AUTHOR=Reardon Anthony J. F. , Farmahin Reza , Williams Andrew , Meier Matthew J. , Addicks Gregory C. , Yauk Carole L. , Matteo Geronimo , Atlas Ella , Harrill Joshua , Everett Logan J. , Shah Imran , Judson Richard , Ramaiahgari Sreenivasa , Ferguson Stephen S. , Barton-Maclaren Tara S. TITLE=From vision toward best practices: Evaluating in vitro transcriptomic points of departure for application in risk assessment using a uniform workflow JOURNAL=Frontiers in Toxicology VOLUME=5 YEAR=2023 URL=https://www.frontiersin.org/journals/toxicology/articles/10.3389/ftox.2023.1194895 DOI=10.3389/ftox.2023.1194895 ISSN=2673-3080 ABSTRACT=
The growing number of chemicals in the current consumer and industrial markets presents a major challenge for regulatory programs faced with the need to assess the potential risks they pose to human and ecological health. The increasing demand for hazard and risk assessment of chemicals currently exceeds the capacity to produce the toxicity data necessary for regulatory decision making, and the applied data is commonly generated using traditional approaches with animal models that have limited context in terms of human relevance. This scenario provides the opportunity to implement novel, more efficient strategies for risk assessment purposes. This study aims to increase confidence in the implementation of new approach methods in a risk assessment context by using a parallel analysis to identify data gaps in current experimental designs, reveal the limitations of common approaches deriving transcriptomic points of departure, and demonstrate the strengths in using high-throughput transcriptomics (HTTr) to derive practical endpoints. A uniform workflow was applied across six curated gene expression datasets from concentration-response studies containing 117 diverse chemicals, three cell types, and a range of exposure durations, to determine tPODs based on gene expression profiles. After benchmark concentration modeling, a range of approaches was used to determine consistent and reliable tPODs. High-throughput toxicokinetics were employed to translate