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Introduction: Urban farming has gained prominence in Singapore, offering
opportunities for automation to enhance its efficiency and scalability. This
study, conducted in collaboration with a leading Singaporean urban farming
company, introduces an IoT-based automated farming system. This system
incorporates an agnostic growbox and a web application dashboard for
intelligent monitoring of crop growth. The presented approach provides an
open-source and cost-effective solution for a scalable urban farming
architecture. The agnostic growbox system offers both accessibility and
scalability, utilizing cost-effective and modular hardware components with
open-source software, thereby increasing customizability and accessibility
compared to commercial growbox products. The authors anticipate that this
approach will find diverse applications within the realm of urban farming,
streamlining, and improving the efficiency of urban farming through
automation.

Methods: The study employs an integrated solution that incorporates an image
analytics approach for the proficient and accurate classification of crop disease
phenotypes, specifically targeting chlorosis and tip burn in lettuce crops. This
approach is designed to be hardware- and software-efficient, obviating the
necessity for extensive image datasets for model training. The image analytics
approach is compared favourably with a machine learning approach, evaluating
the accuracy of categorization using the same dataset. Additionally, the approach
is assessed in terms of time and cost efficiency in comparison to machine learning
techniques.

Results: The image analytics approach demonstrated notable scalability, time
efficiency, and accuracy in the detection of crop diseases within urban farming.
Early detection, particularly of chlorosis and tip burn, proves critical in
mitigating crop wastage. The results indicate that the integrated solution
provided a reliable and effective means of disease classification, with
significant advantages over traditional machine learning approaches in terms
of time and cost efficiency.

Discussion: The presented IoT-based automated farming system, incorporating
the agnostic growbox and image analytics approach, holds promise for
revolutionizing urban farming practices. Its open-source nature, coupled
with cost-effectiveness and scalability, positions it as a practical solution for
urban farming architecture. The system's ability to efficiently detect and classify
crop diseases, particularly chlorosis and tip burn, offers a substantial
contribution to reducing wastage and enhancing crop yield. Overall, this
approach paves the way for a more efficient and sustainable future for urban
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farming through the integration of automation and advanced analytics. Further
exploration and implementation of this technology in diverse urban farming
settings is warranted.
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agritech, IoT, urban farming, smart systems, growbox, image analytics, machine learning,
phenotyping

1 Introduction

When implementing technology in urban farming production,
effectiveness is crucial, but cost-efficiency and scalability are equally
important considerations. Given the large-scale production
requirements of urban farms, the chosen technology must scale
appropriately with the quantity of crops. Even effective technological
interventions may not be suitable for practical use if they cannot be
scaled in a cost-effective manner. Therefore, this work emphasizes the
adoption ofmeaningful technological interventions that align with the
principles of cost-efficiency and scalability.

This manuscript presents a scalable approach to efficient crop
management in urban farming using IoT protocols and embedded
controllers. The research question addressed in this work is how to
design a scalable yet customizable system for monitoring and
regulating the environment in urban farming. By leveraging on a
standardized physical and software architecture, the growbox
provides a customizable framework which can be adapted by the
users to fulfill their requirement. By using low-cost components and
message transfer protocols, the growbox enables easy scalability.

Urban farming is a growing industry with particular relevance to
densely populated areas, but that current practices require significant
human involvement. To address this problem, this work aims to
develop an automated system that enhances efficiency, ultimately
producing an urban farming architecture that is scalable.

The manuscript contributes to the research field by presenting a
standardized and modular system that uses image processing
algorithms to increase the efficiency of crop production. The
proposed system can monitor and regulate three sub-environments
in urban farming: Light, Climate, andNutrients. The use of embedded
controllers and Message Queuing Telemetry Transport (MQTT) IoT
protocols facilitates heterogeneity and modularity (allowing a plug-
and-play approach to growbox customization), while the web
application dashboard allows for real-time monitoring of sensor
information and management of growboxes.

This work demonstrates the feasibility and effectiveness of the
proposed approach in an urban farming context. The scalability and
modularity of the system makes it adaptable to various crops and
urban environments. Overall, this manuscript contributes to
progress in the research discipline by presenting a scalable
approach to monitoring and regulating the environment in urban
farming that addresses current challenges and opens up new
opportunities for automation and optimization in the field.

2 Motivation

Urban farming necessitates significant human involvement in
monitoring and assessing crop health and developmental stages.

This results in a considerable overhead when scaling crop
production and increases the potential for human error.

To address these challenges, this manuscript proposes the
development of an innovative and agnostic growbox that
embraces a modular and open-source framework for monitoring
and influencing crop growth. The growbox incorporates IoT
sensors, which can be added or removed as independent modules
based on specific requirements. A top-down camera is utilized to
identify crop phenotypes, monitor growth parameters, and detect
the end-stage of crop development, indicating the suitability for
harvesting. The growbox communicates information to a centralized
database that offers a dashboard view, presenting crop statuses and
alerts through a web application. The transfer of sensor data follows
standardized protocols to ensure compatibility and seamless
integration.

