBBPAmetabolites, the quinone and methylation product, was only
found in invertebrates and microbes. However, all other metabolites
were evident in human studies (Supplementary Data). A review of
the TBBPA metabolism literature also revealed several products of
human metabolism obtained in vitro, from liver microsomes, or
S9 fractions whose formation was not predicted due to formation
requiring multiple phases of biochemical reactions, such as a
glutathione conjugate of 2,6-dibromo-4-isopropyl phenol

(Schauer et al., 2006; Zalko et al., 2006; Jaro et al., 2019; Smythe
et al., 2022). These metabolites, while potentially toxicologically
relevant, were beyond the scope of this investigation.

Predicted pharmacokinetics

SwissADME is an online tool that aggregates the output of several
leading in silico methods for physicochemical property and
pharmacokinetic parameter prediction, including gastrointestinal
(GI) absorption and blood brain barrier (BBB) permeability (Daina
et al., 2017). Concordance across these two measures was low among
most classes and did not improve in classes with high Tanimoto
similarity (Table 2). Three of the smaller classes, polyhalogenated
alicycles, polyhalogenated aliphatic carboxylates, and polyhalogenated
benzene alicycles, exhibited complete concordance for predicted GI
absorption and BBB permeability. Tanimoto similarity indicates that
the polyhalogenated alicycles are highly homogenous, while the latter
two classes exhibit onlymoderate structural similarity. The largest and
most homogenous class, polyhalogenated diphenyl ethers, also
exhibited high concordance among predicted GI absorption and
BBB permeability, while the next most homogenous class, the
polyhalogenated phenol-aliphatic ethers, were split 1:2 for GI
absorption and almost 1:1 for BBB permeability.

Database coverage

CTS was used to convert flame retardant and metabolite
identifiers (CAS and InChIKey) to HMDB identification number,

TABLE 2 Predicted Pharmacokinetic Properties of Parent Flame Retardants. SwissADME-predicted gastrointestinal (GI) absorption and blood brain barrier (BBB)
permeability of flame retardants by class reveal a diversity of expected bioavailability.

Class Total compounds GI absorption BBB permeant

Low % High % No % Yes %

nonhalogenated 97 33 34% 64 66% 68 70% 29 30%

polyhalogenated alicycles 10 10 100% 0 0% 10 100% 0 0%

polyhalogenated aliphatic carboxylate 3 0 0% 3 100% 0 0% 3 100%

polyhalogenated aliphatic chains 15 10 67% 5 33% 7 47% 8 53%

polyhalogenated benzene alicycles 3 3 100% 0 0% 3 100% 0 0%

polyhalogenated benzene aliphatics and functionalized 19 16 84% 3 16% 15 79% 4 21%

polyhalogenated benzenes 48 46 96% 2 4% 42 88% 6 13%

polyhalogenated bisphenol aliphatics and functionalized 14 8 57% 6 43% 13 93% 1 7%

polyhalogenated carbocycles 16 10 63% 6 38% 12 75% 4 25%

polyhalogenated diphenyl ethers 221 203 92% 18 8% 204 92% 17 8%

polyhalogenated organophosphates 37 10 27% 27 73% 16 43% 21 57%

polyhalogenated phenol derivatives 8 1 13% 7 88% 2 25% 6 75%

polyhalogenated phenol-aliphatic ether 11 4 36% 7 64% 6 55% 5 45%

polyhalogenated phthalates/benzoates/imides 17 7 41% 10 59% 9 53% 8 47%

polyhalogenated triazines 6 1 17% 5 83% 3 50% 3 50%

The italic values as indicated the % is percent of FRs within that FR class.
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and all hits were confirmed with manual quality checks. Only
21 parent flame retardants (4.0%) and 69 metabolites (1.1%)
returned positive matches. Interestingly, for 14 parent flame
retardant and 11 metabolite hits, HMDB entries were populated

only with predicted spectra–almost exclusively using CFM
tools–and lacked any empirical spectra. Only one halogenated
flame retardant, 2,6-dibromophenol from the polyhalogenated
phenol derivatives class, was among the compounds with empirical

