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The acceptance and use of in vitro data for hazard identification, prioritization, and
risk evaluation is partly limited by uncertainties associated with xenobiotic
metabolism. The lack of biotransformation capabilities of many in vitro systems
may under- or overestimate the hazard of compounds that are metabolized to
more or less active metabolites in vivo. One approach to retrofitting existing
bioassays with metabolic competence is the lid-based Alginate Immobilization of
Metabolic Enzymes (AIME) method, which adds hepatic metabolism to
conventional high-throughput screening platforms. Here, limitations of the lid-
based AIME method were addressed by incorporating bioprinting, which involved
depositing S9-encapsulated microspheres into standard 384-well plates with
requisite cofactors for phase I and II hepatic metabolism. Objectives of this
study included: 1) compare the lid-based and AIME bioprinting methods by
assessing the enzymatic activity of a common cytochrome P450 (CYP)
enzyme, 2) use biochemical assays with the bioprinting method to characterize
additional measures of phase I and II metabolic activity, and 3) evaluate the
bioprinting method by screening 25 chemicals of known metabolism-
dependent bioactivity in the VM7Luc estrogen receptor transactivation (ERTA)
assay. A comparison of the two methods revealed comparable precision and
dynamic range. Activity of additional CYP enzymes and glucuronidation was
observed using the AIME bioprinting method. The ERTA experiment identified
19/21 ER-active test chemicals, 14 of which were concordant with expected
biotransformation effects (73.7%). Additional refinement of the AIME bioprinting
method has the potential to expand high-throughput screening capabilities in a
robust, accessible manner to incorporate in vitro metabolic competence.
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1 Introduction

Confidence in the implementation of in vitro New Approach Methods (NAMs) requires
comprehensive evaluation of potential chemical bioactivity to inform human health
protection using next-generation risk assessments (Thomas et al., 2019; EPA, 2021;
Carmichael et al., 2022; van der Zalm et al., 2022). While in vitro NAMs can evaluate
the potential effects of parent chemicals, a frequently cited limitation is the lack of coverage
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for xenobiotic metabolic processes that occur in vivo (Kirkland et al.,
2007; Jacobs et al., 2013). The lack of biotransformation capabilities
of many in vitro systems may under- or overestimate the hazard of
compounds that are metabolized to more or less active metabolites
in vivo, partly limiting the acceptance and use of in vitro data for
hazard identification, prioritization, and risk evaluation. The
incorporation of xenobiotic metabolic competence may benefit
high-throughput chemical screening (HTS) by decreasing
uncertainty associated with extrapolation of in vitro data for
estimating potential human health hazards. The U.S.
Environmental Protection Agency has acknowledged the lack of
coverage for xenobiotic metabolic processes in chemical safety
research and established a tiered testing paradigm to address
challenges in chemical safety evaluation that includes adding
metabolic competence to in vitro HTS (Thomas et al., 2019;
EPA, 2021).

An important component of toxicity evaluations is modeling
functional liver effects to simulate first-pass hepatic metabolism
and distal target tissue exposure to circulating metabolites. In
vitro tools commonly used for recapitulating hepatic metabolic
reaction pathways include use of subcellular fractions,
genetically engineered cells, hepatoma cell lines, stem cell-
derived hepatocytes, and primary hepatocytes (Ooka et al.,
2020; Serras et al., 2021). Hepatic S9 subcellular fractions
have historically been used as a metabolizing system in the
Ames mutagenicity test (Maron and Ames, 1983; Hakura
et al., 2003; OECD, 2020) and contain phase I and II
metabolic enzymes present in microsomal and cytosolic
fractions (Parmentier et al., 2006). However, direct
application of exogenous S9 can cause issues including
cytotoxicity via formation of toxic microsomal lipid peroxides
(Tan et al., 1982; Cox et al., 2016), potentially altered
toxicological activity (Heringa et al., 2004; Kwon et al., 2020),
or technical interference (Dreier et al., 2002). Strategies to avoid
the technical limitations of S9 fractions in HTS include direct
mRNA transfection to transiently express cytochrome
P450 enzymes (DeGroot et al., 2018), use of microsomal
fractions (Ooka et al., 2022), or incorporation of recombinant
metabolizing enzymes (Yu et al., 2018). S9-associated assay
interference can be mitigated by encapsulation in alginate-
based hydrogel microbeads (Yamamoto et al., 2011).

