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With the increase in the integration of renewable sources, the home energy
management system (HEMS) has become a promising approach to improve grid
energy efficiency and relieve network stress. In this context, this paper proposes
an optimization dispatching strategy for HEMS to reduce total cost with full
consideration of uncertainties, while ensuring the users’ comfort. Firstly, a HEMS
dispatching model is constructed to reasonably schedule the start/stop time of
the dispatchable appliances and energy storage system tominimize the total cost
for home users. Besides, this dispatching strategy also controls the switching time
of temperature-controlled load such as air conditioning to reduce the energy
consumption while maintaining the indoor temperature in a comfortable level.
Then, the optimal dispatching problem of HEMS is modeled as a Markov decision
process (MDP) and solved by a deep reinforcement learning algorithm called
deep deterministic policy gradient. The example results verify the effectiveness
and superiority of the proposed method. The energy cost can be effectively
reduced by 21.9% at least compared with other benchmarks and the indoor
temperature can be well maintained.
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1 Introduction

1.1 Background

The rapid increase in population growth and energy consumption has brought about
many environmental problems such as global warming (Weil et al., 2023) and energy crisis
(Hafeez et al., 2020a). Among all energy consumption, household energy consumption is an
important component (Zhang et al., 2023). To optimize the energy structure of households
and reduce energy consumption, energy consuming equipment such as rooftop
photovoltaics (PV), heat pumps, electric vehicle (EV), and batteries have been widely
promoted. With the rapid increase in the number of distributed PV (Li et al., 2024) and EVs
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(Yin and Qin, 2022), home energy systemmanagement (HEMS) has
become the most important aspect of achieving demand-side energy
management in smart grids (Hafeez et al., 2021; Huy et al., 2023).
The HEMS can make decisions for demand response based on
current electricity prices, predicted photovoltaic output, user
preferences, and device characteristics, achieving intelligent
scheduling of home equipment and reducing electricity costs
(Kikusato et al., 2019; Gomes et al., 2023). The HEMS is a key
component in achieving zero-energy homes and has the potential
for widespread application in residential distribution systems. The
scheduling strategies used in HEMSmainly include real-time energy
allocation, day ahead scheduling, and closed-loop energy
management. Among them, day ahead scheduling can reduce
computational complexity and improve computational efficiency,
which is widely accepted and applied (Ren et al., 2024).

1.2 Related works

There are lots of related work have been conducted based on
HEMS. Liu et al. in (Liu et al., 2022) proposes a HEMS for residential
users that incorporates the uncertainty of data-driven results to
achieve the best trade-off between electricity cost and the preference
level. Tostada-Veliz et al. in (Tostado-Véliz et al., 2022) develops a
HEMS that includes three novel demand response routines focused
on peak clipping and demand flattening strategies. Chakir et al. in
(Chakir et al., 2022) propose a management system for a future
household equipped with controllable electric loads and an electric
vehicle equipped with a PV–Wind–Battery hybrid renewable system
connected to the national grid. However, these studies only consider
the dispatch strategy of single type of load, which may not in line
with real usage scenarios. In the real home energy system, there are
multi-types of loads, such as dispatchable load and non-dispatchable
load, all these types loads should be considered in the constructed
system. To this end, Rehman et al. in (ur Rehman et al., 2022)
proposed a holistic method to optimize the use of different types of
home appliances according to the prosumers preferences and
defined schedule. Dorahaki et al. in (Dorahaki et al., 2022)
presents develop a behavioral home energy management model
based on time-driven prospect theory incorporating energy storage
devices, distributed energy resources, and smart flexible home
appliances, which considers the dispatch of different types of
appliances. Nezhad et al. in (Esmaeel Nezhad et al., 2021)
proposes a new model for the self-scheduling problem using a
home energy management system (HEMS), considering the
presence of different types of loads, such as an air conditioner
and EV. When temperature-controlled load such as air conditioner
contained in the HEMS, the users’ comfort should be considered in
the dispatch strategy. Song et al. in (Song et al., 2022) presents an
intelligent HEMS with three adjustable strategies to maximize
economic benefits and consumers’ comfort. Youssef et al. in
(Youssef et al., 2024) proposes strategies that are evaluated in
terms of consumer comfort, and cost, with waiting time used to
assess user comfort. Once the users’ comfort is taken into account,
the single objective optimization will change into a multi-objective
optimization. It is difficult and important to balance performance of
different objectives to obtain the optimal dispatch strategy in the
multi-objective optimization. To this end, several studies (Ullah

et al., 2021; Alzahrani et al., 2023) are proposed for tackling
this problem.