FIGURE 6
Comparison between predicted and empirical spectra. Empirical (red, top spectrum) and themost similar CFM-ID predicted spectrum (blue, bottom
spectrum) for the flame retardants (A) 2,4-dibromophenol and (B) diethylphosphate, and the predicted metabolites (C) acetaldehyde and (D) styrene.
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spectral information, although substantial computationally-derived
spectral data were deposited for the remaining flame retardant hits. In
terms of measured human exposure captured by the BEDB,
330 parent compounds (63%) and 211 metabolites (3%) have been
measured in human biosamples, indicating that empirical spectral
data may exist in the published literature for these additional
compounds, outside the HMDB.

Predicted spectra

As an exercise in utilizing publicly available tools to predict
spectral information, two flame retardants (2,4-dibromophenol and
diethylphosphate) and two metabolites (acetaldehyde and styrene)
with HMDB deposited experimental spectra were used to
qualitatively assess the difference between empirical and
computationally generated ESI spectra using the CFM-ID tool.
Synthetic spectra were produced under the same experimental
conditions (spectrum type, ion mode, closest collision energy
voltage) enumerated in empirical spectra where possible. The
experimental QTOF LC-MS/MS spectrum for 2,4-
Dibromophenol was generated in negative ion mode at 35V,
while the most similar synthetic spectra was based on a 10 V
collision energy with a [M-H-] adduct (Figure 6A). The
experimental LC-ESI-QQ spectrum for diethylphosphate was
generated in negative ion mode with no available collision energy
data, but matched most closely with the 20 V CFM-ID spectrum
with a [M-H-] adduct (Figure 6B). The experimental QQQ spectrum
for Acetaldehyde was generated in positive ion mode at 10 V
collision energy, and the predicted spectrum was at the same
collision energy voltage with a [M-H-] adduct (Figure 6C). The
experimental LC-MS/MS spectrum for styrene was generated in
positive ion mode at 50 V collision energy, while the predicted
spectrum was generated at 40 V with a [M+] adduct (Figure 6D).
CFM-ID performed fairly well identifying fragment m/z and peak
intensity for parent flame retardant and styrene spectra, while it
grossly underpredicted the number of fragments in the acetaldehyde
spectra. This is likely due to the acetaldehyde spectrum originating
from a QQQ. CFM-ID was trained on spectral data generated with a
QTOF, and thus is more poorly predictive of Orbitrap or QQQ
spectra.

Conclusion

The goal of this paper was to use publicly available in silico tools
to predict the metabolic breakdown products of discrete organic
flame retardant compounds, to identify whether these metabolites
were shared across the parent classes that will inform read-across for
risk assessment, to assess the existing coverage in of these
compounds in mass spectral databases, and to compare empirical
and predicted spectral information of parent flame retardants and
predicted metabolite compounds for general use.

Although the NASEM-guided halogenated flame retardant
subclassing strategy was expert-derived and based on shared
chemotypes and ToxCast biological activity where available, our
analysis showed that among 525 discrete, organic flame retardants,
the classes generally achieve poor Tanimoto similarity (i.e., below

0.85), share functionally nonspecific MCSs, have a diversity of
biologically relevant substitution patterns, and exhibit poor
concordance in predicted GI and BBB permeance.

First pass metabolite prediction with BioTransformer and
GLORYx generated 6,474 unique metabolites, with model
concordance above 90% when considering metabolites with a
medium to high probability of forming. Experimental evidence
for human or mammalian biotransformation of BDE-47 or
TBBPA into their respective predicted metabolites was found for
14 of 17 compounds, constituting both phase I and phase II
products. While this study only considered a single iteration of
biochemical reactions, it is possible to generate transformation
products from multiple rounds of metabolism to fully capture the
universe of potential human metabolites. Such a strategy would,
however, be computationally expensive due to the exponential
increase in the number of compounds generated with each iteration.

