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Toxicology research has rapidly evolved, leveraging increasingly advanced
technologies in high-throughput approaches to yield important information on
toxicological mechanisms and health outcomes. Data produced through
toxicology studies are consequently becoming larger, often producing high-
dimensional data. These types of data hold promise for imparting new
knowledge, yet inherently have complexities causing them to be a rate-limiting
element for researchers, particularly those that are housed in “wet lab” settings
(i.e., researchers that use liquids to analyze various chemicals and biomarkers as
opposed to more computationally focused, “dry lab” researchers). These types of
challenges represent topics of ongoing conversation amongst our team and
researchers in the field. The aim of this perspective is to i) summarize hurdles
in analyzing high-dimensional data in toxicology that require improved training
and translation for wet lab researchers, ii) highlight example methods that have
aided in translating data analysis techniques to wet lab researchers; and iii)
describe challenges that remain to be effectively addressed, to date, in
toxicology research. Specific aspects include methodologies that could be
introduced to wet lab researchers, including data pre-processing, machine
learning, and data reduction. Current challenges discussed include model
interpretability, study biases, and data analysis training. Example efforts
implemented to translate these data analysis techniques are also mentioned,
including online data analysis resources and hands-on workshops. Questions are
also posed to continue conversation in the toxicology community. Contents of
this perspective represent timely issues broadly occurring in the fields of
bioinformatics and toxicology that require ongoing dialogue between wet and
dry lab researchers.
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1 Introduction to current problems in
analyzing toxicology data

It is now routine for toxicology studies to investigate many
biological and chemical endpoints at once, representing an
advancement occurring over the past decade resulting in
drastic changes to the field (Rager et al, 2013; Sobus et al,
2018). Such research includes in vitro, animal, and/or clinical
studies designed to ultimately evaluate stressor-associated
hazards, risk profiles, and intervention efforts. Technologies
continue to advance, allowing for increasingly high-
dimensional measures; though we remain limited by the
number of samples (i.e., cell or animal samples, or human
subjects) that can be feasibly evaluated in such investigations.
As a result, the field of toxicology is currently plagued with the
following data analysis problems (Sobus et al, 2018): we need
to better analyze large datasets, including high-dimensional
data (Figure 1) and (Rager et al, 2013) we need to better advise
and train “wet lab” scientists to analyze such dataset. Although
there continues to be continued discussion of what constitutes
big data and high-dimensional data, big data can refer to data
that challenges existing methods of computational
applications as a result of its size, complexity, or rate of
availability (Favaretto et al, 2020). High-dimensional data
refers to data where the number of variables (p) is larger
than the number of samples/subjects (n) (p >> n). However,
it can also refer to p and n both being substantially large or
even p << n (Finney, 1977). This problem represents an issue
that must be addressed to keep up with data currently being
generated in toxicology research. Related to this issue is how to
identify relationships between a multitude of often highly
correlated predictor variables and one or a few outcomes of
interest. Due to its size, big data, including those with high-
dimensionality, can be difficult to process, store, transfer,
analyze, and visualize. However, methods to address this
and other problems (i.e., missing data, interpretability, etc.)
arising in the realm of high-dimensional data are rapidly
expanding in other fields and are being adapted to
toxicological research.

1.2 Aim and organization of perspective
article

The aim of this perspective is to i) draw attention to the
current need to improve data analyses for large datasets, ii)
highlight some example methods of organizing and analyzing
high-dimensional data, and iii) describe challenges that now
need to be addressed to improve data analyses in toxicology
research, all of which represent issues of current discussion
between wet lab and dry lab scientists. Examples are relevant to
high-dimensional data issues that are prevalent in data
produced through toxicology research. The contents of this
perspective originated from discussions held in the University
of North Carolina’s newly formed Environmental
Bioinformatics Research Group (EBioRG) (Environmental
Bioinformatics Research Group EBRG, 2023), representing
timely communications among data scientists, computational
biologists, physician-scientists, and experimental toxicologists
akin to those occurring across other research groups world-
wide surrounding the improved analysis of data in the field of
toxicology.

This perspective is organized to first provide a high-level
overview of current data analysis methods for large datasets,
including data preparations and downstream machine learning
(ML) methods discussed in the context of recent toxicology-
relevant studies. The second part of the perspective then
discusses current limitations, biases, and a push for the
inclusion of these methods in toxicology. Questions are posed
in the final section to encourage continued discussion on this
evolving subject.