The agnostic growbox serves as a platform for investigating
growth parameters and their relationship to desired outcomes.
While a variety of sensor data can be collected, their correlation
with desired outcomes may be limited. Therefore, it is crucial to
understand which sensors are informative and the degree of
accuracy required. Making efficient choices of sensors and
actuators for the growbox is pivotal for scalability. The system
addresses scalability in terms of size, cost, and knowledge.

Regarding size, the selection of IoT sensors and actuation
devices should be efficient for large-scale urban farming
operations. The chosen components should enable a highly
modular system where modules can be added or removed
without compromising the overall functionality. The devices
must be capable of monitoring hundreds of crops in close
proximity simultaneously. Cost efficiency is essential for
scalability, and unnecessary expenses ought to be avoided by
excluding commercially irrelevant parameters. Only impactful
sensors and actuators are incorporated into the system. By
constructing the agnostic growbox from the ground up and
focusing on commercially relevant aspects, production costs are
optimized. Establishing a baseline set of essential sensors and
actuators, alongside their required accuracy levels, ensures a cost-
efficient solution. The advocated growbox enables the exploration of
suitable devices and their effectiveness relative to cost.

Building a scalable knowledge base is also essential. Artificial
Intelligence via Machine Learning (ML) models can be employed to
combine images and data from various sensors to characterize plant
phenotypes accurately. To overcome transferability challenges, ML
models are developed using datasets from commercially relevant
crop varieties recommended by Archisen Pte Ltd. (2021).
Standardized lighting conditions during measurements further
enhance consistency and comparability.

The agnostic growbox system integrates IoT devices with
standardized data transfer protocols, a live crop monitoring
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dashboard, and automated crop assessment through image analytics
to achieve scalability in size, cost, and knowledge. This approach
streamlines urban farming processes, reduces human intervention,
and facilitates efficient and data-driven decision-making for optimal
crop production.

3 Background

Singapore is currently generating approximately 10% of its food
within its borders, but it has set a goal to raise this percentage to 30%
by the year 2030 (Diaz, 2021). In order to achieve this target, it will
be necessary to expand the urban farming sector. At present, urban
farms need to be diligently maintained to ensure optimal growth
conditions and regularly inspected to determine if seeds have
sprouted or crops are in a healthy state and ready for harvesting.
Additionally, ensuring financial feasibility is a significant
consideration, which entails choosing cost-effective IoT sensors
and actuators to monitor and regulate the growbox environments.

In recent years, there has been notable progress in indoor
farming, ranging from small-scale growboxes for personal use to
large-scale grow-towers for commercial markets. Various solutions
(Maldonado et al., 2019; Wijanarko et al., 2021; Zervopoulos et al.,
2020) have been developed to enable continuous monitoring of
crops and basic automation tasks such as watering and lighting
control, which reduce labor costs and facilitate production
expansion. While these solutions have streamlined the
monitoring process, their evaluations have primarily concentrated
on assessing the quality of the resulting image rather than analyzing
the performance of the image classification.

(Loresco and Dadios, 2020) developed an decision support
system based on Artificial Neural Networks (ANN) to classify
lettuce growth stage by using various extracted vision features
including morphological features, color features, and textural
features. Their approach showed promising results in lettuce
growth stage classification. Subsequent research (Wimalasiri
et al., 2021; Hamouda and Msallam, 2020) have focused on
analyzing this data and empowering systems to adapt to
environmental fluctuations, maintaining optimal crop conditions.
For example, Seedo Seedo. (2021) offers hydroponic growing devices
with an intelligent automation system that minimizes human
intervention by monitoring and adjusting crop needs. These
advancements have significantly improved crop production and
reduced costs through optimized parameters for specific crops,
resulting in savings in water and power consumption.

Niche farmers often strive to customize their crops to achieve
desired characteristics. However, this process is typically manual
and time-consuming, requiring extensive experimentation with
various permutations. Recent studies (Kwon et al., 2020;
SharathKumar et al., 2020) explore automated customization
techniques for specific crops, demonstrating that controlling
selected factors can lead to more desirable outcomes. By tracking
monitored crop data and associating it with the final product
characteristics, a control loop can be established to optimize
outcomes. Our research contributes to the approach presented
here, with a distinct emphasis on scalability and device-agnostic
characteristics of the growbox.