Within classes, parent flame retardants were subject to an
extremely diverse set of reaction types. Biotransformations
yielding metabolites common to multiple classes tended to be
those that catabolize a flame retardant into a large generic
fragment, such as dearylation, dealkylation, and ester hydrolysis.
A total of 48 unique metabolites were common across distinct
classes, indicating that coexposure to multiple parent flame
retardants, as would occur in everyday life, may result in excess
exposure to common metabolites.

Clustering biologically similar compounds for the purpose of
human health risk assessment is a scientifically valid and
economically practicable strategy, but toxicological action must
be at the forefront of cluster decision-making in order to
meaningfully distinguish chemicals that may introduce an undue
hazard under their current use scenarios from those which are
benign. With limited biologically-relevant information available to
inform flame retardant clustering strategies, this investigation
provides evidence indicating that the frontrunning strategy for
flame retardant classification may not sufficiently achieve this goal.

With coexposure scenarios inmind, the limited database coverage
of parent flame retardant (4%) and metabolite (1%) spectral data
presents a challenge for compound identification in untargeted
exposomics studies. However, we qualitatively demonstrated the
utility of using synthetic spectra as a stand-in when empirical data
is not yet available for a compound of interest. This strategy of using
predicted compounds to predict spectral information is an important
novelty of this study, and may aid in the future novel identification of
poorly studied chemicals and metabolites of toxicological interest in
human biosamples. Such information is imperative to support
ongoing efforts to identify environmental toxicants and their
metabolites in human biosamples. Exposomics studies making use
of such fit-for-purpose synthetic spectral databases will better resolve
internal exposure and windows of vulnerability associated with
complex mixtures of flame retardant chemicals, and perturbed
neurodevelopmental, reproductive, and other associated apical
human health impacts.

Discussion

This study provides the first in silico prediction of metabolites
for every flame retardant currently or formerly in commerce, as well
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as for compounds with flame retarding properties that may feasibly
be used as flame retardants in the future. To our knowledge, our
strategy of using computationally derived metabolites to generate
synthetic spectra as a means of overcoming limitations in database
coverage is also a novel strategy.

Flame retardants as a use category have been subject to extensive
epidemiological study as well as in vivo and in vitro studies for
mechanisms, yet there remains uncertainty about mechanisms,
adverse outcomes, and benign levels of exposure. Some of the
confusion no doubt stems from the limitation that most studies
only consider partial exposures, while the nature of flame retardant
mixtures present in a multitude of consumer items all but guarantees
that individuals are exposed to many flame retardants simultaneously
and ubiquitously. This is an important factor because not only do flame
retardants share several common metabolites—including metabolites
that are themselves flame retardants—but co-exposures have the
potential to alter the rate of biotransformation by inducing enzymes
or alternatively depleting glutathione.

One step forward for untargeted metabolomics or exposomics studies
is to build databases that are fit for purpose, that capture potential
xenobiotics as well as their purported metabolites and prioritizes
compound identification based on likely exposures. While there is
some progress towards this with databases such as the CompTox
dashboard, there is as yet no comprehensive resource on the
transformation products for chemicals in commerce. For many
commercially important compounds, this data is simply lacking altogether.

Additionally, exposomics studies that rely on an untargeted
approach to elucidate chemicals in human biomatrices depend on
databases for compound identification, and if these databases lack
the full catalog of possible metabolites, they will likely be
unidentified. Computational tools that predict metabolism can
therefore help to fill this gap. Tools like BioTransformer and
GLORYx are best situated for casting a wide net of possible
biotransformation products, to be later narrowed down based on
in chemico, in vitro, or in vivo approaches for priority compounds.
Here, we focused on first pass metabolism both to reduce the
complexity of potential metabolites generated and because in
many instances, breakdown products of first pass metabolism are
likely to be more reactive. In addition, we excluded potential
microbiome metabolites owing to a lack of information on the
influence of the gut microbiome over xenobiotic metabolite load.

