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Purpose: Magnetic particle imaging (MPI) is a nascent tracer imaging modality
that generates images from magnetic iron oxide nanoparticles (MIONs) in tissue.
MPI resolution is a critical input parameter for defining the reliability of
simulations-based temperature predictions for magnetic nanoparticle
hyperthermia (MNPH). The objective of this study was to ascertain how spatial
resolution provided by MPI data affects the reliability of predicted temperatures
and thermal dose in simulations using MPI data as inputs.

Methods: Computed tomography (CT) and MPI scans obtained from a tumor
injected with MIONswere co-registered to align their coordinates. Co-registered
data were used to obtain geometry and volumetric heat sources for
computational simulations of MNPH in phantom tumors. In addition to using
the MPI-derived in vivo MION distribution (D1) we analyzed two mathematical
MION distributions: uniform (D2) and Gaussian (D3). All distributions were
discretized into cubic voxels and the data were imported into a commercial
finite element bioheat transfer (FEBHT) software for thermal simulations. FEBHT
simulations were conducted using the Pennes’ bioheat equation using four
different MION specific loss power (SLP) values in the range 300–600 [W/g
Fe]. The impact on predicted temperature resolution and thermal dose of spatial
resolution were assessed by varying the linear voxel density (LVD) from 0.36 to
4.06 [voxel/mm]. Results were compared against the simulation with the highest
LVD [4.06(voxel/mm)], where deviations in temperature of ≤ ±1 [°C] and thermal
dose coverage ≤ ±5 [%] were deemed acceptable.

Results: The D3 distribution resulted in the highest predicted temperatures,
followed by D1 and D2; however, in terms of thermal dose, D1 showed lowest
tumor coverage, requiring higher heat output from MIONs than was required for
the other distributions studied. The results of the sensitivity analysis revealed that
the predicted tumor temperature increased with LVD across all tested SLP values.
Additionally, we observed that the minimum acceptable LVD increased with SLP.

Conclusion: Current (preclinical small animal) MPI scanners provide sufficient
spatial resolution to predict temperature to within ±1 [°C], and thermal dose
coverage to within ±5 [%] for MION formulations having heat output
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SLP = <370 [W/g Fe]. Higher spatial resolution is needed to achieve a similar
precision whenMION SLP exceeds 370 [W/g Fe]. We also conclude from the results
that assuming a uniform MION distribution in tissue, which has been a common
practice inMNPH simulations, overestimates the SLP needed to deposit meaningful
thermal dose.

KEYWORDS

magnetic nanoparticle hyperthermia, magnetic particle imaging, magnetic iron oxide
nanoparticle, computed tomography, finite element analysis, bioheat transfer
simulation, specific loss power

1 Introduction

Magnetic nanoparticle hyperthermia (MNPH) is a therapy
that can deliver heat energy precisely to cancer tumors (Gilchrist
et al., 1957). MNPH involves administering magnetic iron oxide
nanoparticles (MIONs) directly to a tumor and heating them by
exposing the region to an alternating magnetic field (AMF)
(Gilchrist et al., 1957; Rosensweig, 2002). AMF with a
frequency in the low radiofrequency range of about
100–300 [kHz], penetrates tissue with little attenuation,
making it particularly effective for deep-seated tumors
(Hensley et al., 2017; Rodrigues et al., 2017). Challenges arise
from inconsistent or unreliable MION concentrations in the
target after delivery, and their typically heterogeneous
distributions within tissue, necessitating the development of
imaging-guided treatment plans to ensure adequate thermal
dose in tumors while minimizing damage to surrounding
healthy tissues (Rodrigues et al., 2017; Kut et al., 2012; Reis
et al., 2016; Suleman and Riaz, 2020a).

Magnetic particle imaging (MPI) is a nascent tracer imaging
modality that provides particle specific imaging, and thus presents
opportunities to address limitations in energy delivery and control
during MNPH (Healy et al., 2022). As with other tracer imaging
modalities, MPI data require co-registration with magnetic
resonance imaging (MRI), computed tomography (CT), or other
anatomical imaging modality to enable clinical diagnostic and
therapeutic application. While spatial resolution often directly
dictates clinical utility for diagnostic imaging, its effect on
MNPH treatment planning may be indirect, and requirements
for guiding MNPH may even differ from those required for
diagnostic imaging. Thus, if MPI data are to be used as inputs
for thermal simulations, the effects of spatial resolution of imaging
data on accuracy and precision of predicted outcomes need to be
understood to ascertain reliability of simulations outcomes.
Specifically, is resolution of an MPI image a critical factor
affecting precision of predicted temperature? If yes, what is the
resolution required to predict temperatures within clinical
acceptable uncertainty? No studies have explored effects of MPI
spatial resolution on precision of simulated tissue temperature rise
caused by heating MIONs in tissues.

Current MNPH treatments involve closed-loop control systems
to monitor and adjust MION heat output with little information
about their distribution within the tumor (Xiaohua et al., 2015;
Ahmed et al., 2022; Sharma et al., 2023). Temperature probes,
typically constructed from optical fibers, are inserted into the
tumor to monitor tissue temperature during treatment. Often,
only one probe is used, and treatment is conducted with plans

using only basic principles. Energy delivery is controlled manually to
achieve a minimum target temperature, as measured by the probe,
with the thermal dose estimated during post-treatment analysis.
This is in sharp contrast to the workflow used in other energy-based
interventions, such as radiation therapy, which begins with the
development of a prescriptive treatment plan using simulations-
based algorithms for which the processed anatomical imaging data
defining the tumor volume are inputs. Thus, by comparison current
MNPH workflows are rudimentary, and often fail to meet most
clinical quality assurance guidelines (Healy et al., 2022).

A critical barrier to developing robust treatment plans for
MNPH is the lack of clinical imaging tools that unambiguously
identify MION content and distribution in tissue. Computational
models, crucial for refining MNPH, have progressed, but still lack
reliable input from imaging. Homogeneous or mathematical MION
distributions are often assumed in order to reduce computational
burden (Rodrigues et al., 2017; Pennes, 1948; Kamal Kandala et al.,
2019; Panagiotopoulos et al., 2015). Consequently, simplified
mathematical assumptions of the MION distribution(s) used in
simulations often produce treatment plans that fail to predict
accurately tissue temperatures realized during MNPH. Indeed,
assessing reliability for quality assurance using this approach is
uncertain because of a lack of critical pre-treatment data (Kamal
Kandala et al., 2019; Panagiotopoulos et al., 2015). MPI can
overcome these limitations; however, a critical question to be
addressed is the spatial resolution required as input data to
ensure reliable tissue temperature predictions for MNPH
treatment plans (Panagiotopoulos et al., 2015; Borgert et al.,
2012; Tay et al., 2018; Gleich and Weizenecker, 2005; Goodwill
and Conolly, 2010).

