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Diesel Particulate Filter (DPF) in the diesel engine exhaust stream needs frequent
regeneration (exotherm) to remove captured particulate matter (PM, or soot)
without damaging to the porous DPF structure by controlling the peak
temperatures and temperature gradients across the DPF. In this study,
temperature distribution in a DPF is measured at 42 strategic locations in the
test DPF under various regeneration conditions of exhaust flow rates, regeneration
temperatures and soot loads. Then a data-based model with feed-forward neural
network architecture is designed to model the thermal gradients and temperature
dynamics of the DPF during the regeneration process. The neural network feature
vector selection, network architecture, hyperparameter calibration process,
measured data preprocessing, and experimental data acquisition procedure are
evaluated. Over 7,400 experimental data points at various regeneration
temperatures, flow rates and soot loads are used in training and validating the
neural network model. It is found that the neural network model can accurately
predict the 42DPF bed temperatures simultaneously at different locations, and the
time series analysis of both model-predicted and experimentally measured
temperatures shows a good correlation. This indicates that the currently
developed neural network model can provide spatial distribution of
temperature in the DPF, and comprehend the nonlinearity of the temperature
dynamics due to DPF soot load at exothermic conditions. These results
demonstrate that the data-based model has capability in predicting thermal
gradients within a DPF, aiding in determining a safer DPF regeneration strategy,
onboard diagnostics and DPF development.
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1 Introduction

Internal combustion diesel engines have had a considerable impact on the modern
world; on the one hand, diesel engines have been the workhorses of the global economies for
almost a century and are known for their reliability, efficiency and fuel economy, resulting in
their widespread adoption in commercial vehicles, shipping, and energy industries. On the
other hand, diesel engine emissions are a significant source of air pollution and global
warming, and contributes to various environmental and health problems (Reşitoʇ et al., 2015;
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Leach et al., 2020; Reitz et al., 2020). TheWorld Health Organization
(WHO) has classified diesel engine exhaust as a Group 1 carcinogen,
meaning it is a confirmed human carcinogen. Besides the harmful
gaseous emissions, the diesel engine has a relatively high particulate
emission or trade-off NOx emission compared to gasoline engines
(May et al., 2014; Gentner et al., 2017; Das et al., 2020). The diesel
particulate matter (PM) emission, also commonly referred to as
soot, results from petrochemical combustion and consists of organic
and inorganic particles (Xi and Zhong, 2006; Idicheria and Pickett,
2011; Likhanov and Lopatin, 2020). PM has been linked to air
quality issues, acid rain, and decreased visibility and can interact
with other atmospheric pollutants to form secondary PM resulting
in dense smog and a wide range of health problems (Abdel-Rahman,
1998; Walsh, 2001; Khair, 2023). In recent years, governments
worldwide have imposed legislative regulations to reduce the
emissions from diesel engines and compelled relevant industries
to develop new technologies such as diesel particulate filters (DPF)
and exhaust gas recirculation (EGR) (Idicheria and Pickett, 2011;
Gautam et al., 2016; Winkler et al., 2018; Giechaskiel et al., 2019).

DPF is one of the leading emission control technologies that
facilitate the modern diesel engine to meet the mandatory regulatory
requirements by regulating the tailpipe out particulate emission (Seo
et al., 2012; Kurimoto et al., 2022). DPF is installed in the exhaust
stream to trap the particulate emissions and is a critical part of the
exhaust after-treatment system, usually located after the diesel
oxidation catalyst. DPF consists of a porous ceramic filter
(substrate) material, traditionally made of cordierite or silicon
carbide, that captures the PM when exhaust gases flow through it
(Khair, 2023; Van Setten et al., 2001; Adler, 2005; Fino, 2007). The
filtration efficiency of the DPF increases with the trapped PM (soot)
but also results in increased pressure drop across the DPF, which has
negative consequences on the fuel economy and eventually needs to
be regenerated (Legala et al., 2021; Di Sarli and Di Benedetto, 2018).
DPF regeneration process removes the soot (PM) trapped by the
filter where the PM accumulated is subjected to an oxidation process
either passively (no fuel injection) or actively (Konstandopoulos
et al., 2000; Di Sarli and Di Benedetto, 2018; Feng et al., 2023).
Passive regeneration occurs during regular engine operation, where
the soot is removed with the help of NO2 at typical exhaust
temperatures between 300°C and 400°C. In contrast, active
regeneration is a unique engine operation mode where fuel is
dosed into the exhaust stream to create temperatures of more
than 550°C to oxidize the soot with the help of O2 in a
controlled exothermic process (Boger et al., 2008; Bouchez and
Dementhon, 2000). Like any other chemical reaction, reactants
(exhaust gas and fuel) composition, flow rates, and temperatures
play a critical role in the characteristics of exotherm and thermal
gradients during the regeneration process. The primary objective of
active DPF regeneration is to quickly oxidize the PM from the filter
without damaging it by controlling the exotherms of the
regeneration process. However, these exothermic reactions inside
the DPF during regeneration create localized thermal stress on the
DPF, which leads to a thermal gradient across the DPF and can
result in cracking, melting, and other forms of structural damage to
the (Merkel et al., 2001; Yang et al., 2016). Excessive exotherm
reactions can be caused by improper fuel injection (quantity and
timing), insufficient airflow, and overloading of the DPF with soot
(Kim and Gauckler, 2012; Haralampous and Koltsakis, 2002;

