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Solar radiative heating andmelting of lake and sea ice is a geophysical problem
that has attracted the attention of researchers for many years. This problem is
important in connection with the current global change of the climate.
Physical and computational models of the process are suggested in the
paper. Analytical solutions for the transfer of solar radiation in light-
scattering snow cover and ice are combined with numerical calculations of
heat transfer in a multilayer system. The thermal boundary conditions take into
account convective heat losses to the ambient air and radiative cooling in the
mid-infrared window of transparency of the cloudless atmosphere. The study
begins with an anomalous spring melting of ice on the large high-mountain
lakes of Tibet. It was found that a thick ice layer not covered with snow starts to
melt at the ice-water interface due to volumetric solar heating of ice. The
results of the calculations are in good agreement with the field observations.
The computational analysis showed a dramatic change in the process when
the ice is covered with snow. A qualitative change in the physical picture of the
process occurs when the snow cover thickness increases to 20–30 cm. In this
case, the snow melting precedes ice melting and water ponds are formed on
the ice surface. This is typical for the Arctic Sea in polar summer. Known
experimental data are used to estimate the melting of sea ice under the melt
pond. Positive or negative feedback related to the specific optical and thermal
properties of snow, ice, and water are discussed.
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Introduction

This paper presents a general approach to solving geophysical problems related to solar
heating and the melting of ice on the water surface. The spring melting of lake ice is a
relatively simple problem and this will be considered in more detail. After that, a general
view of the more complex problem of melting of sea ice during the polar summer will be
discussed. Ice melting on the Arctic Sea surface is really important for global climate change.
What is less well known is that the opening from the ice of high-mountain lakes in Tibet,
sometimes referred to as the Earth’s third pole, significantly affects the climate of not only
central Asia. Recall that the Tibetan Plateau is home to about a thousand large lakes with a
total area of about 15,000 km2 (Su et al., 2020; Zhang and Duan, 2021). Interestingly, the
early opening time of these lakes is an indicator of global warming (Su et al., 2019; Zhang
and Duan, 2021).
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It should be noted that the physical picture of heating and
melting of the ice on the lake surface turns out to be quite different
for the case when the ice is not covered with snow and in the case
when a snow cover is present. However, the approach to solving
problems of radiative transfer in snow and ice layers has a common
methodological basis, and this can be used in theoretical studies of
both lake and sea ice melting. In the spectral range of
semitransparency of snow and ice, one should take into account
the scattering of radiation either by ice grains in snow or by gas
bubbles, which are usually contained in the ice. This means that one
should focus on choosing a simple and sufficiently accurate method
for solving the radiative transfer equation (RTE) (Dombrovsky and
Baillis, 2010; Howell et al., 2021; Modest and Mazumder, 2021).

The main difficulties in radiative transfer modeling are caused by
the RTE’s integral term, which takes into account the anisotropic
scattering of radiation by particles or bubbles in the medium and
contains a scattering phase function. Fortunately, we deal with multiple
scattering of radiation in an optically thick medium when the transport
approximation is quite sufficient. According to this approach, the
scattering function is replaced by a sum of the isotropic and forward
components. The resulting transport RTE looks like that for the
hypothetic isotropic scattering but with the transport scattering
coefficient (Dombrovsky, 2012; Dombrovsky, 2019). It should be
recalled that the transport approximation has been successfully
employed in diverse problems of radiative transfer in thermal
engineering (Dombrovsky et al., 2017; Dombrovsky et al., 2020),
biomedicine (Tuchin, 2007; Sandell and Zhu, 2011; Dombrovsky
et al., 2012; Jacques, 2013; Eisel et al., 2018; Dombrovsky, 2022), and
geophysics (Dombrovsky and Kokhanovsky, 2022; Dombrovsky and
Kokhanovsky, 2023; Dombrovsky et al., 2019; Dombrovsky et al., 2022).

The linearity of the RTE makes possible another significant
simplification of the problem. In the case of direct solar irradiation
of a scattering medium, the radiation intensity can be represented in
the form of two additive components: direct radiation and a diffuse
component formed due to the scattering. In highly scattering media,
the diffuse component of radiation intensity can be calculated using
one of the simplest differential approximations: either the known P1
approximation of the spherical harmonics method or the two-flux
approximation. These approximations make it sufficient to solve a
boundary-value problem for a second-order ordinary differential
equation instead of the RTE. The choice between these
approximations is determined by the problem statement.
Comparison with exact numerical solutions (Dombrovsky and
Baillis, 2010) has shown that the two-flux method is preferable
when solving one-dimensional problems typical of solar heating. In
this case, the error of P1 is larger because this method does not take
into account the discontinuity in the angular dependence of the
radiation intensity on the illuminated surface of the medium.

Transient heat transfer model

Generally speaking, there are various thermal processes in a
snowpack or scattering ice sheet and these processes should be
involved in a complete heat transfer model. As an example, one can
recall the ice sublimation and diffusion of water vapor through a
snow layer. This may be important for the snow microstructure but
the related effects are insignificant in our problem.

The 1D transient energy equation for temperature T(t, z) in a
layer of snow or ice and the accompanying initial and boundary
conditions can be written as follows:

ρc
∂T
∂t

� ∂
∂z

k
∂T
∂z

( ) + P, t> 0, 0< z<dth, (1a)

T 0, z( ) � Tinit z( ), (1b)
z � 0, k

∂T
∂z

� h Tair − T( ) − qrc, z � dth,
∂T
∂z

� 0, (1c)

where z is the is the coordinate measured from the illuminated
surface, ρ, c, and k are the density, the specific heat capacity, and the
thermal conductivity of the medium, Tair(t) and h(t) are the
temperature of ambient air and convective heat transfer
coefficient which depends on the wind velocity. The adiabatic
condition at z � dth should be replaced by the condition of the
first kind when the temperature of the lower interface is known (as
in the case of the ice-water interface). The heat flux qrc is the mid-
infrared cooling due to thermal radiation of the snow or ice surface
in the atmospheric transparency window of λw1 < λ< λw2
(λw1 � 8 µm, λw2 � 13 µm) (Raman et al., 2014; Chen et al., 2016;
Hossain and Gu, 2016). Of course, the latent heat of ice melting,
L � 0.34 MJ/kg, should be taken into account in the calculations.
This can be done using an equivalent additional heat capacity in a
narrow temperature interval near the melting temperature as it was
done by Dombrovsky et al. (2019). This simple technique is not new
and was successfully used by the author in the numerical solution of
other problems to account for the latent heat of phase change of the
first kind, including the general case when the so-called mushy zone
is formed between solidus and liquidus (Dombrovsky et al., 2015;
Roy et al., 2023).

