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Human intoxication after mercury exposure is a rare condition that can cause
severe damage to the central nervous, respiratory, cardiovascular, renal,
gastrointestinal, skin, and visual systems and represents a major public health
concern. Ophthalmic involvement includes impaired function of the extraocular
muscles and the eyelids, as well as structural changes in the ocular surface, lens,
retina, and optic nerve causing a potential irreversible damage to the visual system.
Although, there aremany pathways for poisoning depending on themercury form,
it has been suggested that tissue distribution does not differ in experimental
animals when administered as mercury vapor, organic mercury, or inorganic
mercury. Additionally, visual function alterations regarding central visual acuity,
color discrimination, contrast sensitivity, visual field and electroretinogram
responses have also been described widely. Nevertheless, there is still
controversy about whether visual manifestations occur secondary to brain
damage or as a direct affectation, and which ocular structure is primarily
affected. Despite the use of some imaging techniques such as in vivo confocal
microscopy of the cornea, optical coherence tomography (OCT) of the retina and
optic nerve, and functional tests such as electroretinography has helped to solve in
part this debate, further studies incorporating other imaging modalities such as
autofluorescence, OCT angiography or adaptive optics retinal imaging are
needed. This review aims to summarize the published structural and functional
alterations found in the visual system of patients suffering from mercury
intoxication.
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1 Introduction

Mercury is a toxic metal that exists in three forms with different toxicological properties,
as elemental or metallic mercury (mercury liquid and mercury vapor) or as inorganic
(mercury salts) and organic compounds (methylmercury and ethylmercury) when combined
with other elements (Park and Zheng, 2012; Fowler and Zalups, 2022), and it is considered by
the World Health Organization (WHO) as one of the top 10 chemicals or groups of
chemicals of major public health concern (World Health Organization, 2017). A significant
incident occurred in Minamata, Japan, between 1932 and 1968, where a factory dumped
waste liquid with high concentrations of methylmercury in the bay which was rich in fish and
shellfish, the primary food sources for local and other areas residents, affecting at least
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50,000 people and causing neurological symptoms in over
2,000 people (hence the name Minamata disease) (World Health
Organization, 2017). Later in 1972, over 6,000 people in Iraq
developed methylmercury poisoning from eating baked grain
bread treated with methylmercury-based fungicide (Fowler and
Zalups, 2022; Posin et al., 2022).

There are many pathways for intoxication after mercury
exposure, including ingestion of contaminated seafood, contact
with broken mercury-containing devices such as thermometers,
barometers and electrical switches, or inhaling mercury vapor
from dental amalgam (which are currently less and less likely
because their manufacture has been prohibited) (Fisher, 2003;
World Health Organization, 2017; Fowler and Zalups, 2022;
Posin et al., 2022). However, most human mercury intoxication
occurs in occupational settings when workers inhale odorless and
colorless elemental mercury vapors, in mercury and artisanal or
small-scale gold mining, physics and pharmaceutical laboratories
and some industrial processes such as zinc-mercury amalgam, coal-
fired power and chloroalkali plants, paint factories, non-ferrous and
ferrous metal production, and in fluorescent lamp, batteries and
other instruments manufacturing (Fisher, 2003; Rustagi and Singh,
2010; UN Environment, 2019; Fowler and Zalups, 2022). These
mercury vapors are absorbed up to 80% through the lungs with rapid
diffusion to the blood and later distribution throughout the body. In
contrast, inorganic mercury is absorbed mainly in the
gastrointestinal tract in about 2%–38%, while methylmercury
when ingested is almost 100% absorbed in the duodenum, then
in the blood combines with glutathione and other amino acids or
peptides (Hong et al., 2012; Fowler and Zalups, 2022; Posin et al.,
2022).

Due to the lipophilic nature of elemental and organic mercury,
both can cross the blood-brain barrier. Then, they are oxidized by
the hydrogen peroxide-catalase pathway to an inorganic divalent
form with poor lipid solubility, and therefore, accumulate for
several years in the brain, interrupting cellular enzymes and
proteins systems, and causing neurotoxicity (Fisher, 2003; Posin
et al., 2022).