2 Prepping high-dimensional data to
optimize downstream analyses through
data Imputation

There are many steps involved in preparing high
dimensional data for analyses. One of these steps represents a
common issue that scientists face when collecting data in the wet

FIGURE 1
Generation of an Example High-Dimensional Dataset. This example illustrates some potential exposure conditions that may be evaluated in
toxicology studies. Biological samples are shown as collected from human subjects and analyzed for gene expression levels across several genes, as an
example (generic variable, p). This figure shows an example where samples were collected across 5 subjects (n), resulting in a high-dimensional dataset
with p >> n.
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lab: data may be missing due to different laboratory-based
limitations including detection limits, experimental errors,
etc. In these datasets, retaining observations (i.e., samples,
subjects, or endpoints) with missing data helps n be less
prone to skew and therefore minimizes bias in downstream
analyses. This is particularly important when dealing with
high-dimensional data that suffers from a limited number of
observations. Data imputation is a commonly used technique to
generate these missing values based on the statistical
distribution of present/detected experimental values. Prior to
imputation, background filters can be implemented to filter
poorly measured or highly missing variables and observations
to ensure that enough data is present for the imputed data to be
pulled from a data-informed distribution. After these filters are
implemented, an evaluation should be carried out by the analysts
to consider why data are missing. Current categorizations of
missing data include missing completely at random (MCAR),
missing at random (MAR), or missing not at random (MNAR)
(Burren, 2018). Data are considered to be MCAR if the
probability of an observation is independent of observed or
unobserved data. This could occur if a sample was damaged
in the lab. Data are MAR when missingness is dependent upon
only the observed data (Bhaskaran and Smeeth, 2014). This
could happen if a demographic group is oversampled in a study.
Lastly, MNAR values are generated when missingness is
dependent upon unobserved data (Burren, 2018). For
transcriptomics, proteomics, metabolomics, and exposomics
data, left-censored data MNAR are often the result of low
and/or no expression of the gene, protein, molecule, or
chemical, respectively.

The type of missing data imputation approach should be informed
by the reasoning as to why data may be missing. As an example, a
metabolomics dataset was analyzed in a previous toxicology-relevant
study, and missing data were imputed using eight different imputation
methods spanning assumptions of MCAR, MAR, and MNAR (Wei
et al, 2018). One of the evaluated imputation methods was based upon
random forest (RF) typically used to generate values for variables
presumed to be MCAR or MAR across the entirety of the data
distribution. Another method was evaluated, namely, the Quantile
Regression Imputation of Left-Censored data (QRILC) method
which is typically used to impute MNAR values near or well below
the lowest detected expression level from the left side of a Gaussian
distribution. In this case study, RF outperformed all other methods for
MCAR/MAR imputation, while QRILC performed best for MNAR
imputation (Wei et al, 2018). Although RF has rapidly gained
acceptance as a routine technique and its high performance has
been replicated in other studies (Waljee et al, 2013; Tang and
Ishwaran, 2017; Ramosaj and Pauly, 2019), it has also been shown
that RF-based imputation on highly skewedMAR clinical data can bias
subsequent regression analyses (Hong and Lynn, 2020). Data
imputation methods have been examined further in review studies
(Cummings, 2013; Allotey and Harel, 2019; Patruno et al, 2021). These
findings illustrate that imputation should not have a blanket approach
and highlights the importance of taking into consideration the type of
data being imputed during the pre-processing of high-dimensional data.
Other elements of prepping high-dimensional data for analyses include,
but are not limited to, data normalization, identification of potential
sample outliers, and detection of batch effects.