It is usually difficult to choose a realistic initial profile of
temperature, Tinit(z), for the heat transfer calculations.
Fortunately, the effect of this temperature profile decreases with
time. As an example, it was shown by Dombrovsky et al. (2019) that
the choice of this temperature profile makes no difference for the
snow layer after about 4 h from the initial time moment.

Solution for ice-covered lake

In the case of ice not covered by snow, sunlight penetrates
through the ice layer and leads to water heating. In limnology, the
transfer of solar radiation in ice and water is described using the
exponential Bouguer law, which is applicable only in the case of
direct incident radiation and single scattering of light in themedium.
This methodological drawback remained even in recent papers
(Kirillin et al., 2012; Leppäranta, 2015; Kirillin et al., 2021). The
error of this simplified model for the radiative transfer was partially
compensated for by the selection of an extinction coefficient, which
provided a satisfactory agreement between the calculations and the
field measurements. This semiempirical approach to radiative
transfer is incorrect. The multiple scattering of short-wave solar
radiation by microcracks and gas bubbles leads to stronger solar
heating of ice. In addition, the radiation transmitted through the ice
layer contains both direct and diffuse components.

According to (Hale and Querry, 1973), the absorption index of
water increases with the wavelength from κw � 10−9 − 2 × 10−9 at
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λ � 0.4 − 0.5 µm to κw � 10−5 at λ � 1.2 µm. The corresponding
water absorption coefficient, defined as αwλ � 4πκw/λ, changes
from αwλ � 0.025 − 0.063 m−1 to αwλ � 100 m−1. The latter means
that visible radiation penetrates water to a depth of tens of
meters, while infrared radiation with wavelength λ � 1.2 µm
penetrates to a depth of less than 1 cm. In the wavelength range
0.6< λ< 1.2 µm, the absorption index of ice differs slightly from that
of water (Warren and Brandt, 2008), and a similar situation occurs
for ice. The radiation with wavelength λ> λ* � 1.2 µm is absorbed in
a relatively thin surface layer of ice. That is why the threshold value
of λ* is considered as a conventional boundary of the range of
semitransparency.

The influence of uncertainty in the experimental values of the ice
absorption index on the computational data for solar heating of snow
and ice has been analyzed by Dombrovsky and Kokhanovsky (2022),
Dombrovsky and Kokhanovsky (2023). It was shown that the
discrepancy between the data of (Warren and Brandt, 2008; Picard
et al., 2016) in the λ< 0.6 μm range does not significantly affect the
results of calculations. Therefore, the more complete spectral data of
Warren and Brandt (2008) are used in the present work.

The gas bubbles in ice are assumed to be spherical and the radii
of these bubbles, a, are much greater than the wavelength. The
corresponding diffraction parameter x � 2πa/λ is very large, and
therefore the geometrical optics approximation can be used instead
of the rigorous Mie theory (Bohren and Huffman, 1998). As a result,
the absorption coefficient of ice containing bubbles can be calculated
as follows (Dombrovsky, 2004):

αλ � 1 − fv( )α0λ, (2)
where fv is the volume fraction of bubbles, α0λ � 4πκice/λ is the
absorption coefficient of ice without bubbles, and κice is the index of
absorption of ice. In most real cases, fv ≪ 1 and αλ ≈ α0λ. Not only
the gas bubbles but also the average distance between them is very
large compared to the wavelength of the radiation. Therefore, the
hypothesis of independent scattering by single bubbles is true
(Mishchenko, 2014; 2018).

According to (Kirillin et al., 2012), the gas bubbles are usually
not uniformly distributed in the ice layer: there are more of them in
the lower part of the layer. This can be taken into account in the
calculations. However, the simplest model including only two
bubble parameters is chosen in the present study: the average
values of volume fraction and radius of bubbles. According to
(Dombrovsky and Kokhanovsky, 2020b), the scattering parameter
S � fv/a32, where a32 is the Sauter’s mean radius of bubbles, is
sufficient to describe light scattering by polydisperse bubbles. The
transport scattering coefficient of ice with gas bubbles can be
calculated as follows (Dombrovsky, 2004):

σ trλ � 0.675 nice λ( ) − 1( ) S, (3)
where nice is the refraction index of ice. The value σtrλ is usually
greater than the absorption coefficient in the entire spectral range
under consideration. As a result, the extinction of sunlight in an ice
layer is determined by the light scattering.

Following the recent study by Dombrovsky and Kokhanovsky
(2023), the present paper is focused primarily on modeling the
thermal regime of mountain lakes like those of the Qinghai–Tibet
Plateau, located at a height of more than 4 km above sea level, for

which the problem is somewhat easier: it can be assumed that the sky
is clear and only a small part of the solar light is scattered in the
atmosphere. As a result, it is sufficient to consider the transfer of
direct solar radiation, the intensity and spectral composition of
which change with the zenith angle of the Sun. Minor atmospheric
precipitation and strong winds (Wang et al., 2022) result in the
absence of snow cover on the ice surface. This leads to a significant
solar heating of the ice and water in the lake.

The problem can be simplified because the refractive indices of
water and ice differ only slightly in the wavelength range of
λuv-vis < λ< λ* (λuv-vis ≈ 0.4 µm). As a result, the reflection and
refraction of light at the ice-water interface are small and can be
neglected. The effect of solar light reflection at the ice-water interface
is even smaller. It can be estimated from the Fresnel formulas for the
reflection coefficient at the interface of transparent media with
different refractive index values. At wavelength λ � 0.6 µm the
refractive indices of ice and water are 1.31 and 1.33, respectively,
and the reflection coefficient of light incident at an angle of 45o is
equal to 1.2%, and when illuminated along the normal–0.06%. The
refraction of light at the ice-water interface is also negligibly small.