Dabhoiwala et al., 2009; D et al., 2017). The extent of damage
will depend on the peak bed temperatures, thermal gradient,
geometric dimensions of the filter and the durability of the
substrate material (Yang et al., 2016; Kuki et al., 2023). Damaged
DPF may not only compromise the filtration efficiency but also
create excessive back pressure (where the channels collapse) due to
the blockage of exhaust flow resulting in catastrophic failure of diesel
engines. Improper regeneration and localized spikes in bed
temperatures result in shortening the lifetime of the DPF,
requiring costly replacement and a tedious process (yuan Wang
et al., 2022; Seiler et al., 2008; Chittipotula, 2021). This problem can
be solved by modelling DPF exotherms and understanding the peak
bed temperatures, temperature gradients during active regeneration
at various regeneration temperatures, soot loads, flow rates, and
exhaust fuel injection quantities (Dabhoiwala et al., 2008; Sappok
et al., 2017; Chittipotula, 2021). Few of the existing modelling
techniques to predict the DPF exotherms and temperature
dynamics are discussed as follows:

Bissett (Bissett, 1984) developed a mathematical model for diesel
particulate filter thermal regeneration using particle mass balance
and energy balance equations where inlet gas temperature, mass
velocity, oxygen mass fraction, and soot deposition thickness are
considered model inputs to predict wall temperatures and
temperature gradients. However, this mathematical model
depends on many filter materials, exhaust gas properties and in-
situ physical parameter correlation factors. Hoon et al. (Lee and
Rutland, 2013) modelled the uncontrolled soot regeneration inside
the DPF in the presence of hydrocarbon slip by using a physics-
based 0-D modeling technique to predict the transient thermal
response, where the temperature, pressure and species
concentration of the exhaust across the DPF is considered. In
this case, the model assumes that the soot distribution and
exhaust species concentration are uniform, which is impractical
and relies on the DPF material, geometric parameters and exhaust
gas properties. Boopathi (Mahadevan et al., 2015) formulated a
multi-zone model for electronic control units to predict substrate
temperature by using the lumped model technique based on
resistance node methodology; however, this model also assumes
the soot distribution and soot inlet rate to be uniform and requires
the concentrations and properties of exhaust gas species which is not
ideal for the field application. Valeria (Di Sarli and Di Benedetto,
2015) proposed a CFD-based soot regeneration model for catalyzed
DPF; here, the model only deals with a single filter channel and is
computationally intensive for field application. Aniseh (Abdalla
et al., 2017) stimulated the active regeneration process inside the
DPF to predict the temperature and differential pressure dynamics
with the help of CFD techniques that rely on the filter’s geometrical
parameters; however, the system considered only constant exotherm
temperature profiles. Zhao (Zhao et al., 2021a) developed a 3-D
numerical simulation of soot regeneration on the Fluent platform by
considering different regeneration rates, soot loads and oxygen
concentrations to predict temperature contours and differential
pressure across the DPF. However, this study lacks experimental
validation and relies on all the physical properties and chemical
reaction kinetics which are difficult to acquire accurately and
reliably. Mitesh (Farsodia et al., 2019) successfully demonstrated
the application of neural networks to predict the exotherm
temperatures during the DPF regeneration and to control the
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hydrocarbon injection rate during the regeneration, however, there
was no emphasis on thermal gradient prediction.

Most existing literature considers the DPF thermal behavior as a
complex physics-based time series problem incorporating specific
filter material, flow and soot depositions properties, and complex
numerical and computational methods to capture the exothermic
behavior. To the best of our knowledge, no existing data-based
model can accurately track the complete thermal gradient along with
the exotherm behavior of DPF during active regeneration. The focus
of this study is to tackle the knowledge gap mentioned above in the
literature by contributing the following:

1. Development of a comprehensive multi-input multi-output data-
based model that can simultaneously predict multiple DPF bed
temperatures during active regeneration at various soot loads and
exhaust temperatures.

2. Formulation of the DPF thermal behaviour as a regression
problem, introducing the engine operating conditions, exhaust
stream constituents and DPF spatial temperature data.

3. The proposed model aids in developing a DPF regeneration
strategy by accurately predicting the thermal gradient during
regeneration across different soot loads, active regeneration
temperatures, flow rates and fuel injection.