Then, how to obtain the optimal dispatch strategy of the
HEMS is a crucial problem (Xiong et al., 2024). Normally, the
optimization-based methods such as stochastic programming
method (SP) (Hussain et al., 2023) and robust optimization
method (RO) (Wang et al., 2024) are utilized to solve the
optimization problem of HEMS. Tostado et al. in (Tostado-
Véliz et al., 2023a) develops a novel SP-based home energy
management model considering negawatt trading. Kim et al.
in (Kim et al., 2023) proposes an SP-based algorithm to
reduce computation time while preserving the stochastic
properties of generated scenarios based on the Wasserstein-1
distance. Nevertheless, the SP-based method requires both vast
computational ability and accurate distribution of random
variables that may not be realized in practice (Xiong et al.,
2023a). In this context, the RO-based methods are widely
applied. Tostado et al. in (Tostado-Véliz et al., 2023b)
proposes a fully robust home energy management model,
which accounts for all the inherent uncertainties that may
arise in domestic installations. Wang et al. in (Wang et al.,
2024) proposes a multi-objective two-stage robust
optimization to address the inherent uncertainty of DES,
aiming to concurrently realize energy savings, carbon emission
reduction, and load smoothing. However, the optimization
results calculated by RO method are usually conservative and
utilize only one dispatch solution to deal with all uncertainties of
whole dispatch period. To this end, the learning-based methods
have been utilized to solve this problem (Hafeez et al., 2020b; Ben
Slama and Mahmoud, 2023; Ren et al., 2024).

To bridge these gaps, this paper proposes an optimized
scheduling model for home energy management to minimize the
electricity cost with consideration of users’ comfort. Then, a novel
deep reinforcement learning (DRL) based algorithm is utilized to
deal with the uncertainties. The main contributions of this paper are
summarized as follows:

1) This paper develops an optimized scheduling model for home
energy management to schedule both interruptible load and
uninterruptible load, which takes consideration of time-of-use
price and users’ comfort. Different from the Refs. (Chakir et al.,
2022; Tostado-Véliz et al., 2022), The optimized strategy for
scheduling multi types of loads based on the time-of-use
electricity price and real-time energy storage system
charging status, which can reduce user electricity costs
while ensuring users’ comfort.

2) The optimization problem of the HEMS is modeled as a
Markov decision process (MDP) and then solved by deep
deterministic policy gradient (DDPG) algorithm. Moreover,
compared with the optimization-based methods in Refs.
(Hussain et al., 2023; Wang et al., 2024; Xiong et al., 2024),
the applied DDPG method can achieve fast decision making
since the learned policy can be generalized to other situations
without resolving the optimization model after the agent
is trained.

The following sections are organized: The proposed system is
described in detail in Section 2. The mathematical modeling
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and optimization algorithm are discussed in Section 3.
Section 4 presents and analyzes the simulation results
obtained for the proposed system. The paper concludes
in Section 5.

2 System model

Themodelled HEMS architecture is shown in Figure 1. It can
be obtained that the constructed system includes HEMS, PV,
energy storage and different types of loads. Note that the load
can be divided into dispatchable load and non-dispatchable
load. Besides, the dispatchable can be further divided into
interruptible load and uninterruptible load, which are
specifically shown in the Figure 1. The HEMS updates
electricity prices, weather, and other information in real
time. The HEMS controller is the core component of the
entire system, which collects information from upper-level
suppliers such as daily electricity prices and household load
usage preferences, and calculates the most economical
scheduling strategy based on various constraints. In this
paper, the HEMS is modelled as a DRL agent for improving
the control efficiency.