Peripheral nerve function, renal function, immune and
endocrine systems, and muscle function may also be affected by
the three forms (Fowler and Zalups, 2022). To reduce these adverse
effects, a global agreement named Minamata Convention on
Mercury was adopted in 2013 and entered into force in 2017 to
take actions to protect human health and environment from
anthropogenic release of mercury (UNEP, 2019). Mercury levels
in blood are useful after short-term and high-level exposure, whereas
mercuric values in urine mercury is the ideal biomarker for long-
term exposure to both elemental and inorganic mercury (Park and
Zheng, 2012).

Eye and visual pathway damage have been reported given the
fact that the retina and the optic nerve are specialized extensions of
the central nervous system (CNS) (London et al., 2013).
Furthermore, mercury intoxication may also cause damage to the
corneal nerves as the cornea is the most densely innervated tissue in
the body. In this review we focus on ophthalmic involvement due to
mercury intoxication and summarize the clinical experience of our
center about this topic based on 29 workers suffering acute and
subacute exposure to mercury vapor in an aluminummanufacturing
industry that were studied and followed by the Institute of Applied

Ophthalmobiology (IOBA), University of Valladolid, Spain
(Cañadas et al., 2021; Pastor-Idoate et al., 2021).

2 Materials and methods

Articles were sourced using PubMed database with the following
terms: “color vision”, “contrast sensitivity”, “cornea”, “exposure”,
“eye”, “glaucoma”, “heavy metal”, “intoxication”, “lens”, “mercury”,
“ocular alterations”, “ocular manifestations”, “ocular surface”,
“ophthalmological findings”, “optical coherence tomography”,
“optic nerve”, “poisoning”, “retina”, “toxicity”, “visual alterations”
and “visual evoked potentials”. We completed the selection of
pertinent literature until the inception of the manuscript
(October 2022) based on title, abstract and full content information.

3 Results

3.1 Ocular surface disease and anterior
segment alterations

The lacrimal functional unit, a term first introduced by Stern
et al., is a unit composed of the ocular surface (corneal, conjunctival
and limbal epithelium plus the overlying tear film), all tear-
producing glands and cells, in addition to the immune cells and
nervous fibers that work together to maintain the health of the
cornea (Stern et al., 2004), which is the major refractive surface of the
visual system and the most sensitive tissue in the body, being densely
innervated at its external layers by the first division (ophthalmic) of
the trigeminal nerve.

Neurotoxicity induced by mercury may target this rich
innervation as previously reported by Sabelaish and Hilmi who
described loss of corneal sensation in most affected patients after
subchronic organomercury poisoning, however, no objective test
was performed to confirm this finding (Sabelaish and Hilmi, 1976).
Nevertheless, Cañadas et al., from our group, evaluated 22 male
workers who were accidentally exposed to mercury vapor for
14 consecutive days and described diminished corneal sensitivity
as well as decreased nerve density and branch density of sub-basal
corneal nerves, and reduced density of dendritic cell in corneal
stroma determined by non-contact Belmonte gas esthesiometry and
in vivo confocal microscopy, respectively, and thus impairing both
nerve function and nerve regenerative activity (Cañadas et al., 2021).
Most of these patients referred dry eye symptoms, mostly severe,
using the Ocular Surface Disease Index questionnaire (OSDI) and
showed increased tear osmolarity compared to control healthy
subjects, however, no alteration in tear quality and ocular surface
integrity was found. Tear production was not significantly affected
in those workers, although 8 patients showed low lysozyme tears
levels, particularly with some elevated cytokines in tears, such as
interleukin (Il)-6, lL-12p70, regulated on activation normal T-cell
expressed and secreted (RANTES), and vascular endothelial growth
factor (VEGF) and with high urine mercury levels. So far, this is the
only report on ocular surface disease in subacute mercury
intoxication in humans and taking this evidence together, a
primary neurogenic inflammation mechanism triggering a
proinflammatory cascade of cytokines may explain ocular surface
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disease in mercury poisoning (Cañadas et al., 2021; Pollard et al.,
2019; Yang et al., 2020).