MPI measures the magnetic moment of a sample containing
magnetic materials, typically MIONs generates a linear signal,
enabling the detection of trace amounts of MIONs [<1 × 10−8

(g)]. Actual detection limits however, depend on the magnetic
properties of the MIONs and scanner capabilities (Gleich and
Weizenecker, 2005; Goodwill and Conolly, 2010). Tissue, being
diamagnetic, generates no signal; thus, MPI requires co-
registration with other imaging modalities, such as CT, to
identify anatomical features. When combined with anatomical
images, MPI provides the capability to image the MION
distribution in a tumor and to quantify the MION concentration.
Preliminary studies indicate that integrating MPI with CT enables
quantification of MION concentration, establishing a linear
correlation between MPI pixel density, local MION
concentration, and MION volumetric heat generation at a
constant magnetic field (Carlton et al., 2024a; Koch and
Winfrey, 2014).
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FIGURE 1
Schematic of phantomMION heat source, geometry and boundary conditions. (A)Distribution of MION for the study: D1 (in vivo) obtained from the
co-registration of MR/CT and MPI images. D2 (uniform) is obtained from the conservation of mass and volume of the MION from the D1 and distribution
of the MION with a constant density over the volume of the tumor phantom. D3 (Gaussian) is obtained from the conservation of mass and volume of the
MION from the D1 and distributed the MION in the form of a D3. (B) Conversion from point cloud (array) to voxel (3D volume) of a MPI image at
different resolutions. The point cloud of pixel intensity obtained from an MPI image was converted into a voxel by assuming that each point in the voxel
was the corner of the cuboid. Formation with the voxel of 4.06 [voxel/mm] [66.92 (voxels/mm3)] resolution from the point cloud. To decrease the
resolution of the obtained voxel, the average of the voxel was taken, that is, eight smaller voxels formed one larger voxel. A voxel of 0.36 [voxel/mm] [0.05
(voxel/mm3)] feature size was formed through the subsequent addition of the voxel to form a larger voxel. (C)Geometry and boundary conditions for the

(Continued )
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The spatial resolution of MION deposits in MPI images depends
on both the MION magnetization and scanner properties
(Panagiotopoulos et al., 2015; Borgert et al., 2012; Tay et al.,
2018; Gleich and Weizenecker, 2005; Goodwill and Conolly,
2010). Current small animal preclinical scanners enable MION
detection in the nanogram range [~1 × 10−8 (g MION)] with
submillimeter voxel resolution [~0.25 (mm/voxel)]; however,
specifically for MNPH, the encountered challenges arise from
high MION concentrations [>1 × 10−2 (g MION/g tissue)], which
produce high signal intensity (brightness) that, at times, can saturate
detectors and yield spurious false or “ghost” images or “halos” in
regions containing no MIONs (Paysen et al., 2019). Scanner
adjustments to minimize and correct these effects are necessary
to image MIONs at such high concentrations; however, these
adjustments can also reduce the image resolution and
quantitation of MIONs in regions containing lower
concentrations (Carlton et al., 2024a).

Accepting that MPI-guided MNPH treatment planning
simulations will improve treatment reliability raises another
question: How much resolution or precision is required?
Increasing the spatial resolution and anatomic detail inevitably
raises the demand for computational resources. Increased spatial
resolution would likely increase scan time, data storage
requirements, and time to develop and approve treatment plans
based on much larger imaging data files generated by high-
resolution (three-dimensional) scans. At some point, the
increased demand for time to develop treatment plans and
computing resources (including data storage) becomes
prohibitive, impractical, expensive, or impedes timely execution
of quality patient care. Moreover, tissue thermal transport
properties are coupled with physiological heat-induced responses
in vascular perfusion and tissue fluid reservoirs. These factors also
influence the resolution required to achieve reliable model
predictions for patient care.

Our objective here was to ascertain how MION heat output and
MPI scanner spatial resolution affect the reliability of calculated
tissue temperature and estimated thermal dose [cumulative
equivalent minutes at 43 (°C) (CEM43) >15 (min)]. For the
simulations, we assumed a range of specific loss power (SLP)
values between 300–600 [W/g], which have been previously
reported with demonstrated utility to treat solid tumors in
animal models (Carlton et al., 2024a; Carlton and Ivkov, 2023;
Carlton et al., 2023b; Ota et al., 2021; Carlton et al., 2024a). For
simplification of data representation, we used isotropic voxel
dimensions represented as linear voxel density (LVD, i.e., density
of voxels per unit side length) from 0.36 to 4.06 [voxel/mm].
Maximum and minimum LVD values were chosen based on the
highest resolution of small animal MPI and the expected highest
resolution of human-scale MPI scanners (Tay et al., 2019; Graeser
et al., 2019). Using these SLPs and LVDs, we performed a
computational sensitivity analysis to identify the minimum

needed to maintain simulation-based precision of temperature
and thermal dose coverage to within ±1 [°C] and ±5 [%],
respectively.

2 Materials and methods

2.1 MPI and CT equipment

MPI images were obtained using a Momentum© MPI (Magnetic
Insight, Inc., Alameda, CA) scanner operating at a drive frequency of
45 [kHz]. Cone Beam CT (CBCT) images were acquired using a
Small Animal Radiation Research Platform (SARRP), Xstrahl Inc.
Suwanee, GA) (Wong et al., 2008).

2.2 MION calibration

Synomag®-D 70 [nm] magnetic iron oxide nanoparticles
(micromod Partikeltechnologie GmbH, Lot#: 09122104-02)
suspended in water were purchased and used at a concentration
of 50 [mg Fe/mL]. The concentration was verified using a ferene-s
assay (Hedayati et al., 2018). We digested a small aliquot of the
particles [~1 (µg Fe)] in a solution of ascorbic acid and acetate buffer
for 20 [h] before measuring the concentration. Using a calibration
curve of iron standard solutions as reference, we then calculated the
concentration of iron in the solution. To correlate MPI signal with
thermal output, we imaged a concentration gradient consisting of
four particle samples with increasing concentration: 0.1, 0.5, 1.0, and
5.0 [mg Fe/mL]. We plotted the mean voxel intensity value within
each calibration sample against the particle concentration.