2.1 PV model

To construct the model of PV, temperature and light radiation
intensity are the key factors for determining the output of PV (Xiong
et al., 2023b). These factors can be represented in the
following model:

PPV,t � PPV,rated
G

GSTC
1 − k Tc − Tr( )( ) (1)

where PPV,rated is the rated output of PV in the normal operating
condition; Tr is the rated temperature under normal test
conditions. G, k and Tc are the light radiation intensity,
power temperature coefficient, and atmospheric temperature,
respectively. The details of parameters of the PV model are
shown in the Table 1.

FIGURE 1
Structure of the constructed home energy system.

TABLE 1 Parameters of PV model.

Parameter Value Parameter Value

GSTC 1,000 W/m2 k 0.005

Tr 25°C PPV,rated 5.2 kW

Frontiers in Thermal Engineering frontiersin.org03

Pan et al. 10.3389/fther.2024.1391602

https://www.frontiersin.org/journals/thermal-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fther.2024.1391602


2.2 Load model

The household electricity load can be divided into dispatchable
load, non-dispatchable load, and temperature-controlled load based
on the degree of controllability (Hafeez et al., 2020c).

2.2.1 Non-dispatchable load
The non-dispatchable load refers to a load does not adjust

operating power or operating time, such as lighting fixtures,
televisions, etc. Thus, the non-dispatchable load does not
participate in scheduling, but is directly incorporated into the
total energy consumption as an important load.

2.2.2 Dispatchable load
Dispatchable load refers to the load with certain elasticity time,

which can participate in system dispatching, such as sweeping
robots, dryers and other equipment. Dispatchable load can only
be started and stopped within the specified operation time, and all
other times are closed. The specific constraints are as follows:

SA,t � 0, 1{ }, t ∈ tstart, tstop[ ]
SA,t � 0, t ∉ tstart, tstop[ ]
1≤ tstart ≤H − ta + 1
ta ≤ tstop ≤H

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2)

where SA,t is the auxiliary variable of the dispatchable load
equipment. When SA,t is 1, the equipment is turned on, and
when SA,t is 0, the equipment is turned off; tstart, tstop represent
the starting and ending times of the operating range of dispatchable
load equipment; ta is the rated working time of the dispatchable
load; H is the number of sub time periods with equal time length. In
this article, a day is divided into 24 parts, that is, H is 24, per unit
time period Δt � 1.

Furthermore, the dispatchable load can be divided into
interruptible load and uninterruptible load. The interruptible load
can be modelled as:

Ein,i � ∑tstop,i
t�tstart,i

Pin,iSin,i,t (3)

where the subscript in represents interruptible flexible loads; Ein,i is
the total rated energy consumption of device i; Pin,i is the unit time
power of device i.

The mathematical model for uninterruptible flexible loads is:

∑τ+tun,i
t�τ+1

Sun,i,t ≥ tun,i Sun,i,τ+1 − Sun,i,τ[ ], τ ∈ tstart,i − 1, tstop,i − tun,i[ ] (4)

where the subscript un represents uninterruptible loads; τ is the time
node. Eq. 4 indicates that if device i starts working at time τ+1, it
must continue working for at least tun,i periods.

2.2.3 Temperature-controlled load
Temperature-controlled load refers to household equipment with

indirect energy storage characteristics, such as air conditioning. The
comfort index for residents in this paper is indoor temperature, so the
following constraints need to be met (Dongdong, 2020):

Tmin ≤Ti,t ≤Tmax (5)

where Ti,t is the indoor temperature; Tmin and Tmax are the
minimum and maximum indoor temperatures allowed,
respectively.