Inspired by the pillar plate design used previously to encapsulate
cells in alginate microspheres (Yu et al., 2018), the alginate
immobilization of metabolic enzymes (AIME) method
(Deisenroth et al., 2020; Hopperstad et al., 2022) encapsulates
S9 fractions in alginate microspheres immobilized on plastic
pillar lid inserts to support phase I hepatic metabolism in assay
medium supplemented with a nicotinamide adenine dinucleotide
phosphate-regenerating system (NADPH) (Stanley, 2017).
Applications of the lid-based AIME method have successfully
evaluated metabolism-dependent false positive and false negative
target assay effects in HTS studies (Deisenroth et al., 2020;
Hopperstad et al., 2022), with some technical limitations.
Cofactors for phase II metabolism were not included, so parent
chemicals that yield functional metabolites strictly via phase II
metabolism were not identified. Further, the use of custom
fabricated lids limits assay throughput and method transfer
capabilities for broader adoption.

The objectives of this study were to address workflow limitations
and improve transferability of the AIME method by adapting the
concept to an automated bioprinting platform and incorporating
liquid-handling instrumentation for increased speed and precision.
Further, the addition of requisite cofactors for phase II metabolism
expanded the metabolic capacity of the AIME method compared to
earlier versions that only supported phase I metabolism. Metabolic
competence of the bioprinting method was first assessed using
enzymatic activity assays. Then, like previous studies involving
the lid-based AIME method (Deisenroth et al., 2020; Hopperstad
et al., 2022), the bioprinting method was combined with the OECD
Test Guideline 455 VM7Luc estrogen receptor transactivation
(ERTA) assay to estimate transformation-related effects. A
training set of 25 chemicals that previously exhibited
metabolism-dependent shifts in estrogenic bioactivity was
selected. Additional refinement of the AIME bioprinting method
has the potential to expand HTS capabilities in a robust, accessible
manner to integrate in vitro xenobiotic metabolic competence into
routine screening workflows.

2 Methods

2.1 Development of bioprinter AIME method

The AIME method involves the encapsulation of S9 fractions in
alginate microspheres and application to parent compounds for
metabolic transformation supported by a cofactor for phase I
metabolism, nicotinamide adenine dinucleotide phosphate
(NADPH). This method has been applied in a lid-based format
consisting of custom manufactured 384-well microplate pillar lids
(Supplementary Figure S1) that are functionalized with Matrigel,
dipped into an S9-alginate mixture, and then dipped into
crosslinking solutions to form microspheres attached to solid
supports. Detailed methods for the lid-based method are
described in Deisenroth et al. (2020). Here, the AIME method
was adapted to a bioprinter (Cellink BIOX, Gothenburg, Sweden)
and additional cofactors were incorporated to support phase II
metabolism, including uridine 5′-diphosphoglucuronic acid
trisodium salt (0.5 mM UDPGA) for glucuronidation, glutathione
(0.5 mM GSH) for glutathione conjugation, and adenosine 3′-
phosphate 5′-phosphosulfate lithium salt hydrate (2 µM PAPS)
for sulfation (Richardson et al., 2016; Stanley, 2017). A reagents
list for all procedures is available in Supplementary Table S1.

A series of preliminary experiments determined optimal
bioprinting parameters using a syringe pump printhead
programmed to deposit S9-alginate directly into 384-well
microplates (Supplementary Table S2). An automated liquid
handler (Agilent MultiFlo FX Dispenser, Santa Clara, CA)
crosslinked alginate using 40 µL/well 33 mM barium chloride and
0.4% poly-L-lysine solution, and then rinsed microspheres using
80 µL/well 1X phosphate buffered saline, resulting in a prepared
plate containing alginate microspheres in designated wells.