2.3 In vivo imaging data acquisition

2.3.1 Mouse model and tumor implantation
The Johns Hopkins Institutional Animal Care and Use

Committee approved all animal studies. A single 10-week-old
female BALB/c mouse (Jackson Laboratory, Bar Harbor, ME) was
used for the study. The mouse was fed a normal diet and water ad
libitum and maintained on a 12-h light/12-h dark cycle, and we
examined the mouse daily for signs of distress or pain. In previous
work, we analyzed the intratumor heating of this mouse (Carlton
et al., 2023a).

We used the murine mammary carcinoma cell line 4T1 [ER/PR/
HER2 negative], which was purchased from the American Type
Culture Collection (ATCC; Manassas, VA, United States). The cells
were grown in Roswell Park Memorial Institute (RPMI)
1,640 medium, which contained 10 [%] heat-inactivated fetal
bovine serum (FBS). We then performed a subcutaneous
injection of 2.5 × 105 cells suspended in sterile PBS [50 (µL)]

FIGURE 1 (Continued)

FEBHT software with muscle, tumor andMION. The MION for the D1 was obtained from segmentation of MPI data. The surface of the muscle inside
the body was assumed to be 37 [°C] and the outer surface was assumed to have free convection heat transfer to the surroundings.
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into the right thigh of the mouse. Afterwards, we monitored tumor
growth three times per week with calipers.

2.3.2 MION injection
Upon reaching a volume of 100–400 [mm3], the mouse was

anesthetized by inhalation of 1-2 [%] isoflurane with O2. Once
anesthetized, 11 [µL] of Synomag®-D 70 nm MIONs suspended in
sterile water at a concentration of 25 [mg Fe/mL H2O] was injected
into the tumor. The nanoparticle injection was performed using a
syringe pump (Pump 11 Elite, Harvard Apparatus, Holliston, MA)
set to a rate of 2.5 [µL/min].

2.3.3 In vivo imaging
The in vivo 3D MPI scan consisted of 21 isotropic radial slices

with a gradient field of 5.7 [T/m] and 5 [mT] excitation field. For
imaging, we anesthetized the mouse with 1-2 [%] isoflurane;
respiration rate was monitored using a sensor on the chest
(Small Animal Instruments, Stony Brook, NY, United States)
kept between 50–80 [breaths/min]. Mouse core body temperature
was monitored rectally with a fiber optic probe (Small Animal
Instruments, Stony Brook, NY, United States) and a custom
holder linked to a circulating heated water bath was used to
maintain core body temperature at approximately 37 [°C]. CBCT
images [60 (kVp) at 0.8 (mA) current for 60 (s)] were gathered using
the same configuration as the MPI scans, where 230 projections
were recorded.

2.3.4 Image co-registration and MPI data
extraction

Data acquired from the Momentum© MPI and CBCT scanners
have distinct imaging centers of origin, which complicates direct
comparisons. MPI specifically generates signal from MIONs,
whereas CBCT provides anatomical information. To facilitate co-
registering the two sets of imaging data, fiducials were manually
placed and aligned for both the MPI and CBCT images (Carlton
et al., 2024a). The fiducials consisted of ~1 [µL] aliquots of
VivoTrax (Magnetic Insight, Inc., Alameda, CA) placed and fixed at
arbitrary locations within the MPI field of view. The fiducials also
provided sufficient contrast for CBCT scans. Co-registration and data
extraction were performed using Materialize Mimics© Research v.25
(Materialise NV, Leuven, Belgium), where both MPI intensity values
(recorded in grayscale) and voxel coordinates were exported as a text
file. The bulk of the workflow used in this study was previously
developed and described (Carlton et al., 2024a). For this study, we
plotted the data as a point cloud in MATLAB®, with each point
representing a specific grayscale value at a unique coordinate. The
gray values were then converted into arbitrary units [a.u.] by assuming a
linear relationship between grayscale values and [a.u.]. These [a.u.]
values were further transformed into a volumetric heat source [W/m3]
using a calibration curve obtained from the experimental data and
imported into the commercial FEA software COMSOL Multiphysics®

for heat transfer simulations.

2.4 MION distributions and voxelization

In addition to information of MION distribution gathered from
MPI (D1), two additional mathematically generated MION

distributions were analyzed: a uniform distribution (D2), and a
Gaussian distribution (D3); both having the center of the phantom
tumor being the coordinate origin (Figure 1A). In the case of D2 and
D3, the MION mass and volume from D1 was conserved. The
D2 distribution assumed a uniform MION distribution throughout
the spherical (phantom tumor) volume. The D3 distribution was
modeled using a Gaussian probability function P(x, y, z) (Kamal
Kandala et al., 2019; Kreyszig, 1983; Suleman and Riaz, 2020b),
using the center of a sphere (phantom tumor) as the origin of the
MIONmass, with MION concentration decreasing to the boundary.
We assumed spherical symmetry, or a consistent spread of
nanoparticles in all directions, by fixing variances of nanoparticle
content in x, y, and z dimensions to be equal to a single standard
deviation, σx� σy� σz.

P x, y, z( ) � 1

2π( ) 3 /

2σxσyσz
e

−1
2

x2

σx2
+ y2

σy2
+ z2

σz2
( )( )

(1)

The total deposited heating rate, Qheat[W], was kept constant
among the models.

A MATLAB® script was used to discretize the point cloud
distributions. Our script represented the data as a spatially
discretized point cloud, and each point was converted into a
cubic voxel (Roberson, 2021). To reduce the number of
parameters for visualization we used LVD of cuboid with equal
sides, which is common practice in computational imaging. This
simplification facilitates data representation of complex shapes. To

TABLE 1 Geometric and mesh parameters used in this study, as shown in
Figure 1C.