It is assumed that optical properties of ice do not change along the
horizontal ice surface and the radiative transfer along the surface of an
ice-covered lake may not be considered. The 1D model for the
propagation of obliquely incident radiation in an ice layer
containing gas bubbles has been described recently by Dombrovsky
and Kokhanovsky (2022). It is assumed that there are no any bubbles in
water, and scattering by a small amount of plankton is insignificant. In
this case, the problem of radiative transfer in the ice layer can be solved
independently of the propagation of light in water. It is convenient to
write the transport RTE and the boundary conditions at an oblique
illumination of the ice layer with thickness d in dimensionless variables
(Dombrovsky and Kokhanovsky, 2023):

μ
∂�Iλ
∂τtrλ

+ �Iλ � ωtr
λ

2
�Gλ, �Gλ τtrλ( ) � ∫1

−1
�Iλ τtrλ , μ( ) dμ, (4a)

�Iλ 0, μ( ) � rλ�Iλ 0,−μ( ) + 1 − rλ( ) δ μj − μ( ), �Iλ τtrλ,0,−μ( ) � 0,

μ, μj > 0,
(4b)

where �Iλ � Iλ/Iincλ , �Gλ � Gλ/Iincλ , Iincλ is the spectral intensity of
incident radiation in direction μi � cos θi (θi is measured from
the external normal), rλ � rλ(nice, μi) is the Fresnel reflection
coefficient, μj �

													
1 − (1 − μ2i )/n2ice

√
is the cosine of the refraction

angle, τtrλ (z) � ∫z

0
βtrλ (z) dz is the optical depth and τtrλ,0 � τtrλ (d).

The intensity of radiation and the spectral irradiation are
presented as follows:

�Iλ � �Jλ + 1 − rλ( )Ej
λδ μj − μ( ), Ej

λ � exp −τtrλ/μj( ), (5a)
�Gλ � �G

dif
λ + 1 − rλ( )Ej

λ, �G
dif
λ � ∫1

−1
�Jλ dμ. (5b)

The resulting equations for the diffuse component �Jλ are:

μ
∂�Jλ
∂τtrλ

+ �Jλ � ωtr
λ
2

�Gλ, (6a)
�Jλ 0, μ( ) � rλ�Jλ 0,−μ( ), �Jλ d,−μ( ) � 0, μ> 0. (6b)

The two-flux method gives the following boundary-value
problem for the irradiation �G

dif
λ,i (τtrλ ):
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−( �Gdif
λ )″ + ξ2λ �G

dif
λ � 4ωtr

λ 1 − rλ,i( )Ej
λ, ξλ �

						
1 − ωtr

λ

√
, (7a)

τtrλ � 0, ( �Gdif
λ )′ � 2γ �G

dif
λ , τtrλ � τtrλ,0, ( �G

dif
λ )′ � −2 �Gdif

λ , (7b)

where �rλ is the angle-averaged reflection coefficient of the ice layer
surface and γ � (1 − �rλ)/(1 + �rλ). This problem statement is correct
for any variation of the optical properties across the ice layer and can
be solved numerically (Dombrovsky and Baillis, 2010). In the case of
uniform optical properties of ice, one can obtain an analytical
solution to the problem.

The calculations made after publication of paper by
Dombrovsky and Kokhanovsky (2023) showed that the reflection
of sunlight from the illuminated ice surface is negligible and can be
disregarded without any significant loss of calculation accuracy. At
the same time, the refraction of light at an oblique illumination of ice
should be taken into account and μj > μi. Therefore, below is the
solution of the problem at �rλ � 0 (γ � 1). This simplified analytical
solution at ξλ ≠ ]j � 1/μj is as follows:

�G
dif
λ � 4ωtr

λ
ξ2λ − ]2j

Ej
λ +

2 − ]j
2 − ξλ

AEdif
λ + B/Edif

λ

Edif
λ,0( )2 − ζ2λ

⎛⎝ ⎞⎠, ζλ � 2 + ξλ
2 − ξλ

, (8a)

A � ψζλ − Ej
λ,0E

dif
λ,0, B � Edif

λ,0 ζλE
j
λ,0 − ψEdif

λ,0( ), ψ � 2 + ]j
2 − ]j

, (8b)

Ej
λ,0 � exp −]jτtrλ,0( ), Edif

λ � exp −ξλτtrλ( ), Edif
λ,0 � exp −ξλτtrλ,0( ).

(8c)
The relation between �Gλ and �G

dif
λ also simplifies when rλ � 0:

�Gλ � �G
dif
λ + Ej

λ.
The radiative transfer problem in water is as follows:

μ
∂�Iwλ
∂τwλ

+ �I
w
λ � 0, τwλ � αwλ × z − d( ), z> d, (9a)

�I
w
λ d, μ( ) � �Iλ d, μ( ), �I

w
λ ∞, μ( ) � �I

w
λ ∞,−μ( ) � 0, μ> 0. (9b)

where αwλ � 4πκw/λ is the absorption coefficient of water. The
solution to this problem is:

�I
w
λ z, μ( ) � �Iλ d, μ( ) exp −τwλ /μ( ) when μ> 0

0 when μ< 0.{ (10)

According to Eq. 10, the intensity of light in water at μ � 1
decreases most slowly. As a result, with increasing depth the light
becomes less diffuse and closer to directed vertically downward.

The solar radiation power absorbed in ice and water can be
calculated as follows:

P z( ) � ∫λ*

λuv-vis
p λ, z( )dλ, p λ, z( ) � αλGλ z( ) when z≤d

αwλG
w
λ z( ) when z>d.{

(11)
The functions in the right-hand side of the second of these

equations are defined as:

Gλ z( ) � Iincλ,i × �G
dif
λ z( ) + exp −]jβtrλ z( )},{ (12a)

Gw
λ z( ) � Iincλ,i × { �Gdif

λ d( ) exp −2τwλ( ) + exp −]j βtrλ d + τwλ( )[ ]}.
(12b)

Obviously, Gw
λ (d) = Gλ(d), whereas the function p(λ, z) is not

continuous at z � d. The diffuse irradiation component in water

(the first term in Eq. 12b) decreases with depth twice as fast as the
directional one. It is clear that Bouguer’s law with a constant
extinction coefficient in the exponent, which was applied for the
light propagation in water under an ice layer in limnology studies, is
not correct.