2.1.1 Comparison of lid and bioprinter AIME
methods

The lid- and bioprinter-based AIME methods were directly
compared using a P450-Glo CYP3A4 luminescent assay
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(Promega, Madison, WI) and phase I cofactor NADPH with and
without S9-alginate microspheres. Opti-MEM I Reduced-Serum
Medium (ThermoFisher, Waltham, MA) was charged using an
NADPH regeneration system (NRS). Following NADPH
generation, charged medium was diluted 1:11.4 with uncharged
medium. Luciferin IPA was added to a final concentration of 3 μM
S9-alginate microspheres were produced using the lid- and
bioprinter-based methods, and NADPH-supplemented medium
was added to wells (40 μL/well). Assays proceeded for 2 hours at
37°C and 5% CO2 followed by the addition of Luciferin Detection
Reagent (LDR) with esterase (40 μL/well). Assay plates were
equilibrated to room temperature (20°C–22°C) for 20 min and
read on a CLARIOstar microplate reader (BMG Labtech Inc.,
Cary, NC) using a luminescent endpoint protocol. Raw data were

normalized to control wells and expressed as relative light unit fold-
change (FC). Data were analyzed using GraphPad Prism version
9.4.1, and statistical significance (p ≤ 0.05) was determined using a
Welch’s two sample t-test (n = 4).

2.1.2 Estimation of phase I and II metabolic activity
The bioprinting method was next evaluated using additional

CYP enzymes to confirm broad activity in the presence of cofactors
for both phase I and II metabolism. Medium was charged with
NADPH as described in Section 2.1.1 and supplemented with phase
II cofactors UDPGA, GSH, and PAPS. Promega P450-Glo substrates
luciferin-IPA (3 µM), -ME (100 µM), -H (100 µM), and -2B6 (3 µM)
were used to measure CYP3A, CYP1A, CYP2C, and CYP2B activity,
respectively. Cofactor-supplemented media was added to wells
(40 μL/well) with and without bioprinted S9-alginate
microspheres. Assays proceeded for 2 hours at 37°C and 5% CO2

followed by the addition of corresponding LDR (40 μL/well) as
described in assay kit protocols. Assay plates were read and data
analyzed using methods described in Section 2.1.1 (n = 4).

Uridine diphospho-glucuronosyltransferase (UGT) activity was
measured to estimate phase II biotransformation in the presence of
cofactors, including UDPGA, using a commercial UGT Activity
Assay (BioVision, Milpitas, CA). UGT substrate was reconstituted in
DMSO and diluted to a 1X final concentration in either phase I and
II cofactor-supplemented UGT assay buffer (+UDPGA) or
unsupplemented UGT assay buffer (-UDPGA) in plates
containing bioprinted S9-alginate microspheres (100 µL/well total
volume). The UGT positive control and standard curve were
prepared according to the assay protocol without the addition of
microspheres. Fluorescence was measured with a CLARIOstar
microplate reader (Ex/Em = 415/502 nm) in kinetic mode with
reads every 5 min for 120 min at 37°C. Data were normalized to the
0 min timepoint, and statistical significance was determined using a
two-way ANOVA with a Greenhouse-Geisser correction using
GraphPad Prism (n = 3).

2.2 Application of bioprinter AIMEmethod to
estrogen receptor transactivation assay

2.2.1 Estrogen receptor transactivation assay with
metabolic competence

The VM7Luc4E2 stable cell line (formerly BG1Luc4E2) (Rogers
and Denison, 2000; Li et al., 2014) is a variant of the MCF7 human
breast cancer cell line that contains an estrogen receptor (ER)
responsive luciferase reporter gene to evaluate the transactivation
potential of endogenous hERa, and to a lesser extent hERb, in
response to estrogenic test substances (OECD, 2016). The
VM7Luc4E2 cell line was maintained with routine passaging and
estrogen-stripped for assay seeding as described previously
(Deisenroth et al., 2020). VM7Luc4E2 cells were seeded into
white 384-well microplates (Greiner Bio-One, Monroe, NC) at
2.5 × 104 cells in a total volume of 30 µL/well using a Certus Flex
Micro Dispenser (Fritz Gyger AG, Bern, Switzerland) and
acclimated for 18–24 h in an incubator set at 37°C and 5% CO2

prior to exposure to test chemicals.
Chemicals exhibiting large metabolism-dependent shifts were

selected from previous AIME studies (Deisenroth et al., 2020;