Parameters Values

Muscle Height 12.6 [mm]

Muscle Width 25.2 [mm]

Muscle Depth 25.2 [mm]

MION volume 149.14 [mm3]

D1 and D2 MION radius 3.3 [mm]

Total time 25 [min]

Step size 1 [s]

Mesh Adaptive mesh (Tetrahedral from 27,376 to 62,498)

Initial Tissue Temperature 37 [°C]

TABLE 2Material properties used for simulation in FEBHT Software (Banura
et al., 2016).

Material propertiesa Musclea Tumora

Density 1,090 [kg/m3] 1,045 [kg/m3]

Specific heat 3,421 [J/kg K] 3,760 [J/kg K]

Thermal conductivity 0.49 [W/m K] 0.51 [W/m K]

Blood perfusion 0.003 [1/s] 0.0095 [1/s]

Metabolic heat source 6,374.5 [W/m3] 31,873 [W/m3]

aMaterial properties used in the simulations were obtained from (Banura et al., 2016).
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reduce the LVD, the script spatially averaged the MPI grayscale
values around each point. The voxel size range we used for
sensitivity analysis was varied from 0.25 [mm/voxel side length]
[0.01 (mm3/voxel)] (resolution from the MPI DICOM files) to
2.78 [mm/voxel side length] [21.48 (mm3/voxel)], or LVDs of
4.06 [voxel/mm] [66.92 (voxels/mm3)] to 0.36 [voxel/mm] [0.05
(voxel/mm3)], respectively.

2.5 FEA

2.5.1 Geometry and material properties
The segmented MION and tumor domains from the co-

registered MPI and CBCT images were imported into COMSOL
Multiphysics 6.2 (Carlton et al., 2024a). For D1, the segmented MPI
data were used to represent theMION domain. However, for D2 and
D3 distributions, the spherical geometry of the MION domain was
assumed to have total volume equal to that used for the D1 MION
domain. The phantom subcutaneous tumor was partially embedded
in a cuboid for which we assumed physical and thermal transport
properties of the surrounding tissue phantom (cuboid) to be
equivalent to that of idealized muscle (Banura et al., 2016). The
details of the geometry, solver parameters, and phantom tumor
model with MION distributions are summarized in Tables 1, 2, and
represented schematically in Figure 1C, respectively.

2.5.2 Governing equations and boundary
conditions

To model transient heat transfer from MION heating in the
segmented subcutaneous tumor model, Pennes’ bioheat equation
(Pennes, 1948; Zhu, 2009) (Equation 2) was used in COMSOL
Multiphysics. Pennes bioheat equation assumes that all the domains
are solid, allowing the model to solve a single governing equation
instead of separate equations for heat conduction, mass
conservation, and fluid flow (Navier-Stokes) reducing
computational resources. Pennes’ bioheat transfer has been
previously verified with no perfusion and validated for thermal
therapies (Andrä et al., 1999; Fuentes et al., 2010). However, the
model is validated for microvasculature, it is not suitable for
domains with large blood vessels. The verification of the current
numerical solver is shown in Supplementary Material.

ρcp( )
n

∂Tn

∂t
� ∇ · kn∇Tn + 1 − ϵ( )ωbl,n ρcp( )

bl
Tbl − Tn( ) + Qm,n + QP

(2)
Here, bl and n represent blood and tissue (tumor, n = 1; muscle

tissue, n = 2), respectively. ρbl, cbl, ωbl,n, and Tbl denote density,
specific heat, perfusion rate, and temperature, respectively. ρn, cn, kn,
Tn,Qm,n denote the density, specific heat, thermal conductivity, local
temperature, and metabolic heat generation rate, respectively, for
either the tumor or healthy tissue, and t is heating time. The
adjustable equilibration parameter ϵ (ranging from zero to one)
was assumed to be uniform throughout the tissues ϵ � 0 in this
study, where QP represents the volumetric heat generated by the
MION domain.

To account for the effects of temperature on blood perfusion, a
modified Arrhenius perfusion (Kamal Kandala et al., 2019; He et al.,

2004; Schutt and Haemmerich, 2008) was considered (Equations
3, 4).

ωbl T( ) �
ωbi 30 × DS + 1( ), DS≤ 0.02( )
ωbi −13 × DS + 1.86( ), 0.02<DS≤ 0.08( )
ωbi −0.79 × DS + 0.884( ), 0.08<DS≤ 0.97( )
ωbi −3.87 × DS + 3.87( ), 0.97<DS≤ 1.0( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

DS � 1 − e
− A∫t

0
e
− Ea
RT τ( )dτ( )

(4)

Here, ωbi is the constant perfusion value [1/s] and DS is the
degree of vascular stasis. A represents the frequency or pre-
exponential factor [1/s], R is the universal gas constant [ J

K.mol],
T(τ) is absolute tissue temperature as a function of time, and Ea
is activation energy [ J

mol] as expressed in Equation 3.
Free-convection boundary conditions (Equation 5) were

assumed at all the outside boundaries of the tumor and muscle
tissue domains (Nellis and Klein, 2008):

q″ � hfree T − T∞( ) (5)

The ambient temperature, T∞, and free convection heat transfer
coefficient, hfree, were set to 20 [°C] and 3.7 [W/(m2·K)], respectively
(Banura et al., 2016). Continuity of the temperature and heat flux at
the domain interfaces was assumed. Muscle tissue boundaries were
distant from the tumor, that is, in contact with the rest of the body,
and the initial tissue and tumor temperatures were set to a
temperature, Tbody, of 37 [°C] (Figure 1C). The simulation was
run for 21 [min] and was followed by a 4-min cooling period.

The SLP range for this study was based on values obtained from
a review of literature for Synomag D70 (Carlton et al., 2024a; Carlton
and Ivkov, 2023; Carlton et al., 2023b; Ota et al., 2021). We selected
four increasing SLP values, 300, 400, 500, and 600 [W/g Fe], within
the range of reported values in order to determine the effect of SLP
on the intratumor temperature and thermal dose coverage.

The volumetric heat source used in this study is shown in
Equation 6:

QP � QP,i × P (6)
where QP[W× m−3] is the volumetric heat source, i represents the
three distributions D1, D2, and D3, respectively, and P is a
rectangular pulse of 60 [s] ON with 10 [s] OFF. The significance
of pulsed AMF in minimizing eddy current heating has been
previously described (Attaluri et al., 2020; Ivkov et al., 2005).