Profiles of absorbed radiation power in
ice and water

The spectral radiative flux at the surface of Ngoring Lake at the
end of March (the time of the beginning of ice melting) at different
values of the Sun’s zenith angle has been calculated in (Dombrovsky
and Kokhanovsky, 2023). The results obtained are used below in
calculating profiles of absorbed radiation power in ice and water.
Typical profiles of this radiation power at the zenith angle 60o for
two values of the scattering parameter and different thicknesses of
the ice layer are shown in Figure 1. A significant attenuation of light
in the ice layer draws attention. Increasing the scattering parameter
leads to an increase in the absorption of solar radiation in the upper
part of the ice layer and a significant decrease in the absorption in the
lake water. When ice melts and the thickness of the ice becomes
smaller, the radiation absorption in ice decreases considerably and
the absorption in water increases very strongly. The latter is the
physical cause of an observation by Lazhu et al. (2021) for several
lakes in the Tibetan Plateau where the water temperature at some
distance from the ice-water interface increased rapidly during
ice melting.

Temperature stratification of water in a
deep lake

The temperature field in the lake water is largely determined by
the non-monotonic dependence of the water density on temperature
with a maximum density ρ*w � 1000 kg/m3 at temperature T* � 4℃.
At the beginning of ice formation, the water temperature at the ice-
water interface becomes equal to T0 � 0℃, while the water at depth
may remain warmer. However, even at the bottom of a deep lake, the
water temperature cannot be higher than T*. In a severe winter, even

FIGURE 1
Absorbed radiation power in ice and water.
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a deep lake can freeze to the bottom (as in the case of Ngoring Lake),
but this paper considers early spring, when the ice thickness does not
exceed 1 m.

Field observations of Ngoring Lake and some other lakes in the
Qinghai–Tibet Plateau have shown an interesting thermal regime,
named “anomalous winter” by Kirillin et al. (2021), when at a depth
of 1.5–3 m under the ice layer the water is heated by solar radiation
to a temperature Tmax >T*. Solar radiation absorbed in the upper
water layer leads to an increase in Tmax, and this effect was measured
by Kirillin et al. (2021) in March and early April. An estimate of the
heat flux from relatively warm water to the ice layer in (Dombrovsky
and Kokhanovsky, 2023) gave the value qw-ice ≈ 1.2 kW/m2. The
effect of this heat flux is much smaller than ice heating by
solar radiation.

Averaging thermal boundary conditions
for thick ice layers

The heat transfer on the illuminated ice surface changes significantly
during the day but this does not affect the temperature of ice at some
distance from the surface because of the large heat capacity of the ice
layer. A simple estimate based on the Fourier criterion confirms that a
thermal relaxation time for the 0.5 m thick ice is about 10 days. This
allows using a steady-statemodel with constant heat transfer parameters,
varying according to weather changes from week to week.

The ice melting at Ngoring Lake in March is very slow, and
only in April does ice melting accelerate, completed by April 16
(Kirillin et al., 2021). This result is clear from the observations by
Zhou et al. (2022): the air temperature in March is almost constant
and does not exceed −10℃, while it increases up to −3℃ in the
middle of April at the lake. Therefore, the analysis of ice melting on
the lake surface should refer to the conditions of the first half of
April, when the day-averaged solar illumination of the lake
practically does not change and the air temperature is the only
changing parameter of the problem. According to (Wang et al.,
2022), the wind speed in the first 2 weeks of April is equal to 4 m/s
and not changed during the day. The corresponding value of the
heat transfer coefficient is about h � 20W/(m2K) (Defraeye et al.,
2011; Mirsadeghi et al., 2013).

The boundary-value problem for the quasi-steady temperature
profile in the ice layer is as follows:

kiceT″ + �P z( ) � 0, 0< z<d, (13a)
−kiceT′ 0( ) � �qsolinf − qconv − qrc, T d( ) � T0, (13b)

where

�P z( ) � 1
tday

∫tday

0
P z, t( )dt, �qsolinf �

1
tday

∫tday

0
qsolinf t( )dt, qconv � h T 0( ) − Tair( )

(14a)

qsolinf t( ) � ∫∞

λ*

qinci,λ λ, t( )dλ, qrc � π∫λw2

λw1

Iλ,b T 0( )( )dλ. (14b)

Here qinci,λ is the incident radiative flux at the solar zenith angle θi. To
determine the function �P(z) � P(z) × tdl/tday � P(z)/2 one can use
the average profiles of P(z) for daylight hours. The same relation is
true for the solar infrared radiation flux, taking into account its
contribution to the integral radiative flux. The value �qsolinf � 37 W/m2

is used in the calculations. It is also convenient to use the following
approximation for the temperature dependence of qrc:

qrc � q0 + η × T 0( ) − T0( ), q0 � 93 W/m2,
η � 1.6W/ m2 K( ). (15)

The radiative cooling of ice compensates the radiative flux to the
ice surface in the opacity range and the infrared solar heating cannot
lead to the surface ice melting.

The condition for the beginning of ice melting can be obtained
using the analytical solution to the problem (13a)–(13b):

T z( ) � T0 + f2 d( ) − f2 z( )
kice

− Q

kice
d − z( ), (16a)

f1 z( ) � 1
2
∫z

0
P z( )dz, f2 z( ) � ∫z

0
f1 z( )dz,

Q � qconv + qiceinf − �qsolinf . (16b)

The ice melting on its lower surface begins when T′(d) � 0. This
enables us to obtain the threshold temperature profile in the ice layer:

FIGURE 2
Temperature profiles in ice layers of different thicknesses at the
onset of melting on the ice-water interface.

FIGURE 3
Dependences of the surface temperature threshold value on the
ice thickness.
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T z( ) � T0 + f2 d( ) − f2 z( )
kice

− f1 d( )
kice

d − z( ). (17)

The calculated temperature profiles are shown in Figure 2. As
one might expect, scattering plays a significant role in the case of a
thick ice layer and the assumption of uniform distribution of gas
bubbles in the ice is acceptable only for ice layers less than 0.5 m
thick. One can also determine the temperature of the illuminated ice
surface, at which melting begins at the ice-water interface:

Tsurf
* � T0 + f2 d( ) − f1 d( )d

kice
. (18)

Typical dependences of Tsurf
* (d) are plotted in Figure 3. As one

might expect, the effect of light scattering by gas bubbles is more
significant for thick ice layers.