Existing growbox solutions offer sensing and actuating
capabilities for some specific growing conditions in Percival
and Conviron (Percival Scientific Inc, 2022; Controlled
Environments Limited, 2023), but seldom cover all
requirements. These solutions are often tailored for research
purposes and may include sensors and actuators that are
commercially unnecessary, driving up costs (ranging from
$15,000 SGD to $30,000 SGD per growbox). Phenotyping
functions, such as plant size and health status, come with an
even more higher price tag which is in line with many
sophisticated but expensive analytical instruments, for
example, (Phenospex - Smart Plant Analysis, 2022).
Additionally, the algorithms used for plant health phenotyping
are not generalizable and lack transferability across different crop
types and lighting conditions due to variations in plant
morphology and differences between natural and artificial
lighting.

According to a guide on the identification of nutrient deficiency
in plants in (NP Foods Singapore, 2022), nutrient deficiency occurs
when plants lack sufficient quantities of essential nutrients.
Nutrients are vital for proper growth, and their absence can
impede plant development, leading to various symptoms such as
chlorosis and eventually tip burn (necrosis of the leaf tips) (Wong,
2006; Capon, 2010).

Chlorosis is characterized by the inability to produce chlorophyll
due to nutritional disturbances, fungal or bacterial infections, or
viral attacks. This condition can be visually identified by its pale to
yellow discoloration of leaves due to a lack of chlorophyll (Prasad,
2003; Behboudian et al., 2016). Depending on the underlying causes,
chlorosis can affect either younger or older leaves of lettuce Prasad.
(2003), which is a prominent crop in urban farming.

Tip burn, on the other hand, results from calcium deficiency in
the growing tissues, which can occur even when calcium levels in the
nutrient solution are sufficient (Behboudian et al., 2016). It is
commonly observed in indoor farming due to high-density crop
production, limited space, lack of natural ventilation, and the
reliance on artificial lighting (Gozzovelli et al., 2021). Similar to
chlorosis, tip burn can be visually identified by the browning of the
leaf edges, which may manifest as small spots near the leaf margins
or affect the entire leaf edge.

Urban farming has seen the emergence of fully automated farms
worldwide, such as (Kalera, 2022). These innovative operations leverage
technological advancements to optimize production and reduce labour
costs. However, these solutions have yet to incorporate automatic
assessment of crop health through image analytics or ML, which is
a key consideration in our research. Furthermore, our work focuses on
the practicality of automation through consultation with Archisen Pte
Ltd. (2021). Specifically, our collaboration explores the scalability and
cost-efficiency of automated urban farming systems, from both small to
large scale systems.

In a review by Ma et al. (2022), they explored the current
progress in high-throughput plant phenotyping for crop
monitoring, covering sensors, communication protocols, data
management, and platforms. Their analysis highlighted the need
to address a gap in achieving a communication protocol that is fast,
wide-ranging, energy-efficient, and cost-effective for high-quality
crop monitoring systems.
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Some existing research has focused on detecting plant diseases
such as chlorosis and tip burn. For instance, Gozzovelli et al. (2021)
investigated the detection of tip burn in lettuce cultivated in plant
factories. Their approach involved dividing top-view images of
lettuce into patches and performing patch-level classification.
While achieving satisfactory classification accuracy, the method
faced challenges in dataset collection and performance evaluation
due to its high complexity. Most existing methods have primarily
focused on binary classification tasks, rather than quantifying the
extent of plant illness.

In Hegedűs et al. (2023) the authors discusses the scalability of
vertical farming with IoT solutions. They state that “it is worth
noting that energy consumption is considered still too high in
practice to produce “low price” plants with vertical farming.”
This emphasises the need for scalable solutions. They go on to
identify the need for “more advanced data-driven, autonomous and
yield-optimising control mechanisms to be developed,” this aligns
with the premise for our work. Their work stresses the essential
nature of counteracting rising energy prices and labour costs to
maintain vertical farms, our work addresses this as it aims to reduce
human labour.

A similar, multi-growbox setup is presented in Haris et al.
(2019). This work describes a modular indoor vertical farming
prototype platform, distributed over cloud, fog, and sensors/
actuators. They use an open growbox setup where the cloud is
realized as a virtual machine and deployed on a remote server. This

work also advocates a plug and play, modular, approach. However,
neither this nor the previous work incorporate camera sensors and
image analytics for disease detection into the growbox framework.

4 Methodology

This section describes the core elements of this work; namely,
the Growbox specification, Dashboard specification, IoT
communications, and Image analytics approach. The overall
system setup is represented in Figure 1. This illustrates the
connection between the elements of the system, providing an
overview of the workflow. The outer rectangle, on the left,
represents the growbox area. The actuators and sensors function
as indicated in the internal rectangles at the top and bottom of the
growbox area, respectively. Note that (Node-RED, 2023) is used to
communicate with the IoT sensors devices as data is aggregated into
the database. The database is accessed and monitored via the web
application dashboard.