MION volume and heat input were conserved. The evaluation of
the heat source for D1 was obtained from the co-registered MR/CT
and MPI images. The volumetric heat source for D2 was obtained
using Equation 7:

QP,uniform � ∫∫∫ΩQP,in vivo dV

VMION
(7)

where QP,uniform[W× m−3] is the uniform volumetric heat source;
QP,in vivo[W× m−3] is the D1 volumetric heat source;Ω is the domain
of the MION obtained from the co-registered data; dV [m3] is the
infinitesimal volume element of the MION distribution; and
VMION[m3] is the total volume of MION mass for a uniform
distribution.

D3 is a Gaussian volumetric heat source that can be represented
as Equation 8 obtained from Equation 1,
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QP,gaussian � QP,gaussian,max ×
1

2π( ) 3 /2σxσyσz

× e
−1
2

x−μx( )2
σx2

+ y−μy( )2
σy2

+ z−μz( )2
σz2

( )( )

(8)
where QP,gaussian [W× m−3] is the Gaussian volumetric heat source;
QP,gaussian,max [W] is the peak value of the heat source in the D3;
μx [mm], μy [mm] and μz [mm] are the mean positions of the
D3 distribution in x-, y-, and z-axes; and
σx [mm], σy [mm]and σz [mm] are the standard deviations of the
distribution, which was assumed to be constant σ [mm].

The conservation of energy in distributions D2 and D3 is given
by Equation 9:

∫∫∫
Ω

QP,gaussiandV � ∫∫∫
Ω
QP,uniformdV (9)

D3 can be approximated three times the standard deviation of
the mean, as shown in Equation 10. All heat was assumed to be
distributed in the volume occupied by the MIONs,
therefore, 3 × σ � rMION,gaussian.

∫∫∫
μ+3σ

μ−3σ
QP,gaussiandV � ∫∫∫

∞

−∞
QP,gaussiandV (10)

Substituting Equation 9 into Equation 10, we obtain
Equation 11.

QP,gaussian, max � QP,uniform × VMION × 2π( ) 3 /2σ3

∫∫∫μ+3σ
μ−3σ e

−1
2

x−μx( )2+ y−μy( )2+ z−μz( )2
σ2

( )( )
dx dydz

(11)

Integrating Equation 11 and substituting the values from
Table 1, we obtain Equation 12.

QP,gaussian, max � 7.181 × QP,uniform (12)

Therefore, D3 was modeled as shown in Equation 13.

QP,gaussian � QP,gaussian,max ×
e−

1
2

x−μx( )2
σ2

2π( ) 1 /2σ ×
e−

1
2

y−μy( )2
σ2

2π( ) 1 /

2σ
×
e−

1
2

z−μz( )2
σ2

2π( ) 1 /2σ (13)

2.6 Data and sensitivity analysis

2.6.1 Thermal analysis
The temperature and CEM43 obtained from FEBHT

simulations were processed for all combinations of LVD and SLP
values. Three key metrics were analyzed: (1) the spatiotemporally
averaged temperature rise, denoted as the average ΔT; (2) the
temporal average of the spatial maximum temperature rise,
denoted as the maximum ΔT; and (3) the percentage of tumor
volume with CEM43 > 15 (min), referred to as thermal dose
coverage. In this case, ΔT refers to the overall temperature
change from the baseline temperature of 37 [°C].

These metrics were selected based on their relevance to energy
conservation and treatment precision. The average ΔT serves to
verify energy conservation across different distributions for a given
voxel size. It was anticipated that the average ΔT would differ

insignificantly among distributions due to non-linear perfusion
and uneven convective losses. The maximum ΔT was included
due to the reliance on point thermometry in current MNPH
systems for predicting treatment outcomes. Given the importance
of accurately predicting the maximum temperature, this metric was
prioritized to enhance the precision of predicted outcomes. Finally,
thermal dose coverage was selected as a quantitative measure of
treatment efficacy, since a thermal dose range of 15–60 (min) is
typically used as a clinical thermal dose objective for radiation
sensitization (Van Rhoon et al., 2013).

2.6.2 Criteria for sensitivity analysis
For our sensitivity analysis, we measured how the selected

metrics (2.6.1) changed when the LVD and SLP values were
varied. We first assumed the distribution with the highest LVD
(resolution of DICOM files from the MPI scanner) to be the “exact”
solution. As we decreased the LVD in subsequent simulations, we
recorded the value when simulation temperature exceeded a ±1 [°C]
deviation from the exact simulation or a ±5 [%] of the tumor volume
with CEM43 > 15 [min]. We denoted this as the minimum
acceptable LVD. This was repeated for each of our selected
SLP values.

2.6.3 Extrapolating data convergence using
logarithmic regression analysis

In addition to determining the minimally acceptable LVD from
the simulations, we also analysed data convergence. We used a
logarithmic regression to fit the data, as shown in Equation 14:

y � A ln LVD( ) + B (14)
where y represents the simulation metric. We extrapolated the
logarithmic fit to determine the theoretical LVD value where
convergence would occur. We defined the convergence criteria
using the simulation results from the lowest SLP condition [300
(W/g Fe)]. Using the log fits for the 300 [W/g Fe] datasets, we
calculated the LVD where the maximum ΔT and thermal dose
coverage exceeded ± 1 [°C] and ± 5 [%], respectively, for all the
distributions [LVD = 2.71 (mm/voxel)], which we denoted as
LVDsat. We then calculated the convergence slope at that point
for each distribution as shown in Equation 15:

dy

d LVD( )conv �
Asat

LVDsat
(15)

where dy
d(LVD)conv is the slope of the converged curve from Equation 14

and Asat is the saturated regression coefficient.
The logarithmic function for each SLP was extrapolated until the

slope was less than or equal to the convergence slope shown in
Equation 16. Using Equations 15, 16 we get Equation 17:

dy

d LVD( )i ≤
dy

d LVD( )conv (16)

LVDreqd,i ≥
LVDsat × Ai

Asat
(17)

where dy
d(LVD)i is the slope of the log function of the ith SLP [i = 400,

500 and 600 (W/g Fe)], LVDreqd,i is the required LVD for a given
SLP and distribution, and Ai is the regression co-efficient at ith SLP.
We recorded the LVD value where dy

d(LVD)i �
dy

d(LVD)conv, denoted as
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LVDreqd. After obtaining LVDreqd values, we plotted them with
respect to SLP and used linear and quadratic interpolation to
estimate the SLP value corresponding to the MPI scanner
resolution, LVD = 4.06 [voxel/mm], that would be required to
achieve those results.