3 Current example machine learning
approaches for analyzing high-
dimensional data in toxicology research

3.1 Predicting toxicological endpoints using
supervised ML

Data produced through wet lab experimentation are often analyzed
using traditional statistics based on two-group comparisons; though if
given the tools and guidance, these data could be analyzed using
machine learning (ML) to unravel undiscovered biological patterns.
ML automates the building of analytical models from parameters tuned
by the researcher based on the idea that it can learn from data, identify
patterns, and make decisions utilizing multiple independent variables
(SAS, 2023). Supervised ML is one category of ML that learns how to
predict a labeled outcome from a training dataset. Specifically, it first
iteratively makes predictions of the labeled outcome using a large
portion of a dataset (termed the “training set”) with the algorithm
seeking to predict as accurately as possible. The trained model is then
applied to the remaining portion of the dataset or a separate dataset
(termed the “test set”) to determine how well it performs at predicting
data it has not seen before (Green et al, 2021). Most supervised ML
algorithms require a vast amount of training data and number of
observations (n), which may not be feasible for all toxicological
experiments. Note, there is not a “magic formula” for determining
the optimal n to perform supervised ML, however it is contingent upon
the number of features (p) and the number of classes of a labeled
outcome being predicted. Nevertheless, supervised ML is particularly
useful for large datasets in toxicology given its ability to predict a
toxicological outcome from a multitude of features (e.g., -omic
signatures, demographic variables, etc.).

One supervised ML algorithm, RF has grown in popularity due
to its ability to use decision trees to determine the probability of a
predicted outcome by assessing one predictor at a time. RF, like
many supervised ML models, can also include data with varying
distributions, making it highly adaptable under many scenarios
(Koutsoukas et al, 2016; Green et al, 2021). RF models have been
built to predict many types of toxicological outcomes leveraging
high-dimensional data as predictor variables. Examples include
studies that have utilized multi-omic signatures to predict many
different health outcomes, including birth outcomes (Koutsoukas
et al, 2016); cancer metastasis (Albaradei et al, 2021); and suicide risk
(Bhak et al, 2019). In vitro high-throughput screening data have also
been used in RFmodels to predict multiple in vivo outcomes, such as
liver pathway responses (Ring et al, 2021), liver lesions (Liu et al,
2017), neuroactivity patterns (Kosnik et al, 2020), and
developmental toxicity (Sipes et al, 2011). These studies,
including review studies, demonstrate the utility of supervised
ML methods when incorporating high-dimensional data into
toxicological research (Ekins, 2014; Omer et al, 2014; Idakwo
et al, 2018).

3.2 Discovering patterns in high-
dimensional data using unsupervised ML

Approaches that can also be used to better evaluate data
produced through wet lab experimentation include unsupervised
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ML. Supervised ML is suitable if the outcome or labels are known,
but what if the collected data has unknown outcomes or labels? In
these instances, unsupervised ML methods can be leveraged, which
seek to find associations between data that lack defined
classifications or labels (IBM, 2020). Given the vast array of
toxicants yet to be fully analyzed, unsupervised ML can be a
productive first step. For instance, it can uncover potential
patterns between biomarkers, toxicants, environmental, and
demographic factors, along with other stressors that can
influence biological outcomes.

One unsupervised ML algorithm, k-means, groups observations
into the optimal number of clusters with each observation belonging
to the clusters with the closest mean (Ecosystem, 2018). As an
example, an inhalation toxicology study carried out by our group
evaluated cytokine signatures derived from multiple biological
samples that commonly inform respiratory responses, including
nasal lavage fluid, nasal epithelial lining fluid, sputum, and
circulating serum, to determine if cytokine levels differed based
on these sampling locations (Payton et al, 2022). K-means grouped
cytokines into clusters within each respiratory tract region,
separately. These groupings revealed that cytokine signatures are
dependent upon sampling location, informing the future
importance of such biomarkers in the clinical setting (Payton
et al, 2022).

Another unsupervised ML technique that seeks to find
inferences between data is hierarchical clustering. Hierarchical
clustering works by initially treating each observation as its own
cluster and merges them into larger clusters based on the minimum,
maximum, or average distance between observations (Bock, 2022).
A recent study leveraged hierarchical clustering to identify
understudied environmental compounds that humans are likely
co-exposed to alongside chemicals known to cause breast cancer
(Koval et al, 2022). Findings were of particular importance given
these chemicals are known to be present in personal care, food, and
toy products, to name a few. Hierarchical clustering also found that
some of the understudied chemicals share similar chemical
properties with cancer-associated compounds (Koval et al, 2022).
In general, clustering analyses like k-means and hierarchical
clustering allow researchers to draw relationships between
variables and select specific variables that might warrant further
investigation, potentially reducing the size of a high-dimensional
dataset in future studies. These approaches can significantly inform
further environmental and biological meaning behind data currently
being produced throughout toxicological wet lab experimentation.