FIGURE 1
(A) Comparison of CYP3A metabolic activity for the AIME lid-
based (Lid) and bioprinting (Bioprint) methods. Assay without
metabolism (No Met, no microspheres), assay with metabolism (Met
Pos, S9-alginate microspheres), and relative light unit fold-
change (RLU (FC)) are shown. The summary distributions represented
in the box and whisker plots for (A–C) are the 2.5th percentile, 25th
percentile, median, 75th percentile, and 97.5th percentile (**** = p <
0.0001). (B) Inter-well precision between the AIME lid-based (Lid) and
bioprinting (Bioprint) methods based on coefficient of variation (CV)
(No significance = ns). (C) Activity of common phase I CYP enzymes
(**** = p < 0.0001). (D) Temporal evaluation of phase II
glucuronidation kinetics (UGT Activity) in the absence (-UDPGA, white
circle) and presence (+UDPGA, light grey square) of uridine 5′-
diphosphoglucuronic acid trisodium salt (UDPGA), shown in
comparison to the UGT Positive Control (dark grey triangle). Data are
expressed as % control relative light units (%RLU). Error bars represent
95% confidence intervals around the mean.
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Hopperstad et al., 2022). Test chemicals solubilized in DMSO to a
final concentration of 100 mM were either obtained in Echo
qualified 384 PP polypropylene source microplates (Labcyte, San
Jose, CA) from the ToxCast library (Branford, CT), or were
solubilized in-house, and were stored at −80°C in a desiccator
prior to use (Supplementary Table S3). Plate-based controls run
on each assay plate were consistent with Hopperstad et al. (2022)
and include: 17β-estradiol (100p.m.) for ER-activation, trans-
Stilbene (100 µM) for metabolism-dependent ER-activation,
ethylparaben (100 µM) for metabolism-dependent ER-
inactivation, and DMSO (0.2%) as a solvent control. Parent
source plates containing the top solubilized concentration were
used to generate daughter source plates in Echo-qualified 384 PP
microplates using an Echo 555 acoustic liquid handler (Labcyte, San
Jose, CA). Daughter source plates were sealed and stored at room

temperature (20°C–22°C) and protected from light for the duration
of the screen.

A 9-point dilution series with 2X concentrations
(0.004–400 µM) skewed toward the upper half of the series was
generated by dispensing test chemicals and backfilling with a
complementary volume of DMSO using Echo Cherry Pick
software (v.1.6.2) to a final dispensed volume of 400 nL.
Cofactor-supplemented ERTA assay medium (100 µL/well)
(Supplementary Table S1) was dispensed into 21 test columns
(0.2% [v/v] DMSO final concentration) using a Certus Flex
Micro Dispenser. Untreated assay medium was dispensed
(100 µL/well) into remaining columns. Plates were mixed on a
Multi-Microplate Genie mixer (Scientific Industries, Bohemia,
NY) at 500 rpm for 10 min. Metabolism occurred at 2X
concentrations, and the resulting solution was added 1:1 to cells,
resulting in a final 1X test compound concentration range that
included: 2.49 nM, 160.5 nM, 1.245 µM, 4.98 µM, 14.95 µM,
33.6 µM, 67 µM, 119.5 µM, and 199 µM.

A ViaFlo 384-channel semiautomated pipette (Integra
Bioscience, Hudson, NH) was used to transfer 70 µL of dosed
medium to freshly prepared AIME plates containing
metabolically inactive (dH2O-alginate, Met Neg) microspheres in
rows 2-8 and metabolically active (S9-alginate, Met Pos)
microspheres in rows 9–15. Assay plates were incubated for
2 hours at 37°C and 5% CO2 to facilitate metabolic
transformation, and then 30 µL of conditioned medium
containing parent compounds and metabolites was transferred to
assay plates containing estrogen-stripped VM7Luc4E2 cells.
Following incubation, 30 µL/well of reconstituted Bright-Glo
Luciferase Assay reagent (Promega, Madison, WI) was added.
Plates were incubated for 5 minutes at room temperature, and
then a luminescent endpoint was read on a CLARIOstar
microplate reader. Each test chemical concentration series was
screened as a single technical replicate for each experimental
replicate (n = 4).