2.6.4 Regression fitting
For all the data a weighted linear regression was performed for

data points that increased linearly. For all regression, a goodness of
fit lower than 0.95 a quadratic regression was used. It was anticipated
that MION concentration will be directly proportional to mean
voxel value and volumetric heat source will be directly proportional
to mean pixel values. Maximum ΔT, average ΔT and thermal dose
coverage were anticipated to converge to a certain value. Therefore, a
logarithmic fit was performed on these metrics.

3 Results

3.1 MPI voxel calibration

Using our MION MPI calibration data (shown in
Supplementary Figure S1 in Supplementary Material), we created
calibration curves for each SLP value, which yielded linear
relationships between volumetric heat generation and MPI mean
voxel value from weighted least square regression. The fitted slopes

[MW × (m3 × a. u.)−1] were fixed at the origin: 0.052 for 300 [W/g
Fe]; 0.069 for 400 [W/g Fe]; 0.086 for 500 [W/g Fe]; and 0.104 for
600 [W/g Fe] (Figure 2). Linear relationships were observed for all
SLP values.

3.2 Simulated temperature rise

For our thermal simulations, notable differences among the
MION distributions emerged. With regard to average ΔT
(Figure 3A), the D3 MION distribution had the highest
temperature, followed by D1 and D2; accumulated thermal dose
and associated dampening of perfusion-based convection resulted in
a gradual rise over time. D2 led to a greater volume of tumor
damage; thus, causing an increase in the rate of temperature change
after 13 (min). The maximum ΔT (Figure 3B) was greatest for the
D3 MION distribution, followed by D1 and D2, respectively, due to
high localized heating at the center of the tumor.

Thermal dose (Figure 3C) differed slightly among the three test
cases. Initially, D1 showed the greatest volumetric thermal dose,
followed by D3 and D2, respectively; however, by the end of the
simulated treatment time, D1 had the lowest accumulated thermal
dose with D3 and D2 having approximately the same thermal dose.
Inhomogeneous distributions of MIONs within the tumor produced
insufficient thermal dose in regions containing fewer MIONs.
D3 initially displayed a higher thermal dose because of the
higher temperature at the tumor center; however, the
D2 generated a more uniform temperature, leading to a higher
coverage index than that of the D3.

By the end of simulated heating [21 (min)], temperature
distributions across the phantom tumors and MIONs in three
planes (xy, yz, and xz) varied owing to tumor and MION
distribution inhomogeneities (Figure 3D). D2 and D3 showed a
maximum temperature at the center of the tumor, which
symmetrically decreased radially outward. However,
D1 developed the highest maximum temperature with an offset
to the center, as depicted in the xy and yz planes of the D1.

3.3 Effect of LVD on temperature and
thermal dose

The simulated maximum (Figures 4A–C) and average (Figures
4D–F) ΔT increased with LVD across all distributions. With
decreasing resolution, spatial information about the MION
distribution was lost. Areas containing high concentration of
MIONs (high temperature) blended with nearby voxels occupied
by lower concentrations of MIONs voxels as the voxel mesh was
coarsened. Taken to its extreme, the distribution would converge to
a single square voxel with an intermediate intensity and
temperature.

The thermal dose coverage was lowest for the D1 distribution,
which we attributed to its relatively higher heterogeneity, compared
to those generated numerically (Figures 4G–I). MIONs in the
D1 distribution appeared to be concentrated in the upper half of
the XZ plane. For all distributions studied and for values of SLP less
than 370 [W/g Fe], the coverage index approached convergence
across all the distributions; however, when SLP values rose above

FIGURE 2
Converting MPI voxel intensity to volumetric heat output. Based
on the MPI calibration samples, we first established a relationship
between mean MPI signal and concentration. After multiplying
concentration by SLP, the relationship provides a useful
conversion between MPI signal and volumetric heat output, which we
use in our simulations. The calibration curvewas obtained byweighted
least square regression with slopes [MW × (m3 × a. u.)−1] were fixed at
the origin: 0.052 for 300 [W/g Fe]; 0.069 for 400 [W/g Fe]; 0.086 for
500 [W/g Fe]; and 0.104 for 600 [W/g Fe]. The solid line represents the
regression fit with dotted line representing the 95 [%]
confidence interval.
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370 [W/g Fe], tumor coverage indexes failed to converge (Figures
4G–I). The thermal dose (CEM43) is exponential with respect to
temperature; thus, a small change in the predicted temperature
yields an exponential change in the thermal dose, producing a
significant effect on coverage index.

3.4 Minimum spatial resolution and
extrapolation

LVD values at which the simulated temperature and thermal
dose coverage exceeded our selection criteria [±1 (°C)
and ±5 (%)], decreased with SLP. For example, when SLP =
300 [W/g Fe], the ±1 [°C] threshold was exceeded at 2.84 [voxel/

mm], whereas for SLP = 600 [W/g Fe], this occurred at LVD =
3.60 [voxel/mm]. Extrapolating the logarithmic fits illustrates
how particle SLP can affect LVDreqd, i.e., the LVD required to
achieve convergence in thermal simulations (Figure 5). Here, we
assumed that LVD was saturated at LVDsat = 2.71 [voxel/mm] for
300 [W/g Fe]. Quadratic interpolation LVDreqd (Figure 5A)
revealed that particles having SLP values lower than 400 [W/g
Fe] were able to achieve temperature convergence within the
resolution limits of the Momentum MPI scanner used in this
study [LVD = 4.06 (voxel/mm)].