3.3 Reducing the dimensionality of
toxicological data using unsupervised ML

There are many instances when analyzing large datasets where
reducing the number of predictors into aggregate values can aid in
identifying relationships that may not exist or be apparent when
analyzing all variables individually. Known as dimensionality
reduction, this technique is useful for analyzing high-dimensional
datasets that are more difficult to visualize, analyze, and require a
longer amount of computing time (Ian and Johnstone, 2009; Yiu, 2019).
Principal Component Analysis (PCA) has become a widely adopted
computational tool that seeks to address this issue by compressing as

much of the variance from the original dataset into the fewest number
of principal components or eigenvectors. These eigenvectors serve to be
representative of the original variables with the first accounting formost
of the variance that tapers off with each successive eigenvector (Furihata
et al, 2016). Although PCA is another unsupervisedMLmethod, as with
k-means and hierarchical clustering, it compresses most of a dataset’s
variance within the first few principal components, which may reveal
potential patterns (IBM, 2020).

PCA is routinely used for many data analysis applications in
toxicology, including as a pre-processing step to identify potential
sample outliers or to visualize clusters of variables or samples. In
prior studies, PCA has been used to differentiate patient disease
status such as hepatocarcinogen exposure groups (Furihata et al,
2016) and pulmonary arterial hypertension (Perez-Vizcaino et al,
2021). In a recent tobacco product use study from our group,
k-means was first used to assign cytokine measures to different
clusters, and then PCA was implemented to obtain an aggregate-
level measure or eigenvector for each cluster (Payton et al, 2022).
This approach permitted the comparison of cluster-based cytokine
measures across tobacco product use groups, revealing greater
statistical sensitivity when identifying exposure-induced changes
in comparison to individual cytokine analyses (Payton et al,
2022). Overall, each of these examples highlights the value of
implementing PCA in high-dimensional data analysis by
reducing dimensionality, allowing for easier cluster visualization
of a plethora of variables, and quantifying each predictor’s
contribution to the principal components (Figure 2). For more
examples and additionally methodologies surrounding
unsupervised ML, see recent reviews (Omer et al, 2014; Kiselev
et al, 2019; Verbeeck et al, 2020; Chaudhary and Singh, 2021).

4 Remaining challenges for analyzing
high-dimensional data in toxicology
research

The examples discussed highlight current issues at the
intersection of data science and toxicology research where
researchers are seeking to extract clinical and/or public health
insight from a vast amount of data that are laborious and
expensive to generate. This insight hinges upon the effective
processing and analysis of data using techniques like data
imputation, supervised ML, deep learning, unsupervised ML, and
data reduction. All these methods have been pioneered in the fields
of computer science and statistics, and so their adoption in our field
is still relatively new. Moving forward it is imperative that more
research be conducted to delineate which models are most
applicable under various toxicology scenarios. These methods
have limitations which are discussed further in the succeeding
sections alongside questions posed for discussion amongst
readers of this article.

4.1 Challenges in data pre-processing
and ML

Limitations surrounding high-dimensional analysis include the
following: There is insufficient documentation on toxicology-
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relevant high-dimensional analysis approaches. Information is often
found in blogs and web pages rather than traditionally reputable
sources like journal articles, which often omit analysis explanations
and comparisons. Also, there is a general lack of sharing and
reproducibility of trained algorithms between researchers. For
data imputation specifically, it has the potential to bias
downstream analyses, it is susceptible to skewed distributions,
and can require large amounts of data to be accurate (Klein,
2022). As for ML, models are often difficult to interpret, with the
underlying meaning and function sometimes referred to as a “black
box” (Petch et al, 2022). Additionally, unsupervised ML can find
correlations within data, but it does not mean that those correlations
inherently have meaning or biological implications (IBM, 2020).

Based upon content provided throughout this perspective
(above), as well as ongoing discussions between wet and dry lab
scientists, several questions can be posed for further discussion:

• When should missing data be retained vs. discarded?
• Are there other methods to better incorporate missing data in
toxicology?

• Are there specific ML models that work best for certain types
of toxicological data?

• How can we better understand the biological meaning of ML-
based findings?

• How can we better share predictive models built using data
from one lab to predict outcomes using data in another lab?