2.2.2 Data modeling and analysis
Raw concentration-response data from the ERTA assay were fit

and analyzed using the ToxCast Data Analysis Pipeline (TCPL
v.3.0.0; Judson et al., 2022) (Filer et al., 2017), which utilizes an
updated curve-fitting and hit-calling package (tcplfit2 v.0.1.3)
(Sheffield et al., 2021) in R v.4.2.1 (R Core Team, 2022). Well-
level data were obtained as raw luminescence units. Baseline values
(bval) were calculated as the plate-level median of the NRS-
supplemented DMSO control. Response values with low well
quality as determined by Echo 555 acoustic liquid handler
reports were removed to generate corrected response values
(cval). Cval was normalized to zero-centered fold-change using
the following equation:

resp � cval

bval
− 1

where resp is the normalized response variable for model fitting.
Each chemical concentration-response series was fit to ten models
(constant, linear, quadratic, power, hill, gain-loss, exponential 2,
exponential 3, exponential 4, exponential 5), with the winning
model determined through the minimum of the Akaike
Information Criteria (AIC). The efficacy cut-off was set to

FIGURE 2
(A) Performance of the VM7Luc ERTA assay plate-based controls:
ERTA positive control (17β-estradiol), metabolism bioinactivation
control (ethylparaben), and metabolism bioactivation control (trans-
Stilbene) in metabolism-negative (Met Neg, dH2O-alginate
microspheres) and metabolism-positive (Met Pos, S9-alginate
microspheres) modes are expressed as relative light units fold-change
(RLU (FC)). The summary distributions represented in the box and
whisker plots are the 2.5th percentile, 25th percentile, median, 75th
percentile, and 97.5th percentile. (B) 19 estrogenic chemicals rank-
ordered by ΔAUC for evaluation of metabolism-dependent bioactivity.
Zero-center is represented by a solid line. A negative ΔAUC value
indicates a decrease in estrogenic activity with metabolism
(←Inactivated) and a positive ΔAUC value indicates an estrogenic
activity increase with metabolism (Activated→). Expected
transformations are based on previous AIME-ERTA studies and are
symbolized for activation (red) and inactivation (blue).
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three times the baseline median absolute deviation (bmad), which
was defined as the median absolute deviation of the normalized
cofactor-supplemented DMSO control resp values.
Tcplfit2 utilizes a probabilistic “continuous hit call” to
quantify the strength of hits and identify borderline cases
(Sheffield et al., 2021). Classification criteria for hit calls were
defined as: 0 = negative, 0 > and <0.9 = equivocal, ≥0.9 = positive.
Summary performance metrics for the control compounds were
determined for assay variability (coefficient of variation, CV) and
screening quality (Z′-factor) (Zhang et al., 1999).

Designation of estrogenic effects were determined by
continuous hit calls from the TCPL curve fits. The area under
the curve (AUC) for winning models was determined using the
trapezoidal rule (pracma v.2.3.8; Borchers, 2022). The difference
in AUC between winning curve fits for assay modes with and
without metabolism defined the directional shift trends where
bioinactivation <0, no change = 0, and bioactivation >0. Efficacy
(maximum median response) and potency (benchmark response
dose, BMD) were calculated with TCPL for both metabolism
modes.

3 Results

3.1 Development of bioprinter AIME method

The AIME bioprinting method was adapted from the previously
published lid-based method, and the twomethods were compared in
a P450-Glo CYP3A4 luminescent assay to determine dynamic range
and variation. The lid-based method demonstrated higher mean
activity (388.6 ± 27.1 FC) compared to the bioprinting method
(300.5 ± 22.6 FC) (p < 0.0001, Figure 1A). However, there was no
significant difference in inter-well variation between the lid-based
(12.32 ± 3.95 FC) and bioprinting (12.66 ± 2.71 FC) methods (p =
0.845, Figure 1B).

A broad panel of metabolic activity was characterized for the
bioprinting method, including activity of CYP enzymes CYP3A,
CYP1A, CYP2C, and CYP2B. All CYP enzymes showed a significant
increase in activity in the presence of S9-alginate (Met Pos)
compared to no-metabolism (No Met) controls (p < 0.0001,

Figure 1C), supporting the conclusion that phase I metabolism
occurred in the bioprinting platform.