Effect of a snow layer on lake
ice melting

In the absence of snow cover on the lake ice surface, solar
radiation penetrates through the semitransparent ice and already in
the beginning of spring significantly heats up the water under the ice.
Interestingly, the lake ice, even with a thickness of about 1 m, begins
to melt from the lower surface. Calculations have shown that this is
not due to heating of the ice by the warmer water, but almost
exclusively due to solar heating of the ice. This is so because the
upper layer of ice is continuously cooled by the colder air, as well as
by the thermal radiation in the middle-infrared window of
transparency of the cloudless atmosphere. This cooling is not
compensated by the daytime heating of the ice surface by the
infrared radiation of the Sun but does not prevent heating of the
lower part of the ice layer and the beginning of spring ice melting.

The discussed peculiarity of the thermal regime of ice on the lake
surface and its melting under the action of spring solar heating changes
radically in the presence of even a thin layer of snow on the ice surface.
The effect of snow is due to two main factors: firstly, snow significantly
reduces the solar radiative flux on the ice surface due to strong scattering
of radiation and, secondly, the thermal conductivity of snow is so small
that even a thin layer of snow protects the ice surface from convective
and radiative cooling. The physical model of snow’s effect on ice melting
should include not only the transfer of solar radiation in the snow and ice
layer but also the heat conduction process. If we do not take into account
changes in the structure and optical properties of snow during its heating
(before the melting), the above physical problems can be solved
sequentially: first to calculate radiative transfer, and then to solve the
heat transfer problem taking into account the absorption of solar
radiation both on the snow surface and in the volume of snow and
ice. Of course, in the thermal part of the computational model, it is
necessary to consider the convective heat transfer with the surrounding
air, as well as the mid-infrared radiative cooling of the snow surface.

Let us first consider the propagation of direct solar radiation
through the snow layer. In order not to complicate the solution, we
will not take into account the scattered radiation from a cloudless
sky. Nor will we take into account that there is ice under the snow,
which also scatters sunlight. The ice with air bubbles scatters light
much more weakly than snow, and only a small fraction of the light
transmitted through the snow is scattered by the ice in the direction

of the snow. In the case of a very thin snow layer, the scattering of
radiation in the ice layer has some influence on the radiative transfer
in the snow layer, but this does not affect the main results of the
calculations presented below.

As usual, when calculating radiative transfer in a medium with
multiple scattering, the transport approximation is used. In addition, the
radiation intensity is represented in the form of two additive
components: direct radiation and a diffuse component formed due to
the scattering of radiation in themedium. The irradiation is also additive:

�Gλ � Ei
λ + �G

dif
λ , Ei

λ � exp −]iτtrλ( ), ]i � 1/μi. (19)

Here τtrλ is the optical coordinate measured from the illuminated
surface and μi is the cosine of the Sun’s zenith angle measured from
the normal to the horizontal snow surface. The use of the two-flux
method leads to the boundary-value problem for the normalized
diffuse irradiation:

−( �Gdif
λ )″ + ξ2λ �G

dif
λ � 4ωtr

λE
j
λ, ξλ � 2

						
1 − ωtr

λ

√
(20a)

τtrλ � 0, ( �Gdif
λ )′ � 2 �G

dif
λ , τtrλ � τtrλ,0, ( �Gdif

λ )′ � −2 �Gdif
λ . (20b)

This problem is a little simpler than that for the ice layer since
the sunlight is not reflected and refracted on the snow surface. For a
snow layer with constant values of αλ and βtrλ , there is a following
analytical solution, which looks similar to Eq. (8a–c), but with
replacement of ]j by ]i:

�G
dif
λ � 4ωtr

λ
ξ2λ − ]2i

Ei
λ +

2 − ]i
2 − ξ

AEdif
λ + B/Edif

λ

Edif
λ,0( )2 − ζ2λ

⎛⎝ ⎞⎠, ζλ � 2 + ξλ
2 − ξλ

, (21a)

A � ψζλ − Ei
λ,0E

dif
λ,0, B � Edif

λ,0 ζλE
i
λ,0 − ψEdif

λ,0( ), ψ � 2 + ]i
2 − ]i

, (21b)

Ei
λ,0 � exp −]iτtrλ,0( ), Edif

λ � exp −ξλτtrλ( ), Edif
λ,0 � exp −ξλτtrλ,0( ).

(21c)
In the limit of τtrλ,0 � βtrλ dsnow → ∞, this solution coincides with

the solution derived by Dombrovsky et al. (2019).
The optical properties of snow were calculated in the same way

as in (Dombrovsky et al., 2019). The analytical solution for single

FIGURE 4
Effect of snow layer thickness on the transmittance of snow.

Frontiers in Thermal Engineering frontiersin.org06

Dombrovsky 10.3389/fther.2023.1354265

https://www.frontiersin.org/journals/thermal-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fther.2023.1354265


spherical ice grains obtained by Kokhanovsky and Zege (1995) in the
geometrical optics approximation was used. As usual, it was
assumed that the ice grains have a mean radius a � 100 µm and
their volume fraction is equal to fv � 0.33.

The real parameters of the problemmay differ from the accepted
values. However, the effect of this choice on the subsequent physical
analysis is expected to be insignificant. The possible contamination
of snow by particles suspended in the atmosphere is not considered.
This effect was considered, for example, by He et al. (2018) and
Dombrovsky and Kokhanovsky (2020a).

The effect of snow layer thickness on the directional-
hemispherical transmittance of snow, Td−h

λ , is shown in Figure 4.
The value of Td−h

λ was calculated at a solar zenith angle θi � 60o. One
can see that even a 5 mm thick snow layer transmits only about 10%–
14% of the incident radiation whereas a thicker snow layer practically
does not transmit solar radiation to the ice surface. Note that this
result agrees well with the measurements by Perovich (2007). In
addition, a small reflection of light from the ice surface and also small
scattering of light by gas bubbles in the ice allows a significant
simplification of the radiative transfer problem: one can assume
that the sunlight transmitted through the snow layer does not
return back.

