AUTHOR=Salayma Marwa TITLE=Threat modelling in Internet of Things (IoT) environments using dynamic attack graphs JOURNAL=Frontiers in the Internet of Things VOLUME=3 YEAR=2024 URL=https://www.frontiersin.org/journals/the-internet-of-things/articles/10.3389/friot.2024.1306465 DOI=10.3389/friot.2024.1306465 ISSN=2813-3110 ABSTRACT=

This work presents a threat modelling approach to represent changes to the attack paths through an Internet of Things (IoT) environment when the environment changes dynamically, that is, when new devices are added or removed from the system or when whole sub-systems join or leave. The proposed approach investigates the propagation of threats using attack graphs, a popular attack modelling method. However, traditional attack-graph approaches have been applied in static environments that do not continuously change, such as enterprise networks, leading to static and usually very large attack graphs. In contrast, IoT environments are often characterised by dynamic change and interconnections; different topologies for different systems may interconnect with each other dynamically and outside the operator’s control. Such new interconnections lead to changes in the reachability amongst devices according to which their corresponding attack graphs change. This requires dynamic topology and attack graphs for threat and risk analysis. This article introduces an example scenario based on healthcare systems to motivate the work and illustrate the proposed approach. The proposed approach is implemented using a graph database management tool (GDBM), Neo4j, which is a popular tool for mapping, visualising, and querying the graphs of highly connected data. It is efficient in providing a rapid threat modelling mechanism, making it suitable for capturing security changes in the dynamic IoT environment. Our results show that our developed threat modelling approach copes with dynamic system changes that may occur in IoT environments and enables identifying attack paths, whilst allowing for system dynamics. The developed dynamic topology and attack graphs can cope with the changes in the IoT environment efficiently and rapidly by maintaining their associated graphs.