Lack of phase II metabolism was a noted limitation in prior
versions of the lid-based method (Deisenroth et al., 2020;
Hopperstad et al., 2022). Here, assay medium was
supplemented with cofactors to support phase I and II
metabolism, and the AIME bioprinting method was assessed
for a prominent phase II metabolic pathway, glucuronidation.
A commercial UGT Activity Assay utilized a highly fluorescent
UGT substrate which decreases in fluorescence emission as the
substrate was converted into a non-fluorescent glucuronide
conjugate. A significant difference between treatments with
and without metabolic cofactors was observed (p < 0.0001);
the cofactor-supplemented treatment exhibited a greater drop
in fluorescence emission compared to the negative control
(Figure 1D). This indicates the UGT substrate was converted
into a non-fluorescent glucuronide conjugate more rapidly in the
presence of metabolic cofactors, and that the AIME bioprinting
method is competent for glucuronidation. Additional cofactors
for sulfation and glutathione conjugation were included to
further support phase II metabolic pathways but were not
evaluated.

3.2 Application of bioprinter AIMEmethod to
estrogen receptor transactivation assay

The VM7Luc ERTA assay was implemented in a proof-of-
concept experiment to determine the ability of the AIME
bioprinting method to accurately classify chemicals previously
characterized as having strong metabolism-dependent ER effects
(Deisenroth et al., 2020; Hopperstad et al., 2022). Reference
chemicals included 17β-estradiol as the positive reference
standard for the ERTA endpoint, ethylparaben as the
metabolism bioinactivation control, trans-Stilbene as the
metabolism bioactivation control, and DMSO as the solvent
control. Compounds were tested with and without cofactor
supplementation in the presence of dH2O-alginate
(“metabolism-negative”) and S9-alginate (“metabolism-
positive”) microspheres. Reference chemicals exhibited

TABLE 1 Assay variability (coefficient of variation; CV) and screening quality (Z9-factor), for negative control (DMSO), ERTA positive control (17β-estradiol),
metabolism bioinactivation control (ethylparaben), and metabolism bioactivation control (trans-Stilbene).

Compound Metabolism CV Z’-factor

DMSO No Met 10.98 NA

17β-estradiol Met Neg 12.78 0.61

Met Pos 14.93 0.20

Ethylparaben Met Neg 10.70 0.51

Met Pos 16.75 0.14

trans-Stilbene Met Neg 10.68 0.49

Met Pos 10.96 0.52

Performance parameters were evaluated for AIME assay metabolism modes including baseline conditions (No Met, no microspheres), metabolism-negative (Met Neg, dH2O-alginate

microspheres), and metabolism-positive (Met Pos, S9-alginate microspheres). Not applicable (NA).
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expected metabolism-dependent directional shifts in activity:
with metabolism, mean efficacy was reduced for 17β-estradiol
(−78.0%) and ethylparaben (−79.2%), and trans-Stilbene
demonstrated increased activity (+136.1%). Directional shifts
were consistent with previous versions of the assay and
indicative of metabolic competence with bidirectional
biotransformation of estrogenic reference chemicals
(Figure 2A) (Deisenroth et al., 2020; Hopperstad et al., 2022).

Assay variability and screening quality performance metrics
were calculated for reference chemicals in metabolism-positive
mode (containing S9-alginate microspheres), in metabolism-
negative mode (containing dH2O-alginate microspheres), and
for DMSO-baseline conditions (containing no microspheres)

(Table 1). CV is indicative of variability, and values did not
deviate considerably from DMSO-baseline conditions (≤16.75%)
except for 17β-estradiol and ethylparaben in metabolism-positive
mode. As expected, the Z′-factor values for all conditions
were in an acceptable range (0.49–0.61), except for 17β-
estradiol and ethylparaben in metabolism-positive mode
(0.20 and 0.14) where metabolic inactivation decreased the
separation between positive and negative modes. Importantly,
Z′-factor values were greater than 0.5 for conditions designed to
evaluate parent chemical (17β-estradiol; metabolism-negative)
and metabolite(s) (ethylparaben and trans-stilbene;
metabolism-positive) bioactivity, indicating metabolism
proceeded as expected.

TABLE 2 Estrogenic activity (hit call, hitc), efficacy (represented by maximum median response value, max_med [FC]), and potency (represented by benchmark
response dose values, BMD [µM]) are reported for the AIME-ERTA assay in metabolism-negative (Met Neg, dH2O-alginate microspheres) and metabolism-positive
(Met Pos, S9-alginate microspheres) assay modes.