Consider now the heat transfer problem for solar heating and
possible snow melting on the ice surface, taking into account the
conductive heating of the ice layer. The temperature of the lower
surface of the ice (at the ice-water interface) is 0°C. This boundary
condition allows one not to consider the heat transfer under the ice,
which is necessary when the ice layer is located, for example, on bare
ground. At the same time, when analyzing the thermal state of the
snow layer illuminated by the Sun, it is necessary to take into account
the heat conducted away from the snow into the ice layer. In other
words, the energy equation should be solved in the computational
domain including both the snow cover and the ice layer:

ρc
∂T
∂t

� ∂
∂z

k
∂T
∂z

( ) + P, t> 0, 0< z<dth � dsnow + dice, (22a)

T 0, z( ) � Tinit z( ), (22b)
z � 0, − k

∂T
∂z

� h Tair − T( ) + qsolinf − ε qrc, z � dth, T t, z( ) � T0,

(22c)
qsolinf � ∫λop

λ*

qsolλ t( )dλ, qrc � π∫λw2

λw1

Iλ,b T, λ( ) dλ. (22d)

where T(t, z) is the medium temperature which depends on current
time t and coordinate z measured from the upper surface of the
snow layer, P(t, z) is the solar radiation power absorbed in the
medium, Tair(t) is the air temperature outside the thermal boundary
layer, T0 � 0℃, qsolinf(t) is the integral infrared solar radiative flux in
the opacity range of λ*< λ< λop (the upper boundary of this range
was taken equal to λop � 2.4 µm). Specific volumetric heat capacity
ρc and thermal conductivity k of the medium are:

ρc � ρc( )snow when 0< z< dsnow

ρc( )ice when dsnow < z< dth,
{

k � ksnow when 0< z< dsnow

kice when dsnow < z< dth.
{ (23)

The initial temperature profile was assumed to be as follows:

Tinit z( ) � {Tair when z≤ dsnow

Tair + T0 − Tair( ) z − dsnow( )/dice when z>dsnow.
(24)

When modeling the effect of the snow layer on the opening of
the lake from ice, it would be incorrect to consider the solar heating
conditions typical of the high-mountain lakes of northeastern Tibet,
when, due to low precipitation and constantly strong winds, the ice
on these lakes is not covered by snow. In addition, at low altitudes,
unlike in high mountains, not only direct solar radiation but also
diffuse radiation from the light-scattering atmosphere should be
taken into account. In this problem, we use the same data as in the
papers by Dombrovsky et al. (2019) and Dombrovsky and
Kokhanovsky (2022) for the summer solstice during the Arctic
polar summer at latitude 70o.

The motion of the Sun across the sky during the day was
calculated in the same way as in (Dombrovsky et al., 2019). At
the same time, taking into account the diffuse atmospheric radiation
requires additional relations, which are obtained by solving the
following boundary-value problem for spectral irradiation:

�Gλ( )″ − ξ2 �Gλ � 0, (25a)
τtrλ � 0, �Gλ( )′ � 2 �Gλ − 2( ), τtrλ � τtrλ,0, �Gλ( )′ � −2 �Gλ. (25b)

The analytical solution to this problem is given by:

�Gλ � 4
2 − ξ

ζEdif
λ − Edif

λ,0( )2/Edif
λ

ζ2 − Edif
λ,0( )2 , (26)

In the limit of τtrλ,0 → ∞, Equation 26 reduces to the following
one : �Gλ � 4Edif

λ /(2 + ξ).
To exclude the influence of the initial temperature profile, we

consider the calculated temperature profiles on day 14 from t � 0.
For certainty, the ice layer thickness is assumed to be equal to
dice � 40 cm, whereas the thickness of the snow layer varies widely.
The computational results presented in Figure 5 for three values of
dsnow differ most markedly at midnight when the snow has time to
cool by 0.3–0.4°C as a result of convective and radiative cooling. It is
interesting that the maximum heating of snow occurs in the second
half of the day and even at dsnow � 200 mm only the surface layer of
snow 2–3 mm thick melts. This result is qualitatively different from
the case of thick snow cover considered in (Dombrovsky et al., 2019;
Dombrovsky and Kokhanovsky, 2022) due to heat sinking into the
ice layer. Of course, this heat sink is more noticeable in case of a thin
snow layer, but remains significant even at dsnow � 200 mm.
Calculations have shown that snow less than d*snow ≈ 15 mm
thick does not melt at all due to cooling by the ice layer. The
found threshold value dsnow* of the non-melting snow layer is another
characteristic parameter of the considered problem. It is important
that in all the variants, the ice layer is far from melting.

The above computational study gives the following general
picture of solar heating of the ice layer covered by snow. When
the upper surface of ice on a lake is illuminated by the spring Sun, the
thick ice layer begins to melt even in very cold air and melting occurs
from the lower surface of the ice layer. But if there is a thin layer of
snow on the surface of the ice (even less than 1 cm thick) the snow
does not allow much of the sunlight to penetrate into ice and makes
melting of the ice surface underneath impossible. At the same time,
the snow itself on the ice surface does not heat up because it scatters
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a significant part of the visible solar radiation, and the absorbed solar
heat is almost immediately transferred to the relatively thick layer of
ice. Snowmelting can only begin when the snow layer is thicker than
d*snow ≈ 15 mm and only when the snow layer is dsnow ≈ 200 mm
thick does melting become significant. Of course, the produced
water flows down through the pores in the snow and freezes again at
some distance from the ice surface. If the initial thickness of the
snow layer is more than 300 mm, melting of the snow near the sunlit
surface continues and leads to the formation of a kind of mushy zone
on the ice with ice particles suspended in water, which tend to float
to the water surface. This stage of the process can be quite long, but
as a result the ice surface turns out to be covered with a layer
of water.

An estimate of the effect of melt pond
on melting of ice

Meltwater, formed initially by snowmelt, does not cover the ice
surface uniformly. This is evidenced by numerous observations both
for ice-covered lakes and for the much better-studied Arctic Sea ice.
Note that the abnormally strong melting of sea ice in the Arctic
during the polar summer is an important process that has been
intensively analyzed over the last decade. One should name a
number of studies that are specifically devoted to the formation
and evolution of melt ponds on the Arctic Sea ice. In chronological
order, these are experimental and analytical works by Polashenski
et al. (2012), Hudson et al. (2013), Schröder et al. (2014), Popović
et al. (2018), Malinka et al. (2018), Ma et al. (2019), König and
Oppelt (2020), Perovich et al. (2021), Sterlin et al. (2021), Lei et al.
(2022), and Rosenburg et al. (2023). Photographs in the literature
show numerous melt ponds and the change in the ice surface area
occupied by these ponds in the polar summer. Note that similar melt

ponds are also observed on glaciers (Rockström and Gaffney, 2021).
In most of the above-mentioned works on sea ice, the authors are
focused on positive feedback that leads to an enormous increase in
the total area of the melt ponds. The point is that the albedo of snow
in the visible range of the spectrum is very high, and when snow
melts in polar summer, forming melt ponds, the reflection of solar
radiation is radically reduced. As a result, sea ice receives muchmore
solar heat, causing it to melt and increasing the area occupied by
melt ponds. This positive feedback over a large surface area of the
Arctic Sea is accompanied by an increase in the water vapor content
of the atmosphere and is important for the continuation of
global warming.