Due to changes in outdoor temperature, it is not possible to
directly set the rated operating time of the air conditioner. Its
thermo-dynamic model and working time model can be
expressed as:

Ti,t+1 � 1 − e−
Δt
RC( ) To,t − RPCSC,tΔt[ ] + e−

Δt
RCTi,t (6)

tC � ∑tstop,air
t�tstart,air

SC,t (7)

where To,t is the outdoor temperature; C is the equivalent thermal
capacitance; R is the equivalent thermal resistance; PC is the rated
operating power of the air conditioner; SC,t is the operating status of
the air conditioner throughout the entire working range, with the air
conditioner on as 1 and the air conditioner off as 0; tstart,air and
tstop,air represents the start and end times of the air conditioning
operation interval; tC is the working time, determined by specific
working conditions.

2.3 Battery model

Energy storage devices participate in scheduling through
charging and discharging, balancing power fluctuations and
improving system flexibility. This article reflects the remaining
capacity of energy storage devices through the State of Charge
(SOC), which can be expressed as:

SOCB,t � SOCB,t−1 + Pc,tηc/cap − Pd,t/ cap · ηd( )( )Δt (8)
0≤Pc,t ≤Pc,max

0≤Pd,t ≤Pd,max
(9)

SOCB,min ≤ SOCB,t ≤ SOCB,max (10)
where SOCB,t represents the SOC of the battery at the time-step t;
Pc,t and Pd,t are the charge and discharge power of the battery at the
time-step t; ηc and ηd are the charge and discharge efficiency at the
time-step t; SOCB,min and SOCB,max are the minimum and
maximum of the state of charge; cap is the rated power of the
battery. The details of parameters of the battery model are shown in
the Table 2.

2.4 Problem formulation

To meet the power balance needs of household residents and the
demand for excess photovoltaic power grid, HEMS needs to interact
with the power grid for energy exchange, which can be expressed as:

TABLE 2 Parameters of battery model.

Parameter Value Parameter Value

ηc 0.9 ηd 0.9

SOCB,min 0.2 SOCB,max 0.9

cap 3 kWh

Frontiers in Thermal Engineering frontiersin.org04

Pan et al. 10.3389/fther.2024.1391602

https://www.frontiersin.org/journals/thermal-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fther.2024.1391602


PL,t � PM,t + PCSC,t + ∑m+n

i�1
PA,iSA,t (11)

PG,t � PL,t − PP,t − PB,tSB,t − PE,tSE,t (12)
where PL,t is the total power of the load; PA,t, and PM,t represent the
power of dispatchable loads and non-dispatchable loads,
respectively; PG,t is the interaction energy with the power grid;
SE,t is the EV switch state.

This paper aims to minimize the total cost with consideration of
comfort, so the optimization objective can be formulated as:

minCG − βCcom (13)
CG,t � PG,tRb,t, PG,tP0
CG,t � PG,t

∣∣∣∣ ∣∣∣∣CP,t, PG,t < 0{ (14)

Ccom � 1 − tsi − Tsi( )
ΔTi

(15)

Where CG,t is the cost generated by the interaction energy between
the system and the power grid; Rb,t is the real-time electricity price
prediction information (RTP) for the day ahead; CP,t is the electricity
price for photovoltaic surplus electricity; β is a weight coefficient, which
aims to balance the energy cost saving and maintenance of user’s
comfort during the optimization process. Ccom is the index of comfort;
tsi represents the actual starting time of the electrical appliance; Tsi

represents the desired starting time; ΔT is the allowed working time.

3 Applied deep reinforcement
learning algorithm

In this paper, a novel DRL algorithm called deep deterministic
policy gradient (DDPG) is applied to solve the optimization problem
for improving the solving efficiency (Shi et al., 2023).

3.1 Formulate the optimization problem as
an MDP

When applying the DRL algorithm, the optimization problem
should first be modeled as aMarkov Decision Process (MDP), which
can be expressed as follows:

State set S: the state set is composed of the state of agent at each
time-step t, which can be represents S � (s1, s2, ..., st). The state of
agent at each time-step t can be denotes as:

st � PPV,t, Pfix,t, Pin,t, Pun,t, SOCB,t, SOCEV,t, Ti,t, Rb,t, CP,t( ) (16)

where Pfix,t is the non-dispatchable load at time-step t.
Action set A: the action set is composed of the action of agent at

each time-step t, which can be represents A � (a1, a2, ..., at).
a t( ) � αin,t, αun,t, αair,t, PSOC,t, PEV,t( ) (17)

where αin,t, αun,t, αair,t are the switching variables of interruptible
load, uninterruptible load and air conditioning, respectively; PSOC,t

is the action of battery at the time-step; PEV,t is the action of battery
at the time-step.