2 Experimental procedure

The objective of the experimental setup was to generate a
consistent PM (soot) from a diesel engine and capture the soot
with the help of a DPF, followed by an active regeneration process at
various conditions. A 15-litre commercially available heavy-duty
diesel engine is the platform of choice, which is the most widely used

in the transportation industry for class-8 trucks for long-haul heavy-
duty cargo logistics. The engine platform is equipped with a high-
pressure exhaust gas recirculation (EGR) system and a variable
geometry turbocharger (VGT) calibrated to attain a target soot
loading rate consistently. The airflow to the engine is measured
with the help of a laminar flow element (LFE), fuel flow is measured
with a calibrated Bronkhorst flow meter, and the exhaust flow rate
(EFR) is calculated by adding the airflow rate and fuel flow rate. The
after-treatment system consists of a diesel oxidation catalyst (DOC),
DPF and selective catalytic reduction (SCR) catalyst-equipped with a
diesel exhaust fluid (DEF) injector, all installed in the original
configuration with instrumentation to acquire exhaust
temperatures and gas composition data. The DPF is
instrumented with multiple thermocouples distributed spatially at
critical locations to record bed temperatures. The exhaust gas of the
diesel engine is partly then routed through a heat exchanger to
further condition the soot to a specific temperature before being
captured by the DPF. The soot loading rate (rate of soot captured by
DPF) measured in grams per hour is closely controlled by
attenuating the exhaust gas temperature, flow rate and oxygen
percentage in the exhaust gas with the help of EGR and
turbocharger. The following schematic, as shown in Figure 1,
illustrates the engine platform and subsequent auxiliary systems
in the test cell.

The engine is mainly operated under stock calibration to
generate power; however, specific actuators such as the EGR,
VGT, and fuel injectors are controlled to reach a particular soot
loading rate and regeneration rate. The experimental procedure is as
follows: First, the DPF is entirely conditioned by subjecting the DPF
to prolonged active regeneration at 625°C to remove any pre-existing
soot; this process is referred to as ‘DPF Cleanout’. The DPF is
weighed at 200°C to record the initial hot weight, called ‘Clean

FIGURE 1
Engine test cell schematic.
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weight’, and is then loaded with soot (PM) at a predetermined
exhaust temperature and O2. In this case, the exhaust temperature is
maintained at 250°C with the help of a heat exchanger and O2

concentration in the exhaust is maintained at 9% to ensure that the
characteristics of the soot are consistent; this process is called ‘DPF
Loading’, and it is ensured that the DPF loading rate is repeatable.
DPF is then weighed after the loading procedure to calculate soot
weight, which is the net gain in DPF weight. The soot load on the
DPF is quantified by grams of soot per litre volume of DPF, and the
DPF loading procedure is repeated until it reaches the desired target.
Once the DPF is loaded to the desired soot load, the DPF inlet gas is
raised to a specific temperature by using the engine post-injection
fuel, thereby initiating an active regeneration followed by an
immediate engine idling process at various conditions called ‘AR-
DTI’. AR-DTI refers to active regeneration (AR) followed by a drop
to idle (DTI); the peak DPF inlet temperature before dropping to idle
is referred to as AR-DTI temperature and is explicitly illustrated in
Figure 2. The DPF spatial thermal gradient data is acquired during
the DTI, where peak DPF exothermic reaction occurs due to fuel and
oxygen availability during active regeneration and engine idling. The
entire experimental procedure is illustrated in Figure 2 as a process
flow diagram and with a sample AR-DTI cycle.

Considering the DPF to be cylindrically symmetrical, a quarter
of the DPF is instrumented with 47 thermocouples to provide
simultaneous spatial bed temperature data at various cross-

sections and radial locations; one of the instrumented cross-
sections with 19 thermocouples is illustrated in Figure 3.

The test matrix for this experiment was developed to cover a
broad spectrum of regeneration conditions without damaging
the DPF by limiting the DPF bed temperatures to below 900°C
during the exotherm. Various DPF soot loads and AR-DTI
temperatures (Figure 2) are tabulated in Table 1,
summarising the test matrix.

The data acquired during the AR-DTI process is obtained at a
1 Hz sampling rate totaling around 7,400 data points at various
exhaust flow rates, temperatures, and pressures. A complete
correlation study among the engine operation and exhaust
parameters is executed to understand the dominant factors. Data
quality is further analyzed to verify the repeatability and parameter
trends using pair plots, which allow us to represent both the impact
(correlation) and distribution of one variable with other operating
variables. Kernel density estimate (KDE) illustrates the diagonal
plots data using a continuous probability density curve. The data
analytics and parameter correlation results are illustrated graphically
using the pair plot shown in Figure 4.

As shown in Figure 4, the DPF has been subjected to a wide
variety of operating conditions, and the data collected during the
exothermic active regeneration process shows a good correlation,
demonstrating the data quality, i.e., free from measurement
noise.