Even visual observations allow us to distinguish between two
types of melt ponds: the so-called bright ponds and dark ponds. The
ice on the bottom of the bright pond is mostly smooth and dense but
with small cracks and highly light-scattering porous areas with fine
pores. The bottom of the dark pond is more heterogeneous and has
relatively large cracks and voids (König and Oppelt, 2020). This is
related to the different structure of the first-year ice and multiyear
ice (Li et al., 2020). The experimental work by König and Oppelt
(2020) confirmed the qualitative results of the analytical study of
melt pond reflectivity byMalinka et al. (2018). Note that the work by
Malinka et al. (2018) was based on the same methodological
framework as the present paper, including the transport
approximation and the two-flux model for radiative transfer.

For simplicity, we will focus on a more simple melting problem
for the first-year ice. The formation of a layer of water on the ice
surface and the subsequent melting of ice are complex processes that
deserve special modeling. Nevertheless, it is possible to suggest a
simple physical model for ice melting under a meltwater layer. It is
obvious that on both surfaces of the ice layer, the temperature is
constant and equal to 0°C. Of course, the total radiation power
absorbed in the ice volume leads not to increase the ice temperature,

FIGURE 5
Temperature profiles in the snow and ice layers underneath at different times of the day: (A)–at noon and midnight, (B)–in the afternoon.

Frontiers in Thermal Engineering frontiersin.org08

Dombrovsky 10.3389/fther.2023.1354265

https://www.frontiersin.org/journals/thermal-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fther.2023.1354265


but to its melting. The heat flux from water under the ice, as was
shown above, is insignificant. Indeed, there is a stable temperature
stratification of water directly under the ice, and the thermal
conductivity of water is rather small. On the contrary, the
natural convection of water in a melt pond can give a noticeably
larger contribution to ice melting, and this should be taken into
consideration. This effect is more significant in the case of a small ice
layer thickness.

The temperature profile along the depth of the melt pond is
non-monotonic and has a maximum at some depth below the
surface. Indeed, the heating of the water surface by infrared solar
radiation is compensated by convective cooling and radiative
cooling in the middle-infrared transparency window of the
cloudless atmosphere. Even at temporary heating of the surface
layer of water to the temperature T* � 4℃, this water, as denser,
goes down to some depth d*< dp, where dp is the depth of the melt
pond. At the bottom of the melt pond, at a depth of d*< d< dp, the
water temperature decreases from T* at d � d* to T0 � 0℃ at
d � dp (at the ice surface). Intensive natural convection takes place
in this lower layer. Obviously, most of the solar radiative flux
absorbed in the water volume is transferred to the ice in this lower
layer of the melt pond. This is so because in the upper layer of the
pond water (at a depth of d< d*) due to stable temperature
stratification, the only heat transfer mode–heat
conduction–operates, and the thermal conductivity of water is
small: kw � 0.57W/(m K). As a result, for example, at
d − d* � 10 cm and temperature difference T* − T0 � 4℃ the
upward heat flux is very small: qcond ≈ 23 W/(m2 K). Therefore,
in the suggested approximate model, it is assumed that the main
part of solar radiation in the spectral range of water
semitransparency absorbed in the volume of the melt pond is
transferred to the ice layer. We will consider only the day-averaged
radiative flux at the melt pond surface. The change of heat transfer
conditions on the surface of the melt pond during the day does not
matter for the considered ice melting because of the large heat
capacity of the ice layer.

Small reflection of sunlight from water can be neglected. In
subsequent calculations, the cosine of the refraction angle is
assumed constant and equal to μj � 0.75, which approximately
corresponds to the zenith angle of the Sun θi � 60°. As before,
the insignificant difference between the refractive indices of water
and ice makes it possible to neglect the reflection and refraction of
light both at the bottom of the melt pond and at the lower surface of
the ice layer. To simplify the calculations, the propagation of only
the direct solar radiation is considered. Of course, a 1D approach
that does not take into account the size of the melt pond and its
unequal depth in the central part and at the periphery is acceptable
for the model problem. Perovich et al. (2021) found that the depth of
melt ponds during ice melt varies little with time because it is
regulated by the flow of horizontal and vertical water drainage to the
ocean. As a result, some of the solar heat absorbed by the water in the
pond is not transferred to the ice layer. This should be taken into
account, especially for small ponds.

To calculate the transfer of solar radiation in the ice layer under
the melt pond, the above suggested method with the spectral
irradiation �Gλ � �G

dif
λ + Ej

λ and the diffuse component calculated
by analytical solution (Eq. 10a–10c) is used. Since we are not
interested in the distribution of absorbed radiation over the

thickness of the ice layer, it is sufficient to consider the spectral
irradiation integrated over the optical thickness of the ice. However,
the profile of the ice scattering parameter is not known. In addition,
the solution depends on physical parameters related to solar
illumination and the depth of the melt pond. The natural
uncertainty of these data does not allow one to expect accurate
results of detailed calculations. Under these conditions, relying on
the field measurement data available in the literature is reasonable.
The experimental data on geometric parameters and heat fluxes for
first-year Arctic Sea ice in advanced stages of melt are given in
Hudson et al. (2013).

The following approximation of the radiation power absorbed in
the ice layer is used:

P � Pmax exp −z/dice
*( ). (27)

According to Figure 1, at the scattering parameter S � 2 m−1 this
dependence with the value dice* � 0.8 m is universal for ice layers of
different thicknesses in the range 0.2≤ dice ≤ 0.8 m. The integration
of Eq. 30 gives the following formula for the radiative flux absorbed
in an ice layer:

qice � qincice 1 − exp −dice/dice
*( )[ ]. (28)

Of course, the dependences of qice(dice) at the real scattering
parameter, which, in general, varies with the ice thickness, may differ
significantly from function (Equation 28), but retrieval of profiles
S(z) from the available limited experimental data is impossible.
Therefore, Equation 28 should be considered an essential
assumption adopted in the approximate model.