The predicted values of thermal dose coverage indicate that a
higher resolution would be needed to achieve convergence
(Figure 5B), which arises from the exponential relationship
between thermal dose and temperature. Results obtained from

FIGURE 3
Distribution comparison at SLP of 600 [W/g Fe] and LVD of 4.06 [voxel/mm] [66.92 (voxels/mm3)] across the three distributions. (A) Predicted
maximum ΔT for distributions D1, D2, and D3 as shown in Figure 1A. (B) Predicted average ΔT for three distributions. (C) Predicted thermal dose coverage
for distributions D1, D2, and D3, respectively. (D) Temperature distribution at the end of the heating cycle of 21 [min] in the three planes (xy, yz, and xz) for
the three distributions at an SLP of 600 [W/g Fe] and LVD of 4.06 [voxel/mm] [66.92 (voxel/mm3)].
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a quadratic interpolation, predicted that simulations conducted
using SLP values between 300 and ~370 [W/g Fe] would achieve
convergence within the capabilities of the MPI scanner LVD used
for this study. The thermal dose coverage for D2 required to
achieve convergence was ~0 when with SLP = 300 [W/g Fe]
(Figure 4H). This resulted in Asat ~0. For that reason, we
discontinued further analysis of LVDreqd (Figure 5B) for D2.
We concluded that thermal dose coverage for this diffused heat
source was ~0 because an SLP of 300 [W/g] (or less) was

insufficient to generate sufficient energy to maintain a
temperature gradient that would manifest a significant thermal
dose over the volume of tumor. On the other hand, the predicted
minimum resolution required to achieve thermal dose coverage
of ± 5 [%] for the other MION distributions depended on MION
heat output (SLP). Minimum required spatial resolution to
achieve convergence for D1 was LVDreqd = 7, 11 or 16; and
for D2, LVDreqd = 7, 11 or 23 [voxel/mm] with MION SLP = 400,
500 or 600 [W/g Fe], respectively.

FIGURE 4
Simulated temperatures and thermal dose as a function of LVDwith a logarithmic fit at different SLP’s across distribution. Predictedmaximum ΔT (A)
D1 (B) D2 (C) D3. Predicted average ΔT (D) D1 (E) D2 (F) D3. Predicted thermal dose. (G) D1 (H) D2 (I) D3.
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4 Discussion

MNPH offers many advantages in thermal medicine because the
heat source (s) (nanoparticles) can be embedded in the target tissue
and remotely activated. The nonlinear hysteresis response of some
magnetic iron oxide nanoparticle (MION) formulations that
generate heat in response to AMF enables control of the energy
deposited in the tumor with amplitude adjustments. Challenges
associated with MNPH arise from the dependence on MION
concentration and distribution in tissue, and on the biological
response (s) to heat, which depends on the duration of exposure
to temperature. Time of exposure at temperature defines the thermal
dose, and the thermal dose achieved in the tumor versus the
surrounding tissues determines the therapeutic ratio.

Unpredictable (and uncontrollable) distributions and
concentrations of MION deposits in tumors occur during and
after delivery. As MIONs are a source of heat, their
concentration in the tissue, and to a lesser extent, distribution in
the tumor defines how much energy can be deposited. AMF
amplitude adjustments during treatment can directly influence
heating and tissue temperature rise. Thus, the operator can
control energy deposition (provided sufficient MION content)
and the temperature achieved in tissue. The ability to control
energy deposition so that it conforms to a prescribed treatment
plan requires knowledge ofMION content and distribution in tissue,
accurate thermometry in real time during treatment, and a
treatment plan that accurately models tissue response to energy
inputs. Other energy-based interventions such as radiation therapy
require prescriptive treatment plans to ensure adequate patient
safety and quality assurance of treatments. These are generated
by computational models anchored on anatomical imaging data.

MPI can provide information of MION distribution and content
in tissues without interference or ambiguities arising from
anatomical features and variation, such as tissue density,
composition (e.g., bone, fat, muscle), or air-filled volumes (e.g.,
lungs). MPI data, however, must be co-registered with anatomical
imaging data provided by another modality to enable treatment

planning. Co-registration of MPI images could lead to errors/
uncertainties that need to be eliminated or reduced as much as
possible. Co-registration of the MPI and CBCT images ultimately
relies onmanual selection and alignment of the fiducials in 3D space,
which depends on operator judgement and skill. Variations in
resolution between the MPI and anatomical images could lead to
uncertainty in the transformation as well. MPI on the human scale
could introduce additional motion artifacts, when compared to
small animal imaging, since imaging of humans would likely not
involve immobilization by anesthesia.

Assuming that the computational model used to develop the
treatment plan can accurately capture essential biological and
physical processes associated with MNPH, the simulations must
ensure that energy is conserved across all potential MION
distributions encountered. Average ΔT can be used as a surrogate
to provide reasonable estimation to ensure energy conservation as
energy absorbed by tissue will produce a temperature change. Values
of average ΔT’ calculated using the highest resolution tested here
[LVD = 4.06 (mm/voxel)] were ΔT’ = 7.58, 7.03, and 7.63 [°C] for
MION distributions D1, D2 and D3, respectively. Small changes in
average ΔT can be attributed to convective losses resulting from
non-linear perfusion and uneven convective losses from
the boundary.

The resolution of MPI data defines both the reliability of the
predictions and the computational demands required to complete
the computations. Sensitivity analyses can aid in predicting
uncertainty. In the present context, sensitivity analysis can
increase confidence in predictions obtained from the
computational models by exploring how the predicted values
depend on relevant biological phenomena, such as blood
perfusion and thermophysical parameters that can vary
substantially. Some of these input parameters can also vary
during treatment, which further limits accuracy of treatment
planning. Sensitivity analyses of many parameters have been
described for hyperthermia treatment; however, the effect of
image resolution quality in hyperthermia treatment planning has
received much less attention because direct thermal dosimetry

FIGURE 5
Required LVD (LVDreqd) for simulation convergence. Relationship between LVDreqd and SLP, where themaximum LVD with our current MPI scanner
is shown with the red dashed line. (A) Maximum ΔT (B) Thermal dose coverage.
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remains a practical challenge to implement in clinic, thus most
current clinical hyperthermia technologies are based on tissue
energy absorption.

It is unsurprising that requirements for MPI voxel resolution
depend on MION SLP to enable precise tissue heating predictions
for MNPH. Low values of SLP produce less heating, which requires a
lower degree of computational fidelity to calculate temperature
gradients in small volumes of a phantom tissue. Blood perfusion
further decreases temperature gradients, reducing demands on
computing resources to account for sharp temperature changes
in small tissue volumes, thus relaxing constraints on minimum
voxel resolution to accurately predict temperature changes. On the
other hand, practitioners using MIONs having low SLP may attempt
to compensate by increasing the dose of MIONs delivered. Higher
tissue concentrations of MIONs can introduce additional
complexities by increasing potential for MPI signal saturation
and leakage of MIONs out of the tumor. The former reduces
MPI accuracy in regions containing high MION concentrations,
whereas the latter imposes new demands on MPI spatial accuracy
outside the target volume and raises risks of off target heating and
damage to normal tissues.