FIGURE 2
Experimental procedure: (A) Flow process, (B) AR-DTI Cycle.
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3 Data-based modeling

Data-based modeling is a branch of machine learning that
involves creating models based on large datasets and has been
gaining popularity in thermal engineering for solving complex
systems and heat transfer problems (Ban et al., 2022; Erge and
van Oort, 2022; Lin et al., 2022; Wang et al., 2022). The goal of data-
based modeling is to identify patterns and relationships in the data
that can be used to make predictions or gain insights into the
underlying processes that generated the data (An et al., 2015; Zhao
et al., 2021b; Karniadakis et al., 2021). Data-based modeling in

FIGURE 3
DPF Instrumentation Pattern where the radial direction is represented by X direction, and the dominant axial flow direction by Y direction.

TABLE 1 Diesel particulate filter (DPF) test matrix.

Test case No Soot load (g/L) AR-DTI temperature (C)

1 3 560

2 4 550

3 5 525

4 5 560

5 6 550

6 7 525

FIGURE 4
Cross plot for the operating parameters: (A) Exhaust flow parameters, (B) Exhaust temperature parameters.
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engineering is a powerful tool for analyzing complex nonlinear
systems where the established governing principles are too complex
to model through equations and material properties. Considering
the nonlinearity associated with the DPF exotherm data, a multi-
input multi-output regression problem and feed-forward artificial
neural network (ANN) architecture is chosen for the prediction of
the DPF bed temperatures.

3.1 Feed-forward ANN

A neural network is a machine-learning algorithm inspired by
the human biological brain, which consists of interconnected nodes,
or “neurons,” that work together to process and interpret data
(Hopfield, 1988; Hammerstrom, 1993; Canziani et al., 2016; Han
et al., 2018; Montavon et al., 2018). There are many neural network
architectures and the most widely used one for regression problems
is the feed-forward ANN architecture consisting of multiple layers:
an input layer, some hidden layers, and an output layer. The input
layer receives data in numerical values, then processed through the
hidden layers, and the output layer produces a final regression result.
Each neuron in a neural network is connected to other neurons
through a series of weights, determining how strongly the neuron
responds to input from other neurons. The training is achieved
through a process known as backpropagation, where the network
adjusts its weights based on the difference between its predicted
output and the actual output (Kim, 1999; Jayalakshmi and
Santhakumaran, 2011). By iteratively adjusting its weights in
response to feedback, the network can gradually improve its
accuracy and better predict future outcomes; these iterations are
called ‘epochs’. The critical challenge in designing a feed-forward
neural network is determining the optimal architecture for the
application, which involves choosing the appropriate number of
layers, nodes, and activation functions and tuning the network’s
hyperparameters iteratively.

The combination of the activation function in the neuron, the
number of hidden layers, and the optimization function are
collectively known as hyperparameters, which determine the
performance of a neural network. The activation function
decides the neuron’s active status based on the input from the
previous layer and how it processes the information to the
subsequent layers. The most crucial role of activation
functions in the hidden layers is introducing nonlinearity to
the network; without it, the model cannot mimic complex
nonlinear relationships between the input and output.
Activation functions also assist in avoiding the problem of
vanishing gradients where the gradients become too small
during backpropagation, leading to slow or no learning.
Increasing the number of hidden layers in a neural network
can help the network learn more complex patterns in the data.
However, adding too many hidden layers can lead to overfitting,
and computational complexity, where the network becomes too
complex to process and starts to accommodate the noise in the
data. The choice of optimizer can significantly impact the speed
at which the neural network converges during training.
Optimizers with adaptive learning rates like Adam (Adaptive
Moment Estimation) can help avoid local minima problems and
feature regularization issues (Saleem et al., 2020).

3.2 Data preprocessing

Data preprocessing is essential to condition the data
appropriately, involving filtering, normalization, standardization,
feature selection and handling missing values by replacing them
with the mean or median of the preceding data. The goal of
preprocessing is to prepare the input data to be suitable for the
neural network and improve its accuracy without altering the nature
or pattern of the data. This study uses the normalization technique
to scale the input data to a similar range to normalize parameter
sensitivity, help the network converge faster during training, and
improve model accuracy (Shen et al., 2021; Sola and Sevilla, 1997).
The most common normalization technique is min-max scaling,
calculated by subtracting the minimum value from each data point
and dividing the result by the total range (the difference between the
maximum value and minimum value). The data is not subjected to
any further signal filtering (removing outliers) or data augmentation
to improve the network robustness to field data.

3.3 DPF thermal model feature vectors and
prediction attributes

The input feature vector is a set of input variables used to predict
the output variable in a neural network regression problem. It
should be chosen based on the domain knowledge of the
problem and the data available from either experiments or
validated simulations. The prediction attribute is the output
variable the neural network tries to predict, also known as the
target variable. It is essential to preprocess both the feature vectors
and prediction attributes using techniques such as normalization to
improve the neural network’s performance after considering the
data correlations and governing physics of the internal combustion
engine and after-treatment system.