The integral radiative flux absorbed in a melt pond is given by
the following equation:

qw � ∫λ*

λuv-vis
qwλ dλ, qwλ � qincλ,w 1 − exp −αwλ dp/μj( )[ ]. (29)

It is assumed that qincλ,w is constant during a large part of the polar
summer and its spectral dependence roughly coincides with the
Planck function at temperature Tsol � 5800 K. A day-averaged
integral incident flux of solar radiation in the range of water and

FIGURE 6
Time variation of ice layer thickness during the ice melting.
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ice semitransparency qinc � qw + qincice can be taken from Hudson
et al. (2013).

Using the approximate value of qice, one can estimate the linear
rate of ice melting using the heat balance equation:

ρiceL
_dice � − 1 −Kloss( )qw + qice( ), dice 0( ) � dice,0. (30)

The value Kloss < 1 is introduced to account the heat losses with
horizontal drainage of water. The results of calculations at Kloss � 0.2
presented in Figure 6 show two periods of the process: first, the ice
melts faster due to the absorption of solar radiation passing through it,
and then the heat is transferred to ice mainly from the melt pond. The
characteristic time of melting of thick ice is comparable to the
duration of the warmest period of the polar summer.

The suggested model can be considered only as a simple physical
assessment. The real process needs a more sophisticated analysis
which is beyond the scope of the present paper. However, it is clear
that a relatively simple approach to solving the radiative transfer
problemmay be useful in the physical modeling of one of the stages of
ice melting and the complex evolution of melt ponds.

As a result of the strong melting of sea ice during the polar
summer, significant areas of the Arctic Sea may become ice-free.
Most likely, this will not prevent the restoration of the ice cover
during the polar winter, which would be an extremely undesirable
effect of global warming. The fact is that the surface layer of water in
the Arctic Sea cannot heat up above the melting point of ice due to
the natural convection of water in its unstable temperature
stratification. Thus, the unique physical properties of water allow
us to count on serious negative feedback and retain some optimism
about the rate of global climate change accompanied by intensive
seasonal melting of polar ice.

Conclusion

Physical and computational models of solar radiative heating
and melting of ice on water surface were developed. In the
semitransparency range of ice and snow, the multiple
scattering of radiation in the ice which contains gas bubbles
and in the snow cover that may be present on the ice surface is
described using the transport approximation for the scattering
phase function and two-flux model for the diffuse component of
the spectral radiation intensity. Analytical solution derived for
the radiative transfer are coupled with a numerical solution for
the transient energy equation. The heat transfer model takes into
account convective heat transfer with the atmospheric air,
infrared solar radiation absorbed at the illuminated surface,
and radiative cooling in the mid-infrared transparency
window of the cloudless atmosphere.

It was shown that a thick layer of ice not covered with snow
begins to melt at the ice-water interface due to solar heating of ice.
The computational data are in good agreement with the field
observations for Ngoring Lake in the Qinghai–Tibet Plateau. The
theoretical analysis showed a dramatic change in the process if there
is a layer of snow on the ice. Even in the case of a thin snow layer less
than 1 cm thick, the snow does not transmit most of the sunlight and
makes ice melting impossible. At the same time, the snow itself on
the ice surface does not heat up because it scatters a significant part

of visible solar radiation, and the absorbed solar heat is transferred
almost instantly to the relatively thick layer of ice.

Snow melting can only begin when the snow layer is about
15 mm thick, and only when the snow layer is about 200 mm
thick does melting become significant. If the initial thickness of
the snow layer exceeds 300 mm, snow melting near the sunlit
surface leads to the formation of a melt pond on the ice surface.
Such melt pools are regularly observed in polar summer on the
ice of the Arctic Sea. Abnormally strong melting of sea ice in the
Arctic during polar summer is an extremely important process
that has been intensively studied in recent years. The last part of
the paper provided an estimate of ice melting under a melt pond.
The results obtained are in qualitative agreement with in-situ
observations.

The general approach and particular solutions suggested for
approximate calculations of solar heating andmelting of lake and sea
ice with possible snow cover on the ice surface can be used as the
basis of more specific computational models for a variety of
combined heat transfer problems in geophysics and other
research areas.
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Nomenclature

a radius of ice grain or gas bubble, µm

c specific heat capacity, J/(kg K)

d geometrical thickness, m

E exponential function, –

f v volume fraction, –

f 1 , f 2 functions introduced by Eq. 16b –

G spectral irradiation, W/(m2 µm)

H thickness of water layer, m

h heat transfer coefficient, W/(m2 K)

I spectral radiation intensity, W/(m2 µm)

J diffuse radiation intensity, W/(m2 µm)

K coefficient in Eq. 30, –

k thermal conductivity, W/(m K)

n index of refraction, –

P absorbed radiative power, W/m3

p spectral radiative power, W/(m3 µm)

q heat flux, W/m2

R reflectance, –

r reflection coefficient, –

S scattering parameter, m−1

T temperature (K) or transmittance (−)

t time, h

x diffraction parameter, –

z vertical coordinate, m

Subscripts and superscripts

air air

av averaged

b blackbody

c cooling

conv convective

d-h directional-hemispherical

day day

dif diffuse

i inc incident

ice ice

init initial

inf infrared

j refracted

loss loss

m melting

max maximum

min minimum

op opacity

p melt pond

rc radiative cooling

snow snow

sol solar

surf surface

th thermal

tr transport

uv-vis ultraviolet-visible

v volume

w water, window

w-ice water-ice interface

λ spectral

* critical

Greek symbols

α absorption coefficient, m−1

β extinction coefficient, m−1

γ parameter in Eq. 7b, –

ε coefficient in Eq. 22c, –

ζ coefficient introduced by Eq. 8a, –

η coefficient in (15), W/(m2K)

θ zenith angle, rad

κ index of absorption, –

λ radiation wavelength, µm

μ cosine of an angle, –

ν parameter in Eqs. (8a-c) –

ξ parameter in Eq. 7a, –

ρ density, kg/m3

σ scattering coefficient, m−1

τ optical thickness, –

φ coefficient in Eq. (13), oC-2

ψ coefficient introduced by Eq. 8b, –

ω single scattering albedo, –
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