Reward function R: The reward at time t r(t) represents an
immediate reward, which is obtained when the agent executes action

a(t) based on state information s(t). The real-time reward can be
formulated as:

r t( ) � − CG − βCcom( ) (18)

Transition Probability P: once the current information (such as
a(t), s(t)) is determined, the probability of transitioning to the next
state s(t + 1) is fixed.

3.2 Applied the DDPG algorithm to solve
the MDP

Then, the modeled MDP can be solved by proposed DDPG
algorithm to obtain the optimal dispatch strategy, which is
illustrated in Figure 2. The DDPG algorithm, as an advanced
deep reinforcement learning algorithm, is very suitable for
solving complex multidimensional optimization problems in
continuous action spaces (Zheng et al., 2023). In the DDPG
algorithm, the policy function maps the state to the expected
output, while the critical function maps the state and action to
the expected maximum output Rt, which maximizes the action value
function Qπ(st, at). The calculation formula for the action value
function Qπ(st, at) is as follows:

Qπ st, at( ) � Eπ G st, at( ) + γEat+1~π Qπ st+1, at+1( )[ ][ ] (19)

The DDPG algorithm is based on the actor critic framework,
which consists of twomain parts (actor network and critic network),
with each part containing two networks (i.e., the main network and
the target network). The actor network adjusts the value of the
parameters θμ in the policy function μ(s|θμ) by fitting the current
state to the corresponding actions. The critic network is used to
adjust the value of the parameters θQ in the action-value function
Q (s,a|θQ).

The parameters θQ in the critic network are updated by
minimizing the value of the loss function ✓(θQ), which is
expressed as follows:

E s,a( ) Q st, at
∣∣∣∣θQ( ) − yt( )2[ ] (20)

where yt � rt(st, at) + γQ(st+1, μ(st|θμ)|θQ).
In the actor network, the parameters θμ are updated through the

policy gradient function as follows:

∇θμJ
θμ ≈ Est~ρβ ∇θμQ s, a

∣∣∣∣θQ( ) ∣∣∣∣∣ a�μ s|θμ( )∇θμμ s|θμ( )[ ]
� Est~ρβ ∇aQ(s, a θQ)∣∣∣∣∣ ∣∣∣∣∣a�μθ s( )∇θμμ s|θμ( )[ ] (21)

where ρ represents the discount factor; β represents the specific
strategy corresponding to the current policy π.

In order to improve the stability and reliability of the learning
process of the DDPG algorithm, two different target networks are
added to the actor network and the critic network, respectively. They
are the target actor network μ’ (s|θμ’) and the target critic network Q’
(s, a|θQ’). In each iteration, the weight factors (θμ’ and θQ’) will be soft
updated according to the following formulas:

Soft update θQ′ ← τθQ + 1 − τ( )θQ′
θμ′ ← τθμ + 1 − τ( )θμ′{ (22)
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where τ represents the soft update coefficient, and τ<< 1.
The specific training process of the proposed algorithm is

described in Algorithm 1, which is shown as below:

1: Input: states of agent st.

2: Output: action of agent at.

3: Initialize: the weights of actor and critic networks

θQ and θμ; the weights of target networks θ
�Q

, θ
�μ

.

4: for episode = 1 to max episode do

5: Initialize Environment

6: for time step = 1 to max step do

7: Select action a(t) based on Qπ(· |s(t)).
8: Execute the actions and obtain the reward r(t),

observe the set of next state s(t + 1).
9: Store the transition pair (s(t),a(t),r(t),s(t + 1))

in the replay buffer.