In this case, the temperature generated by exothermic reactions
in the DPF is primarily governed by the process of igniting soot in
the DPF; therefore, the soot load (amount of soot) present in the
DPF directly impacts the temperature. The heat release rate will be
governed by the amount (or the concentration) of fuel and oxygen in
the exhaust flow that serves as reactants during this exothermic
process and must be considered in the modelling. Change in fueling
attributes can be incorporated from parameters such as total injected
fuel quantity, including main injection and post-injection, the start
of fuel injection (timing relative to crank angle), and total unburnt
fuel exiting the DOC (raw fuel input to the DPF). During the
exothermic process, the initial and subsequent temperatures of the
exhaust gas feed in and out of the DPF also play a major role in
dictating the heat generation rate and peak temperature inside the
DPF. The differential pressure across the DPF and turbine out
pressure helps the model to incorporate some resemblance of
soot distribution across the DPF because the same soot load can
be distributed in various manners (channel plugs, wall deposits),
affecting the temperature gradient. The physical attributes such as
an instance of regen (time), exhaust flowrate and gas constituents are
necessary for the model to incorporate all the changing thermofluid
attributes and respective impacts. Considering the above
phenomena, a total of 16 feature vectors (inputs) are selected to
predict bed temperatures accurately, consisting of engine operation
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and exhaust flow parameters, as listed in Table 2. It might be
mentioned that engine out NOx strongly correlates with the
engine out soot, and it might be included as an important feature
vector as well. However, NOx emission in diesel engines is normally
regulated with EGR based on engine out O2 sensor feedback, as in
the present experimental study; so that the impact is accounted for
indirectly. As a result, the concentration of NOx is not considered as
a part of the feature vector in this study, but instead engine out
exhaust O2 concentration is included as one of the feature vectors, as
shown in Table 2.

3.4 Hyperparameter calibration

The network’s performance depends on the choice of
hyperparameters, fixed design parameters set before training that
cannot be learned during training, such as the number of hidden
layers, neurons, activation function, learning rate, batch size,
dropout probability and optimizers. A standard method for
calibrating the hyperparameters is a grid or random search. In

grid search, a range of values for each hyperparameter is specified,
and the network is trained using all possible combinations of the
hyperparameters. In random search, hyperparameters are randomly
selected from the specified ranges, and the network is trained using
these hyperparameters. The hyperparameters that yield the best
performance on the validation set are chosen for the final model.
After multiple trials and iterations, a combination of ReLU
(Rectified Linear Unit), a non-exponential activation function,
and a linear activation function is chosen for DPF thermal
modeling. ReLU is mathematically defined as f(x) = max (0, x);
The ReLU activation function is computationally efficient, making it
a preferred choice for deep neural networks (Apicella et al., 2021;
Szandała, 2021). ReLU activation produces sparse representations
because it only activates a subset of the neurons in the network,
helping to reduce overfitting and to improve generalization. After
considering multiple combinations of hyperparameters, the final
ANN design attributes are tabulated in Table 3. The final model
prediction results are illustrated in Figure 5.

As observed in Figure 5, the trained ANN model accurately
predicts the bed temperatures with the hyperparameters given
above. Here five-bed temperatures from the set of 47-bed
temperatures are selected randomly as a quick method to verify
the model’s performance. In the normalized data, the highest
temperature is represented as 1, and the lowest is defined as zero.
This analysis helps us identify the model performance at extreme
(nonlinear) and mid-temperature (relatively linear) sections. If the
predicted and experimental values match, all the points plotted will
be precisely on the marked trace line; anything below the line is
under prediction and above is overprediction by the model,
corresponding to an error.

4 Results and discussion

This section evaluates the DTI thermal model performance after
training by comparing the model-predicted bed temperatures to
their experimental temperatures (true values) during the exothermic
reactions. Considering that the representation of all 47 temperatures
in graphs is too complicated, a single rectangular cross-section of the
quarter DPF with six temperatures at the periphery is used to
evaluate the model performance across the various regeneration
conditions, as illustrated in Figure 6. The six periphery
thermocouples are also designated with alphabets (A-F) for
reference in subsequent analysis, as shown in Figure 6. This is
because these six temperature values at the periphery of the DPF,
including the inlet and exit, centerline and outer cylindrical surface,
tend to have the largest errors for the model prediction, arising from
the largest impact by the fluid flow, heat transfer with the material
properties and pore structures of the DPF, soot distribution, soot
oxidation kinetics and heat release rate, and the ambient conditions.

The model performance on the contemporary data
(denormalized data) from the periphery thermocouples is
illustrated in Figure 7, where the model-predicted bed
temperatures are compared to the experimental values at these
locations. The periphery location on the DPF exhibits the most
significant gradient covering the highest and the lowest bed
temperatures during the regeneration process (exothermic
reaction). Considering the R2 > 0.999, it can be concluded from

TABLE 2 Feature vectors for the present DPF thermal ANN model.