Less frequently, band keratopathy, mercury deposits on the
corneal stroma and anterior capsule of the lens (mercurialentis)
have also been reported in some cases of chronic mercury
intoxication (El-Sherbeeny et al., 2006). In addition, Korbas et al.
in studies with zebrafish larvae (Danio rerio), suggested that
methylmercury may accumulate in the secondary fiber cells of
the lens after reaching high intraocular levels by being able to
cross the blood-aqueous barrier (Korbas et al., 2008; Korbas
et al., 2013). Furthermore, Domínguez-Calva et al. showed that
mercury has a cataractogenic potential by inducing non-amyloid
aggregation of human lens proteins (γC and γS crystallins proteins)
(Domínguez-Calva et al., 2018).

3.2 Retina, optic nerve, and visual alterations

Accumulation of mercury in the retinal pigment epithelium,
inner plexiform layer, ganglion cells and vessel walls of the inner
retina and of the optic nerve was described by Warfvinge and Bruun
in squirrel monkeys up to 3 years after mercury vapor exposure
(Warfvinge and Bruun, 2000). Similarly, Phamphlett et al. found
that mercury may appear in fetal retinal ganglion cells, optic nerve
glial cells, peripapillary retinal pigment epithelium, and endothelial
cells of mice after prenatal exposure to mercury vapor (Pamphlett
et al., 2019). Korbas et al. demonstrated that methylmercury may
target both optic nerve (Korbas et al., 2008) and outer segments of
photoreceptors cells (Korbas et al., 2013) in zebrafish larvae.
Additionally, it has been suggested that even though there are
three forms of mercury, retinal and optic nerve distribution
seems not to differ in experimental animals when administered
as mercury vapor, organic mercury, or inorganic mercury
(Pamphlett et al., 2019).

Visual impairment due to mercury toxicity may occur as a direct
eye damage as demonstrated by the IOBA’s Retina group and other
researchers (Bridges et al., 2007; Korbas et al., 2013; Pastor-Idoate
et al., 2021) in addition to visual cortex injury (da Costa et al., 2008;
Saldana et al., 2006; Ventura et al., 2004; Ventura et al., 2005; Yorifuji
et al., 2013), causing night vision dysfunction, decreased color vision
and contrast sensitivity, central visual impairment, visual field (VF)
defects such as concentric constriction, and optic atrophy (El-
Sherbeeny et al., 2006; Bridges et al., 2007; Pastor-Idoate et al.,
2021; da Costa et al., 2008; Saldana et al., 2006; Ventura et al., 2004;
Ventura et al., 2005; Yorifuji et al., 2013; Cavalleri et al., 1995;
Cavalleri and Gobba, 1998; Urban et al., 2003; Rodrigues et al., 2007;
Fillion et al., 2011; Dos Santos Freitas et al., 2018; Feitosa-Santana
et al., 2008; Feitosa-Santana et al., 2007; Feitosa-Santana et al., 2018;
Barboni et al., 2008).

Some studies have reported retinal pigment epithelium (Bridges
et al., 2007) and photoreceptor damage (Korbas et al., 2013). Recent
evidence by Pastor-Idoate et al., from our group, showed a primary
involvement in electroretinogram (ERG) of both the inner
(oscillatory potentials) and outer retina, mainly reduced scotopic
rod response, in a long-term group of affected patients (Pastor-
Idoate et al., 2021). Nevertheless, 30-Hz flicker, single flash cone
response and multifocal ERG and pattern ERG alterations also
appeared when deeper and more extensive VF defects developed,

suggesting that cone dysfunction and ganglion macular cells damage
can occur secondarily, thus causing color vision impairment, mainly
in the blue-yellow range using Roth 28 Hue test. In addition,
prolonged latencies, and reduced amplitudes of P100 in visual-
evoked potentials compared to controls were found when severe VF
was altered (Pastor-Idoate et al., 2021), as previously reported (El-
Sherbeeny et al., 2006). In summary, although neurologic and visual
pathway involvement was clear, there were also data suggesting the
existence of a direct functional retinal damage and retinal
participation in mercury poisoning.