Chemical name Classification Concordance Estrogenic activity
(hitc)

Efficacy
(max_med)

Potency
(bmd)

Met Neg Met Pos Met Neg Met Pos Met Neg Met Pos

Daidzein Agonist 1 1.00 1.00 4.57 5.78 0.22 0.41

Resveratrol Agonist 1 1.00 1.00 3.22 4.32 4.54 9.12

Atrazine Agonist Negative 0 1.00 1.00 0.77 0.56 101.02 113.58

Spironolactone Agonist Negative 1 0.00 0.66 0.43 0.23 >200 NA

1,3-Diphenyl-1,3-propanedione Bioactivated 1 1.00 1.00 1.64 3.45 4.39 4.86

2-Nitrobenzenamine Bioactivated 0 0.00 0.00 0.10 0.08 >200 >200

4-Nonylphenol Bioactivated 1 1.00 0.99 0.68 0.81 2.88 2.63

Azobenzene Bioactivated 1 1.00 1.00 1.05 3.41 27.10 29.79

Biphenyl Bioactivated 1 0.07 1.00 0.56 0.62 >200 116.90

Butralin Bioactivated 1 1.00 1.00 0.83 2.13 9.11 7.56

Dimethylbenzylcarbinyl acetate Bioactivated 0 1.00 1.00 1.04 1.11 58.23 107.96

Dodecylphenol Bioactivated 1 1.00 1.00 1.43 1.78 0.90 0.45

Methoxychlor Bioactivated 1 1.00 1.00 0.99 1.66 1.28 1.02

Phenolphthalin Bioactivated 0 1.00 1.00 1.52 1.90 44.02 56.39

Pyriproxyfen Bioactivated 1 0.42 1.00 1.13 1.73 NA 6.76

Quercetin Bioactivated 1 1.00 1.00 1.72 2.32 22.22 11.61

(Z)-Nerol Bioinactivated 0 1.00 1.00 0.48 0.54 135.87 71.00

2,6-Dinitrotoluene Bioinactivated 0 1.00 1.00 0.77 1.08 79.95 58.34

Benzyl salicylate Bioinactivated 1 1.00 0.04 1.70 0.53 12.06 NA

Butylparaben Bioinactivated 1 1.00 0.88 4.92 0.38 3.14 180.06

Carbofuran Bioinactivated 1 1.00 1.00 1.27 0.62 19.12 118.90

Dehydroepiandrosterone Bioinactivated 0 1.00 1.00 2.48 2.52 0.20 0.23

Penoxsulam Bioinactivated 0 0.00 0.00 0.04 0.04 >200 >200

Pentaerythritol dibromide Bioinactivated 1 1.00 1.00 1.81 1.36 12.08 24.29

Picloram Bioinactivated 1 1.00 1.00 1.96 2.22 4.56 29.88

Classification represents expected metabolic transformations based on previous AIME-ERTA studies. Concordance represents the comparison between observed ΔAUC-based shifts and

classifications, where 0 = not concordant and 1 = concordant.
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TCPL data modeling identified chemicals with estrogenic
activity in the ERTA assay, and differences in AUC (ΔAUC) of
model curve fits estimated shifts in bioactivity between metabolism
modes (Supplementary Table S4). Of the 25 chemicals tested,
22 were classified as ER-active in at least one mode of the ERTA
assay (88%), and 17 were concordant with results from previous
AIME studies (68%). Based on TCPL hit calls, complete
bioinactivation of benzyl salicylate and butylparaben was
observed with the addition of metabolic competence, while
bioactivation was observed for biphenyl and pyriproxyfen
(Table 2). Eighteen chemicals were active in both assay modes.
When ranked by ΔAUC for metabolism-dependent bioactivity, both
activation and inactivation trends were noted (Figure 2B). The
magnitude of ΔAUC values indicates the difference in potency
and efficacy between metabolism-positive and negative assay
modes. Chemicals with ΔAUC values near zero exhibited
marginal shifts between assay modes (e.g., (Z)-nerol; 2,6-
dinitrotoluene) indicating estrogenic activity was not markedly
different with metabolism (Figure 2B; Supplementary Figure S2).
Considering chemicals screened for biotransformation that
displayed estrogenic activity (19 total), 5/8 (62.5%) were
concordant with expected bioinactivation, and 9/11 (81.8%) with
expected bioactivation. Overall, 14/19 (73.7%) were concordant with
expected biotransformations (Table 2; Figure 2B).