Our results and analysis predict that MIONs having high SLP
will impose requirements for greater spatial/voxel resolution from
MPI data, especially in regions containing higher concentrations of
MIONs because these regions will manifest sharp temperature
gradients. For this reason, both MPI and computational
modeling require higher spatial accuracy (density) to account for
the higher energy density, i.e., Watts per unit volume of tissue, to
ensure accurate temperature predictions. Accurate temperature
prediction is essential for reliable MNPH treatment planning
because reliability of treatments depends on achieving a faithful
match of delivered dose to that prescribed. For thermal therapies, the
dose is defined as duration of exposure to a defined temperature.
Given the exponential relationship between temperature and
thermal dose, a small deviation in the temperature substantially
affects the total thermal dose. As results indicate, dosage in MNPH
varies upon the distribution assumed for the computational
simulations. Heterogenous deposition of thermal dose, such as
that observed in vivo (D1) are expected to generate a lower
coverage index; whereas, distributions displaying more
homogenous and tumor-centered MION content, yielded a
higher coverage index. In the present study for instance, MIONs
in D1 had lower CI as they were more concentrated on top of the XZ
plane of the tumor, whereas homogenous distributions D2 and
D3 yielded lower values of CI.

Though higher concentrations ofMIONsmay not be required in
cases, the inevitable heterogeneity of MION distribution in tissue
may yield regions that saturate MPI signal. These areas are likely to
manifest as “hotspots” that ablate tissue and raise risks of “runaway”
heating that increase toxicity. Current small animal preclinical
scanners lack both spatial resolution and dynamic range to
accurately image MIONs at the concentrations used for MNPH,
and to accurately predict tissue heating in small volumes, especially
for MIONs having SLP values exceeding 370 [W/g Fe].

Ultimately, the two main sources that define MPI resolution are
the maximum magnetic field gradient (s) achieved by the scanner,
and themagnetic properties of theMIONs. Small animal pre-clinical
scanners currently achieve high gradient fields [>5 (T/m)] because

the distance from the magnet to the sample is short, enabling higher
spatial resolution (sub-millimeter range). Nanoparticles that
generate a high intensity signal with a point spread function
(PSF) width of 5–10 [mT] are needed to realize this potential
resolution. As the size of scanners increases for clinical
applications, the same gradient field (s) at the sample (patient)
may prove impractical or unachievable, reducing spatial resolution.
With a bore size large enough to accommodate a human head, the
maximum achievable gradient field using the same magnet
technology used in small animal scanners would be reduced by
an order of magnitude (~0.1–0.5 T/m) (Graeser et al., 2019).
Assuming particles with ideal MPI properties [PSF < 10 (mT)], a
clinical scanner would provide centimeter scale resolution. One
might assume that the ensuing loss of spatial resolution
accompanying a transition to clinical size scanners would reduce
accuracy of MNPH treatment planning simulations; however, our
data show that precision from simulations depends on the
combination of MION heat output (SLP) and spatial resolution
of imaging data. Reasonable precision of temperature predictions
obtained from MNPH simulations can be achieved from data
obtained from MPI scanners having moderate resolution
provided SLP is within a similarly moderate range.

More to the point, the effect of imaging data resolution on the
precision of MNPH simulations depends on both nanoparticle
distribution in tissue and their heat output. For non-uniform
distributions (D1 and D3), our results show that MIONs
displaying intermediate values of SLP [~100–300 (W/g Fe)]
within clinically safe AMF parameters {Atkinson criteria: H × f ≤
4.85×108 [A/(m × s)]} were adequate to achieve the imposed criteria
(Atkinson et al., 1984). On the other hand, simulations using a
uniformMION distribution failed to predict adequate thermal dose,
except when MION SLP was high [>300 (W/g Fe)]. Assuming a
uniform MION distribution in simulations of MNPH has been a
common practice. Results obtained from such simulations therefore
must be interpreted carefully because they overestimate
requirements of minimum SLP, and evidence shows such
uniformity of MION distributions in tissues is likely unrealistic
(Attaluri et al., 2011a; Attaluri et al., 2011b). Uniform MION
distributions ought to be used sparingly in simulations of MNPH.

5 Summary and conclusion

The reliability of computational predictions of tissue
temperature arising from MNPH have historically been a
challenge because conventional clinical imaging modalities
provide limited information on MION location and content in
tissue to anchor models. MPI provides a new capability with
potential to improve MNPH by enabling more reliable treatment
plans. The reliability of tissue temperature predictions depends on
the spatial resolution defined by the imaging data used as the input.
An increased resolution is expected to enhance the reliability of
predictions, but the increased resolution also increases the demand
for data storage and computational resources. To determine the
limits of spatial resolution needed to balance computational
demands with reliable temperature predictions, we conducted a
sensitivity analysis of the effect of voxel size on predicted
temperature and thermal dose using a phantom tumor and
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MIONs based on an experimental syngeneic subcutaneous murine
tumor model. We determined that spatial resolution requirements
depended on MION heating output or SLP. MIONs having lower
values of SLP required a minimum spatial resolution of 2.71 [voxel/
mm] [19.90 (voxel/mm3)]. Simulations having lower resolution
underestimated temperature predictions. However, MIONs
having higher SLP required values of spatial resolution exceeding
capabilities of current small animal preclinical MPI scanners to
predict temperature and thermal dose within the imposed criteria.
Study results generally aligned with expectations, but a surprising
finding was that a uniform distribution (D1) amplified the
resolution needed to predict the temperature within ±1 [°C] and
raised minimum SLP needed to provide meaningful thermal dose
coverage. We note that many in silico studies of MNPH, used to
guide MION development, have assumed a uniform distribution of
heat sources in phantom tumors. The future clinical application of
MPI technology will enhance understanding of its capabilities and
limitations, refining its role in guiding MNPH. Efforts should
address the challenges of MNPH optimization, including
balancing MION heat production (SLP), delivery and dosing,
MPI scanner resolution, computational demands, and clinical
constraints, to develop a practical workflow using diverse tumor
models. Studies must systematically examine how input parameter
uncertainty affects the credibility of image-based simulations.
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