Ekinci et al. reported in 31 industrial mercury battery workers
blue-yellow color vision impairment but reduced retinal nerve fiber
layer thickness (RNFLT) and choroidal thickness (CT) (Ekinci et al.,
2014) on optical coherence tomography (OCT), data not confirmed
by Pastor-Idoate et al. (Pastor-Idoate et al., 2021) who found normal
RNFLT, CT, and central retinal thickness. Additionally, Bilak et al.
demonstrated reduced volumes of the inner plexiform and ganglion
cell layers on OCT in patients exposed to mercury from amalgam
dental fillings compared to controls, however, RNFLT and CT
decreases were neither significant nor clinically relevant (Bilak
et al., 2019). An important aspect of the case series by Bilak et al.
and Ekinci et al. is that they were done in patients chronically
exposed to mercury and ocular electrophysiologic studies were not
performed in contrast to the clinical analysis done by Pastor-Idoate
et al. in patients with acute/subacute exposure to mercury. Blood
concentrations may have been lower and evidently exposure times
were different.

On the other hand, Cavalleri et al. (1995) and Jedrejko and
Skoczyńska (2011) also observed color vision alteration in the blue-
yellow range in workers exposed to mercury vapor, whereas Ventura
et al. (2005) and Feitosa-Santana et al. (2008) found both blue-
yellow and red-green alterations in patients with chronic mercury
vapor intoxication, suggesting alterations in both the retina and the
optic nerve. Lacerda et al. investigated two Amazonian populations,
10 Riverines exposed to organic mercury by eating fish and 34 gold-
miners exposed to mercury vapor, and described that both groups
had similar color vision impairment compared to control groups
using Farnsworth–Munsell test, however, visual perimetry
impairment was greater in riverines than in gold-miners using
Fo€rster perimeter, which may be due to higher exposure to
mercury in riverines (Lacerda et al., 2020).

There is no consensus about the reversibility of mercury
intoxication. Previous studies described that color vision loss may
be reversible (Cavalleri and Gobba, 1998; Urban et al., 2003),
however, recent reports strongly suggest irreversible damage in
both chronic methylmercury consumption and in workers
chronically exposed to mercury vapor (Feitosa-Santana et al.,
2007; Feitosa-Santana et al., 2008; Feitosa-Santana et al., 2018).
Similarly, Ventura et al. and Costa et al. also found that contrast
sensitivity is irreversibly impaired in long-term occupational
mercury intoxication (Ventura et al., 2005; Costa et al., 2008).

3.3 Other ophthalmic manifestations

Mercury has also been suggested to be linked to glaucoma
(Vennam et al., 2020). Ceylan et al. found significantly higher
blood mercury levels in 32 patients with pseudoexfoliation
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syndrome compared to controls (Ceylan et al., 2013).
Pseudoexfoliation syndrome is considered a systemic disease
characterized by accumulation of extracellular material, named
pseudo-exfoliative, in many organs including the eye and orbit,
mainly on the anterior lens capsule and/or the pupillary border
and which may impair aqueous drainage and thus high
intraocular pressure and glaucoma (Plateroti et al., 2015).
Pseudoexfoliation origin is not fully established and is more
frequent in Northern European countries. Trace elements have
been suggested to have roles in its pathogenesis, however no
pseudoexfoliation glaucoma association was significantly found
in these patients (Ceylan et al., 2013). Similarly, Lee et al. (48)
based on data from the Korean National Health and Nutrition
Examination Survey (KNHANES) did not find significant
associations between blood levels of mercury and open angle
glaucoma prevalence (Lee et al., 2016).

Less frequently, eyelid tremor, nystagmus and abnormal
saccadic lateral conjugate eye movements have also been reported
in some cases of chronic intoxication (El-Sherbeeny et al., 2006;
Rustagi and Singh, 2010; Fowler and Zalups, 2022).

4 Conclusion

In summary, mercury intoxication is a major public health
concern and patients suffering from systemic mercury poisoning,
in addition to central nervous system damage, may exhibit a direct
ophthalmic involvement, mainly as an ocular surface disease and
targeting primarily the inner and outer retina with secondary
impairment of the optic nerve. It also has a potential
cataractogenic effect, however more studies are needed to
confirm this hypothesis. Ophthalmic changes may lead to

potential irreversible damage to the visual system, hence raising
people awareness and leading to massive interventions to reduce
major sources of human mercury exposure according to the
Minamata Convention on Mercury by shifting energy production
from coal burning to clean energy, eliminating gold and mercury
mining, and phasing down of mercury use in some products or
processes.
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