4 Discussion

The incorporation of xenobiotic metabolic competence into
HTS has the potential to decrease uncertainty associated with
in vitro extrapolation to potential human health effects. An
existing NAM, the lid-based AIME method, has successfully
evaluated metabolism-dependent target assay effects in HTS
studies (Deisenroth et al., 2020; Hopperstad et al., 2022), with
some technical limitations. These limitations were addressed by
adapting the AIME concept to a bioprinting platform, expanding
phase II enzyme metabolic competence, and automating the
workflow. The resulting AIME bioprinting method produced
significant CYP activity with similar precision to the previously
published lid-based method but exhibited lower assay sensitivity
(Figures 1A–C). Phase II metabolic competence was successfully
incorporated to the AIME method by the addition of relevant
cofactors, and glucuronidation, a well-recognized phase II
metabolic pathway, was observed (Figure 1D).

After demonstrable metabolic activity was confirmed by
biochemical assays, the AIME bioprinting method was deployed in
a proof-of-concept ERTA assay to evaluate metabolism-dependent ER
effects for a set of previously evaluated compounds. Assay performance
was determined for reference compounds with and without
metabolism to ensure that the assay was robust and reproducible
across experimental runs. By design, Z′-factor values shifted
accordingly for the bioinactivated and bioactivated reference
controls in a metabolism-dependent manner, indicating metabolic
transformation was measurable with the bioprinting method. Partial
inactivation of the positive steroid control, 17β-estradiol, was also
evident, as previously observed (Hopperstad et al., 2022). CV values
indicated experimental errors were within acceptable ranges (below
20%). These observations reemphasize the importance of

incorporating reference compounds for the target bioassay and
metabolic platforms.

In this study, 15/19 test compounds were classified as estrogenic
with or without metabolism, meaning most of the ER-active
chemicals would have been identified without metabolic
transformation. However, directional shifts due to
biotransformation may be informative—a weakly estrogenic
parent compound bioactivated to strongly estrogenic
metabolite(s), or the contrary, is useful information when
prioritizing hazard effects. Metabolic shifts in the AIME
bioprinting method were calculated based on the difference in
AUC for fitted curves between metabolism-negative and
metabolism-positive assay modes (Figure 2A; Supplementary
Figure S2). The ΔAUC metric classified twelve chemicals as
bioactivated and seven as bioinactivated, demonstrating
concordance with 81.8% and 62.5% of expected shifts,
respectively. Compound classifications that were inconsistent
with expected metabolic classifications were marginally shifted
and may be less of a priority for toxicological relevance. Such
relevance could be further considered with statistical testing but
this wasn’t employed in this study as shifts in AUCwere only used to
rank metabolism-dependent effects. Alternatively, inconsistencies
may be due to phase II biotransformation reactions altering parent
chemicals or metabolic intermediates to better approximate in vivo
biotransformation-related effects compared to previous evaluations
that used phase I cofactors only.

It is important to note the overall magnitude of normalized ER
activity in both metabolism modes was markedly lower than
previous lid-based AIME studies. This, coupled with the
observation of lower activity in a direct comparison between the
lid-based and bioprinting methods indicates that some feature(s) of
the bioprinting method are contributing to reduced sensitivity. A
limitation of this study was that the relative amount of
S9 encapsulated for each method wasn’t quantified; sensitivity
may have been impacted by the degree of enzymatic activity as it
related to S9 quantity and kinetics. It is also possible that lower
observed rates of metabolism may have resulted from a change in
alginate microsphere size and/or morphology (Uyen et al., 2020).
Additional evaluation of microsphere size, bioprinter dispensing
technique, and incubation time may increase sensitivity reflective of
the lid-based method, and application of the bioprinter method to
different assay types can inform the breadth of method
compatibility. Such refinements of the AIME bioprinting method
have the potential to expand HTS capabilities in a robust, accessible
manner to incorporate in vitro xenobiotic metabolic competence.
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