Feature Vectors (Inputs)

Engine Speed Main Injection Fuel Quantity

Engine Torque Start of Main Injection

Exhaust Flow Rate Post Injection Fuel Quantity

Turbine Out Temperature Engine Out Exhaust Oxygen
Concentration (O2%)

Turbine Out Pressure DOC Out Total Hydrocarbon (THC)

DOC Inlet Temperature DPF Outlet Temperature

DPF Inlet Temperature Time

DPF Differential Pressure
(DPF dP)

Soot Load

TABLE 3 Final DPF ANN model hyperparameter values.

ANN Hyperparameters Final Value

Feature Vectors (Inputs) 16

Target Variables (Outputs) 47 Bed Temperatures

Number of Hidden Layers 3

Number of Neurons for Hidden
Layers

100—1st layer, 75 - 2nd layer, 50—3rd layer

Activation Function ‘ReLU’—1, 2, 3 Hidden layers

Optimizer Adam (Learning Rate—0.0105, beta_1 = 0.925)

Number of Data Points Total: 7,457, Training data: 4,445, Validation
data: 1905, Field Test Data: 1,107

Batch Learning 100

Dropout Probability for Hidden
Layers

0.55—1st layer, 0.35 - 2nd layer, 0.35—3rd layer
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Figure 7 that the model prediction across the spectrum is accurate in
modeling the thermal gradients.

Figure 8 illustrates the model performance over the time series
stitched together by combining various regeneration sequences;
here, the model-predicted periphery bed temperatures are plotted
against the respective experimental values. Each peak corresponds to
an individual regeneration sequence at a specific temperature and
soot load. Figure 8 shows bed temperatures at B and F, i.e., the DPF
outlet periphery shows the highest exotherms. In contrast, A, C, and
D, representing the DPF inlet periphery bed temperatures, show a
relatively lower exothermic reaction. As the soot deposition pattern
governs the exothermic response, these results agree with the
literature, as the soot is predominantly deposited more towards
the outlet side of the filter. Figure 8 also illustrates that the model
accurately predicts the lower end of the temperature spectrum;
however, there is a very slight underprediction at the peak
exothermic case, which will contribute to some errors in the DPF
thermal gradient calculation.

Plotting all the 18 thermocouple prediction data and comparing
them with experimental data using a line plot at various conditions
to illustrate model performance is graphically too intensive. This is
resolved by creating a contour plot representing the DPF rectangular
cross-sectional phase. X represents the radius of the cylindrical DPF,
where 0 illustrates the centre of the DPF. Y represents the length of
the DPF (from the DPF inlet towards the outlet), and 0 defines the
inlet cross section; the contour plot’s thermocouple/bed temperature

FIGURE 5
ANN model performance on normalized data after training: Error vs. Epochs and predicted five random temperatures chosen out of 47 presented
here (output dataset).

FIGURE 6
Illustration of DPF cross-section instrumentation with
18 thermocouples.
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locations are defined as 2-D cartesian coordinates, as tabulated in
Table 4.

The first six (6) DPF regeneration scenarios show the model
performance when partial experimental data from these regeneration
time series is used to train the model. Scenarios 1 to 6 consist of data
used for training and validating where the regeneration conditions vary
from light to heavy soot loads (3–7 g/L) at various DPF inlet
temperatures (525°C–560°C). 7th scenario can be considered as the
model performance on field data where none of the data is ever used for
training or validating the model (the neural network model is entirely
unexposed to this data). In these scenarios, the DPF is loaded with a
predetermined soot level and subjected to an active regeneration
process. The DPF inlet exhaust temperature is raised to a specific
temperature, referred to as AR-DTI temperature, by injecting fuel into
the exhaust stream and immediately dropped to an engine idling
condition providing excess oxygen to initiate exothermic soot
regeneration. The contour plots presented in Figures 9–14 illustrate
a specific instant in the regeneration time series where the peak bed
temperatures and maximum thermal gradients occur.

Scenario 1. Soot Load = 3 g/L, AR-DTI Temperature = 560°C
In scenario 1, a DPF regeneration is considered with a light soot

load (3 g/L) and a high DPF inlet gas temperature of 560°C before
dropping to idle, as the soot load is relatively low, the thermal
gradients are not expected to be high. As observed from Figure 9, the
ANN model explicitly predicts the DPF bed temperatures,
illustrating an accurate depiction of the DPF thermal gradients at

the low soot load of 3 g/L; the maximum error between the predicted
and experimental values is around 1%. This evaluation shows that
the model can easily predicate the lower end of the thermal gradient
spectrum with great accuracy as the relative nonlinearity of the
exotherm across the DPF is low.