4.2 Biases in data analysis approaches

It should be mentioned that any computational models we build
are dependent upon the quality of the data, which often includes
biases. Biases can occur when selecting which variables to collect and
which features to include in the final model. It was once believed
(and probably still believed) that algorithms inherently help address
equity; however, data are often collected based on protocols/systems
that have biases that are then perpetuated in any findings produced
through high-dimensional data analyses. This belief was not likely
held by researchers working specifically in social justice fields;

however, the incorporation of a social justice and equity lens
should be more consistently incorporated in toxicology research
(Pettit, 2021). Artificial intelligence, an umbrella concept that
includes machine learning (Hamet and Tremblay, 2017), has
already become adopted in healthcare to predict disease
outcomes, assess risk, and inform clinical decision-making. For
example, previous clinical research has shown that medical
decisions informed by models after adjusting for a covariate like
race have both alleviated and exacerbated racial disparities
(Foundation, 2021).

Effort is required to not perpetuate biases on all levels, which
lead to the following questions for further discussion:

• Research group: is there sufficient diversity of ideas,
experience, and background in the research group and the
people specifically building the algorithms?

• Research questions: as toxicologists can we measure the
impact of those social determinants of health by measuring
epigenetic outcomes instead?

• Data collection: when gathering human data, what groups
(i.e., demographic, exposure, etc.) are over or
underrepresented?

• Algorithm training: if a predicted outcome is quantified, what
variables have the largest impact on the model? What biases
systemically or biologically need to be addressed as a result?

• Algorithm interpretation: is this model generalizable or
interpretable enough to be useful on a similar dataset or
context?

ML and artificial intelligence will continue to become more
integrated into toxicological analyses as the prevalence of high-
dimensional data continues to soar. We should learn from past
mistakes of clinical applications of computational techniques
and better design models that offer opportunities to extract
insights while minimizing biases. First and foremost, as
public health investigators, special attention and mention
should be given to “the why” behind the models we build and
their positive or negative implications on the communities we
hope to serve.

FIGURE 2
Steps of Principal Component Analysis (PCA). This example figure illustrates how the variance from an originating dataset, containing gene
expression values, is compressed into the first eigenvectors by PCA. Often the first two eigenvectors are visualized to determine the percentage of the
original variance able to be captured in the first two eigenvectors. The last step involves extracting quantified values for each variable’s contribution or
weight to the first eigenvector.
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4.3 High-dimensional data analysis training
in toxicology

Advances in high-dimensional data analyses in toxicology will
fail to evolve and advance over time if methods are not passed along
to future leaders in the toxicology field. Hence, there is now an
urgent need to generate and disseminate training materials
surrounding high-dimensional data analyses. Our team has
contributed to this need by developing the inTelligence And ML
(TAME) Toolkit, which was organized to promote trainee-driven
data generation, management, and analysis methods to “TAME”
data in environmental health studies (Roell et al, 2022).
Dissemination of these training materials has been and will
continue to be organized through coursework and online
workshops (Workshop, 2022), as well as a publicly available
Bookdown site that guides participants through online training
modules with underlying script and example datasets provided
(UNC-SRP, 2023). Additional toxicology-relevant training
materials and dissemination efforts are still needed worldwide
and we believe these efforts are critical to the ongoing need to
better handle high-dimensional data issues in our field. Although the
methods highlighted in this article and TAME have been well
documented in other fields like statistics, mathematics, and
computer science, these materials serve to spark conversation and
provide pertinent starting materials for wet bench scientists to
incorporate analyses for large datasets especially those with high-
dimensionality.

Given the current status of training resources for emerging
scientists, we posed the following questions for further discussion:

• How can we more effectively train the next-generation of
toxicologists on these methods?

• What are the best methods for reviewing trainee-driven
analyses?

• Where are we still limited in data analysis training efforts in
toxicology?

• How can we improve upon these methods as a concerted effort
across toxicology groups?

5 Concluding remarks

As high-dimensional data become increasingly ubiquitous,
the adoption of rigorous, standardized, high-throughput
computing is imperative to extract novel insights. The
advancement within the field of toxicology hinges upon
leveraging computational techniques to better simulate what
may potentially occur in vivo in conjunction with traditional
methods that isolate a limited number of variables in analyses.
These computational techniques, like data imputation and ML,
help maximize the number of observations, predict exposure or
disease outcomes, identify features that are most influential on an

outcome, and reveal possible relationships between variables.
Despite challenges regarding interpretability and health equity,
effective data analysis approaches have the potential to yield
novel toxicological results. These analyses will significantly
advance the field of toxicology when emerging from continued
interactions between wet and dry lab scientists.
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