10: end for

11: If time step >= update step do

12: Sample a mini-batch transition from the

replay buffer.

13: Minimize the loss function to update the weights

of critic network θQ as Eq. 20 shows.

14: Update the weights of actor network θμ by

computed the policy gradient based on Eq. 21.

15: Update the weights of target networks based on

Eq. 22.

16: end if

17: end for

Algorithm 1. Training procedures of proposed DDPG method.

4 Cased study

4.1 Case setting

To verify the effectiveness of the proposed method, a smart home
energy system is constructed. The simulation period is set as 1 day
with 24 h from 00:00–24:00. There are six dispatchable devices in the
home, which are shown in the Table 3. Note that the superscript “*” in
the first column of Table 1 indicates the household appliance is an
uninterrupted load. The PV generation and non-dispatchable load are
shown in the Figure 3. The capacity of battery is 3 kWh, while the
charging/discharging efficiency is 0.95. The minimum and maximum
of the state of charge SOCmin and SOCmax are 0.2 and 0.9. To meet
comfort constraints, the indoor temperature must be limited between
25°C and 27°C when the air-conditioning is running. The simulation
model is constructed in MATLAB 2018b and the training procedure
of DRL method is conducted in Python based on a workstation
computer with 32 GB RAM and Intel Core i9-10920X CPU.

4.2 Optimization results obtained by the
applied DDPG method

To obtain the optimal dispatch strategy of HEMS, the DDPG
algorithm is applied. The hyper-parameters of the agent are set as
the Table 4 shown. The total training episodes is 8,000 for ensuring
convergence of agent. Besides, the learning rate of actor and critic
network are set as 0.002 and 0.001 for ensuring the exploring ability
and decision-making ability, respectively. The soft update coefficient
and batch size are set as 0.001 and 256 to stable the training process.

FIGURE 2
Flow chart of the applied DDPG algorithm.

Frontiers in Thermal Engineering frontiersin.org06

Pan et al. 10.3389/fther.2024.1391602

https://www.frontiersin.org/journals/thermal-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fther.2024.1391602


At each episode, the agent gets current state from the
constructed home energy system, and then give the decided
action back. The changes of reward of the applied DRL method
during the whole training episodes is illustrated in the Figure 4. It
can be obtained that the reward stays in a low range with an
average value −21 in the first 2000 episodes, which indicates that
the agent cannot finds the optimal policy for HMS dispatching.
Then, the reward rises gradually to −14 and then converges
to −13 after the ceaseless interaction between agents and
environment, which means the agent can obtain better strategy
for dispatching the system.

After the agent is well-trained, the optimal energy
management strategy for HES can be obtained. The results of
the dispatch optimization for devices are presented in Figure 5.
The needs of non-dispatchable devices are satisfied first. Then,
the dispatchable devices should be dispatch with consideration of
the real-time electricity price and permitted working interval of
each device. It can be observed that all the uninterruptable
devices are scheduled at a relatively low price point for saving
the total cost. For example, the work time-point of washing
machine is scheduled at 19:00 and 20:00 caused by the low
price. Thus, the dispatch strategy of the uninterruptible
devices is quite reasonable.

Furthermore, the interruptible devices can be dispatchable at
discontinuous time-point, whose dispatch strategy can be more
flexible. When dispatching the interruptible devices, the system
cost should be the first and only consider factor. It can be obtained
that the EV and Ebike are scheduled to charge during the 00:00–06:
00 cause the lower electricity price. Therefore, both the
interruptible and uninterruptible devices can be reasonably
scheduled after the agent is well-trained, which means that the
proposed method can effectively realize the HEM
optimal operation.

TABLE 3 Parameters of dispatchable load (WU et al., 2019).

Household appliances Power/
kW

Working
interval

Required working
hours/h

Minimum continuous working
hours/h

Washing machine* 1 14:00–21:00 2 2

Rice cooker* 0.8 06:00–12:00 1 1

Dishwasher* 0.73 18:00–24:00 1 1

Electric vehicle 2.5 00:00–08:00 5 1

Electric bicycle 0.9 00:00–08:00 3 1

Sweeping robot 0.35 10:00–18:00 2 1

Air-conditioning 2.1 00:00–07:00 - 1

18:00–24:00

FIGURE 3
The daily generation data of PV and non-dispatchable load.