Scenario 2. Soot Load = 4 g/L, AR-DTI Temperature = 550°C
Scenario 2 illustrates a DPF regeneration with a light to medium

soot load (4 g/L) and a high DPF inlet gas temperature of 560°C
before dropping to the idle condition; as the soot load is relatively
higher, the thermal gradients are also expected to be relatively higher
when compared to the previous case, Scenario 1. Figure 10 presents
the predicted and experimental DPF thermal gradient during the
regeneration process, which is greater than Scenario 1; the model
prediction performance in the regions where bed temperatures
below 600°C is quite accurate (error <1%), whereas the higher-
end temperature prediction error, i.e., >600°C, has increased to
around 2% and also shows a slight gradient difference when
comparing predicted against experimental thermal gradients
closer to the DPF outlet. This difference in prediction and
experimental data contours can be primarily attributed to the
increased nonlinearity of the exothermic reaction at a higher soot
load and higher DPF inlet temperature, for which the model seems
not able to capture completely.

Scenario 3. Soot Load = 5 g/L, AR-DTI Temperature = 525°C and
Scenario 4: Soot Load = 5 g/L, AR-DTI Temperature = 560°C

FIGURE 7
ANN model performance on the DPF periphery locations (pristine data/denormalized).
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Scenario 3 and Scenario 4 are primarily considered to show the
impact of DPF inlet temperatures on the thermal gradients during the
regeneration. The soot load is kept at a constant 5 g/L (medium soot load)
in both scenarios, but the DPF inlet gas temperature in Scenario 3 is
maintained lower at 525°C; in contrast, Scenario 4 has its DPF inlet at a
higher temperature of 560°C. This change in DPF inlet temperature of

25°C resulted in a peak bed variation of greater than 125°C, demonstrating
the nonlinearity in the DPF temperature response to the inlet gas
temperature during the exothermic reaction (regeneration). This is
understandable since the rate of soot oxidation reaction; hence the
heat release rate, is Arrhenius type having strongly nonlinear
(exponential) temperature dependence. Similar to Scenario 2, the

FIGURE 8
ANN performance in a time series prediction duringmultiple regeneration sequences measured vs predicted periphery temperatures at the location
of (A) A and B; (B) C and E; (C) D and F.

TABLE 4 DPF contour plot data presentation.

DPF bed temperature location X coordinate Y coordinate DPF bed temperature location X coordinate Y coordinate

1 0 1 10 3.76 5

2 0 4 11 3.76 6

3 0 6 12 5.64 1

4 1.88 1 13 5.64 4

5 1.88 4 14 5.64 5

6 1.88 5 15 5.64 6

7 1.88 6 16 6.4 1

8 3.76 1 17 6.4 4

9 3.76 4 18 6.4 6
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FIGURE 9
Contour plot for DPF thermal gradient: ANN prediction vs experimental measurement at the soot loading of 3 g/L and the DPF inlet gas temperature
of 560°C.

FIGURE 10
Contour plot for DPF thermal gradient: ANN prediction vs experimental measurement at the soot loading of 4 g/L and the DPF inlet gas temperature
of 550°C.

FIGURE 11
Contour plot for DPF thermal gradient: ANN prediction vs experimental measurement at the soot loading of 4 g/L and the DPF inlet gas temperature
of 525°C.
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FIGURE 12
Contour plot for DPF thermal gradient: ANN prediction vs experimental measurement at the soot loading of 5 g/L and the DPF inlet gas temperature
of 560°C.

FIGURE 13
Contour plot for DPF thermal gradient: ANN prediction vs experimental measurement at the soot loading of 6 g/L and the DPF inlet gas temperature
of 550°C (Scenario 5).

FIGURE 14
Contour plot for DPF thermal gradient: ANN prediction vs experimental measurement at the soot loading of 7 g/L and the DPF inlet gas temperature
of 525°C (Scenario 6).
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model prediction at the higher bed temperatures is prone to aminor error
in Scenario 3, as observed in the thermal gradient contour plot shown in
Figure 11. The maximum error between the prediction and experimental
bed temperature values is still around 2%, even at the higher soot loads of
5 g/L, demonstrating excellent model performance at the medium soot
loads and lowerDPF inlet temperature. Similarly, in Scenario 4, themodel
prediction error still holds perfect accuracy towards the DPF inlet region
(at lower bed temperatures). However, the maximum error at the DPF
outlet has increased to around 3% with a relative increase in contour plot

distortion when comparing the predicted and experimental values, as
shown in Figure 12, which can be again attributed to the model’s
limitation in capturing the nonlinearity completely.

Scenario 5. Soot Load = 6 g/L, AR-DTI Temperature = 550°C and
Scenario 6: Soot Load = 7 g/L, AR-DTI Temperature = 525°C

Both Scenarios 5 and 6 represent the high soot load conditions (6 g/
L and 7 g/L) at both relatively high (550°C) and low (525°C)
regeneration temperatures. In both cases, the maximum error

FIGURE 15
Contour plot for DPF thermal gradient: ANN prediction vs experimental measurement at the soot loading of 4 g/L and the DPF inlet gas temperature
of 560°C (Scenario 7 where the experimental data has not been used for the model training and validation, or the so-called unexposed or new data, and
the experimental measurement is the field data where the soot distribution may not be as uniform as for the previous scenarios of laboratory tests.).