Flame retardant metabolite generation for toxicological purposes
has not been extensively studied. A 2020 computational evaluation of
the hazard ranking of six flame retardants and their metabolites found
that every flame retardant was capable of being metabolized into a
compound that was more hazardous than the parent (Zheng et al.,
2021). In addition to human metabolism, the authors considered
mammalian, microbial, and abiotic transformation using the Meteor
Nexus, CTS, (Q)SAR Toolbox, EAWAG-BBD/PPS, and
BioTransformer software. In terms of the number of predicted
metabolites generated, the addition of GLORYx in our own
analysis resulted in a greater number of compounds, likely due to
the tool’s inclusion of low-probability metabolites.

Studying the totality of exposures in a truly–omics fashion is
challenging for a variety of reasons: identifying all xenobiotics in a
human biosample is analytically challenging, especially when there
are chemicals with highly similarly structures and a complex
exposure scenario. An additional challenge is the identification of

all compounds–here, we found that a substantial number of
metabolites would be simply invisible in most databases used for
metabolite identification. The toxicity of many of them is simply
unknown. While in silico tools can serve as a first step in identifying
target compounds, a lack of publicly available or poorly resolved
molecular structure data impedes the assessment of many
commercially and toxicologically important chemicals.

The in silico prediction of xenobiotic metabolism using open-
source tools is additionally constrained by molecular composition.
For example, BioTransformer can accept single organic compounds
(i.e., no mixtures) with a molecular weight below 1,500 Da6.
GLORYx can predict metabolites for molecules containing 3 or
more heavy atoms, so long as the compound is comprised of only C,
N, S, O, H, F, Cl, Br, I, or P (de Bruyn Kops et al., 2021;Wishart et al.,
2022). Moreover, neither method can predict reaction rates, and
therefore the relative quantity of the potential metabolites remains
unclear. Another major limitation in cheminformatics is the lack of
specification between isomeric compounds. QSAR-ready SMILES
strings have a lower resolution than isomeric smiles, and collapsing
isomeric and isotopic information prohibits the assessment of these
toxicologically important qualities. Despite these limitations, the
models sufficiently captured empirical first-pass metabolites for the
well-studied flame retardants BDE-47 and TBBPA.

It should be noted that many of the chemicals in this study have
been phased out owing to human health or ecotoxicity concerns (for
example, Mirex was banned in 1977). Yet because these chemicals are
persistent, exposures can linger long after a flame retardant product is
no longer in commerce. Mirex can remain in the food chain: in a
biomonitoring study, blood samples obtained almost 20 years after
Mirex was banned found higher levels in Intuit mothers vs. non-Inuit
mothers in Arctic regions, presumably owing to different dietary
patterns (Van Oostdam et al., 2004). PentaDBE–a mixture which
includes BDE-47—was phased out in the mid-2000s, but owing to the
long lifecycle of furniture and re-use of old furniture, it continues to be
detected in house dust (Hammel et al., 2017).

Additionally, flame retardants are known to undergo abiotic and
biotic degradation, which again increases the potential range of
chemicals possible in a human biosample–to say nothing of the
human microbiome. Although Biotransformer did predict a few
chemicals as likely candidates for the human microbiome, this likely
represents an understudied area. Although a few studies have looked
at the effect of flame retardants on the humanmicrobiome, and have
suggested that microbial metabolites of flame retardants might
mediate some observed effects, none so far have thoroughly
examined the microbiome as a site of metabolism (Scoville et al.,
2019). This is likely a further source of variation that has yet to be
accounted for when looking at the health effects of flame retardants.

Flame retardants are often mentioned as cases of “regrettable
substitutions”—when a compound with known adverse outcomes is
swapped for a chemical which eventually proves as bad, if not worse,
than the original chemical. Earlier flame retardants, such as PCBs,
were phased out owing to their persistence, potential to bioaccumulate
and ecotoxicity; they were replaced with PBDEs, which in turn were
replaced OPEs–each of which have been associated with human
health hazards. Lacking precise data to quantify exposures and
hazards associated with each replacement, it is difficult to know
the extent to which the substitution was an improvement or not,
but the failure to have adequate data to answer this question
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definitively–especially when exposure to pregnant mothers and
children is near ubiquitous–does speak to a significant lacuna that
only a more comprehensive, exposomics based approach can fill.
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