TABLE 4 Hyper-parameters settings of the applied DRL model.

Parameter Value

Train episodes 8,000

Learning rate of actor network 0.002

Learning rate of critic network 0.001

Soft update coefficient 0.001

Batch size 256

FIGURE 4
Reward curve during the training episodes.
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When dispatching the air-conditioning device, the comfort
factor should be taken into account. The indoor temperature
changes like a non-linear process when the air-conditioning
working. Thus, the air-conditioning does not need to working
continuous with consideration of cost saving. The dispatching
result of air-conditioning and the indoor temperature are shown in
Figure 6. Note that the comfort constraint only set between 00:
00–07:00 and 18:00–24:00. It can be obtained that the air-
conditioning is scheduled to work at 5 hours for keep the
indoor temperature between 25°C–27°C. As the temperature
curve shows, the indoor temperature always stays between 25°C
and 27°C, which indicates the comfort constraint can be
well limited.

Generally, the energy storage device can store electricity during
lower electricity price periods and release it during higher prices to
reduce system costs. Thus, an energy storage device is equipped in
the paper. The SOC curve of the applied energy storage device is
illustrated in Figure 7. It can be found that the energy storage device
charging when electricity price is low and discharging when the price
is high, which can effectively reduce the system cost. Hence, the
results effectively demonstrate that the proposed approach can

efficiently schedule the energy storage device in real-time to
reduce the operating cost after the agent is well-trained.

4.3 Comparison results with other
benchmarks

The above results have verified the effectiveness of the proposed
method. To further verify the effectiveness and progressiveness of the
proposed method, the proposed method is separately compared with
the optimization method based on stochastic programming (SP) and
the optimization method based on deterministic optimization (DO)
(Alzahrani et al., 2023). The difference between SP andDO is that DO
only consider optimization problems in deterministic scenarios,
which does not consider uncertainties of PV and loads.

The optimization results of the three algorithms are shown in
Table 5. Compared to traditional optimization methods, the
proposed method can better cope with the uncertainty of PV
output and load demand to achieve better optimization results. It
can be obtained that the proposed method can achieve the lowest
total cost compared with other two method, which the total

FIGURE 5
The optimization result of the dispatchable and non-dispatchable devices.

FIGURE 6
Simulation curves of indoor temperature.

FIGURE 7
SOC curve of the test day.
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operation cost can be reduced by 21.9% at least. The proposed
method can reasonably schedule the different types of appliances for
reducing the cost of purchasing electricity and improving revenue
from selling electricity. Besides, the proposed can maintain the
highest comfort for the home users by reasonably dispatching the
switching time of air-conditioning. The DO method solves the
modelled optimization problem under deterministic conditions,
and the final cancelled optimization effect is not significantly
different from the optimization effect of the proposed method.
This also fully demonstrates the effectiveness of the proposed
method. However, the DO method cannot address the issue of
output uncertainty and is not applicable to actual operating
conditions. Therefore, the proposed method is more suitable for
optimizing the operation of the HES in uncertain environments.

5 Conclusion

This paper proposes an optimized scheduling model for home
energy management to minimize costs of household users with
consideration of comfort of user. To enhance solution efficiency, a
novel DRL-based algorithm call DDPG is applied to solve the
optimization problem. Firstly, the results show that the proposed
method can effectively dispatch both interruptible and
uninterruptible loads, so the total cost of household user is
obviously reduced while maintain high comfort. The optimal
dispatch problem of HEMS is modeled as a MDP and solved by
DDPG algorithm. The agent has converged after 8,000 episodes
training, which means that the proposed DRL method can obtain
the optimal policy for dispatching the HEMS. In the future work, the
multi-agent deep reinforcement learning algorithm will be used to
improve the efficiency of model training and decision making.
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