TABLE 5 A summary of the percentage error in the ANN predicted bed temperature.

X Y Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 (%) Scenario 7

0 1 0% 0% 0% 0% 0% 0 −3%

0 4 −1% −1% 0% 0% 0% 0 2%

0 6 −1% −2% −1% 0% 1% 1 −3%

1.88 1 0% 0% 0% −1% 0% 0 −1%

1.88 4 −1% −1% 0% 0% 0% 0 4%

1.88 5 −1% −1% −1% −2% −1% 0 3%

1.88 6 −1% −1% −1% 0% 2% 0 −4%

3.76 1 1% 0% 1% 0% 0% 0 −2%

3.76 4 −1% −1% 0% 0% 0% 0 1%

3.76 5 −1% −1% −1% −3% −1% 0 0%

3.76 6 −1% −2% −2% 0% 0% 1 −8%

5.64 1 0% 0% 1% −1% −1% 0 −5%

5.64 4 −1% −1% 0% 0% 0% 0 0%

5.64 5 −1% −1% 0% 0% 0% 0 0%

5.64 6 0% −1% 0% −1% 0% 0 0%

6.4 1 0% 0% 0% −2% 0% 0 −5%

6.4 4 0% −1% 0% 0% 0% 0 0%

6.4 6 1% 0% 0% 0% 0% 0 1%

Maximum prediction error % values are italicized in Table.
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between the prediction and experimental value is around 1–2% even
when the peak bed temperatures are more than 800°C. It is seen that the
ANN model is effectively validated when compared with the
experimental results shown, as the model accurately predicts the
DPF thermal gradients, as shown in Figure 13 and Figure 14.
However, it can be observed that in regeneration conditions at
higher DPF inlet temperature (>550°C), the model predictions
(contour plots) tend to deviate from the experimental value slightly
but still within the acceptable accuracy.

Scenario 7. Soot Load = 4 g/L, AR-DTI Temperature = 560°C
(Field Data)

Scenario 7 represents the field data where the model is entirely
exposed to new data from the regeneration on the sameDPF and engine
platform but at a different DPF soot load and active regeneration
temperature combination, i.e., 4 g/L and 560°C. It must also be noted
that the soot deposition pattern inside the DPF is slightly variable
during each regeneration sequence. Figure 15 illustrates the predicted
DPF thermal gradient with the experimental values resulting in an error
of 8% at the higher temperatures (>600°C) and around 3% at the lower
temperatures, even when the model is not trained on any data from this
particular case. Considering the exothermic nature of the DPF
regeneration, the model accuracy is outstanding on the field data,
here the error can be attributed to the model’s limitation in capturing
the nonlinearity of the temperature generated due to the exotherm at
high DPF inlet temperatures and variability in soot distribution across
the DPF.

The percentage error (%) at the various locations and scenarios
is tabulated in Table 5, summarizing the DPF thermal ANN model
performance as developed. In most cases, the highest error occurs at
the peak bed temperature location, i.e., the midpoint of the radius at
the outlet side of the DPF. This error is due to the extreme
nonlinearity of the exotherm, where the change in bed
temperature is quite substantial, even for the slightest change in
any input parameter. However, at the lower soot loads and
regeneration temperatures, the nonlinearity of the exotherm is
lower, resulting in relatively lower peak bed temperatures that
the model can more accurately predict. Despite this limitation, an
error under 10% is acceptable for non-critical onboard diagnostics
or developing DPF regeneration strategies.

5 Conclusion

In this study, a comprehensive data-based diesel particulate filter
(DPF) thermal model based on a multi-input multi-output neural
network is successfully developed to predict the thermal gradients
across the DPF during an active regeneration (exothermic) event.
An experimental methodology is formulated to instrument the DPF
and generate consistent DPF exotherm temperatures during the active
regeneration events. Over 7,400 data points across various exhaust flow
rates, regeneration temperatures and soot loads are generated through
experimentation and utilized in training, validating and testing the data-
based DPF thermal model. The hyperparameters of the neural network
model are calibrated to predict the 47 DPF peak bed temperatures
simultaneously measured at various spatial locations with an accuracy
greater than R2 > 0.999 in most cases. During the neural network
performance evaluation, the time series analysis of both model-

predicted and experimental bed temperatures shows a good
correlation with slight under-prediction at bed temperatures higher
than 800°C, which can be attributed to the strong nonlinearity of the
exotherm temperature. The thermal contour plots generated by the
model-predicted data across the first six scenarios result in an error
of <3% when compared with the experimental data, however the
contour plot generated by the seventh scenario (field data), the
model error rate approaches 10% at DPF outlet locations (bed
temperatures >700°C) and 2%–3% at DPF inlet locations (bed
temperatures <600°C). These results demonstrate that the data-
based model for DPF shows an acceptable level of accuracy in
predicting thermal gradients across the spectrum, aiding in
determining a safer DPF regeneration strategy, onboard diagnostics
and DPF development.
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