The system is primarily for monitoring environmental factors in
urban farming, which includes the use of sensors, actuators,
controllers, and a cloud-based database. The system is designed
to standardize the use of existing IoT protocols to facilitate
heterogeneity and modularity of the growbox. The sensors and
actuators are connected to their respective controllers, which acquire
and process sensor data and control the elements.

FIGURE 1
Overview of proposed system.
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4.1 Growbox specification

The growbox is designed to house various sensors and actuators
in an enclosed frame that facilitates close monitoring of the crops.
The system accommodates various sensors to monitor growth-
related elements, i.e., temperature, humidity and images from the
camera to monitor the elements that can influence crop growth. If
these monitored elements go beyond the normal range, the system
can regulate them, e.g., ambient temperature, wind speed, control
water flow and lighting conditions via the IoT-based actuators such
as a side-mounted fan, a water pump and top-down grow lights, as
illustrated in Figure 2.

Furthermore, the growbox can be configured for three methods
of fertigation (Grant, 2023), to supply the crops, namely,: Nutrient
Film Technique (NFT), Deep Water Culture (DWC), and Ebb-and-
Flow. The IoT-based water pump irrigation system manages this.

4.1.1 Controllers
Each sensor is connected to a controller, which performs data

acquisition and processing before transmitting it to the cloud-based
database. Moreover, to regulate the environment, the actuators (e.g.,
the water pump) are also connected to dedicated controllers and
performs operations as required.

The controller communications is standardised using existing
IoT protocols, specifically Message Queuing Telemetry Transport
(MQTT). Standardising to MQTT allows for a variety of sensor and
actuator controllers (e.g., Raspberry Pis and ESP32s in the initial
setup), facilitating heterogeneity. MQTT’s flexibility leads to
interchangeability of hardware; hence, facilitating the modular
design of the growbox.

Controllers can also exchange data to collectively manage the
growboxes. This approach leverages the advantages of each
controller’s native OS (for our initial setup this is Raspberry Pi
Os and RIOT-OS) having low power consumption and supporting
various implementation languages, such as C and Python. Although
interchangeable, when selecting controllers the interface to the

sensors and actuators should be considered because will require
specific ports such as digital, analog, I2C, PWM, and UART.

4.1.2 Sensors and actuators
Elicitation through crops scientists at Archisen provided the

most commercially relevant factors to monitor. These
environmental factors can be divided into three sub-
environments: Light, Climate, and Nutrients, shown in Table 1.
The system is designed to monitor and regulate these sub-
environments for optimal crop growth. Temperature.

For the initial setup of our growbox, the specific sensors chosen
are indicated in Table 2. Here the listed elements monitored are
broken down into constituent factors and the corresponding sensors
used to monitor them.

Regulation of these elements is performed by actuators, after
analysing data from the sensors. The regulation of the actuators is
preformed by four types of controllers: PWM, Relay, GPIO and
digital communications. PWM controllers are used for the motor-
based actuators. Simple on-off devices, such as water pumps,
nutrient dispensers, and grow lights are controlled by a relay
(high-powered) or GPIO (low-powered). The rest use digital
communications, such as UART and ModBus to manage them.
In the initial setup, four types of actuators were deployed to control
the environment: a relay module, pump, controlled water valve, and
LED lights.

FIGURE 2
Agnostic growbox physical layout.

TABLE 1 Environmental factors to monitor.

Light Climate Nutrients

- Light Intensity (Lux) - CO2 - Water level

- Humidity - Water flow

- Air - pH level

- speed - Electrical conductivity

- Nutrient temperature

TABLE 2 Multi-sensor monitoring system.

Element Factor Sensor

Light Ambient SEN0390

Spectrometer MIKROE-4165

Water pH SEN0169-V2

TDS ECTDS10

Liquid level -

Flow -

Humidity Ambient T9602-3-D

Temperature Ambient

Water USP10981

Leaf SEN0206

Wind CO2 SEK-SCD41-SENSOR

Velocity FS3000-1005
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Specifically, the regulation of wind and humidity are managed
by the placement of ventilation fans which serve a fundamental role
in ensuring optimal environmental conditions for plant cultivation
(see Figure 2, labelled “fan intake” and “exhaust fan”). The intake fan
draws in fresh external air, while the exhaust fan is positioned on the
opposite side to expel stale air and maintain proper air circulation
within the growbox. Intake and exhaust ventilation fans play a
pivotal role in regulating humidity and CO2 levels within an
enclosed growbox. These fans form a crucial component of the
environmental control system, working in tandem to create a
balanced and conducive atmosphere for plant growth.

The intake fan serves as the gateway for fresh air from the
external environment to enter the growbox. This incoming air
typically carries a different humidity and CO2 content compared
to air inside the growbox. The airflow canmitigate elevated humidity
levels that may accumulate. Moreover, the incoming air often
contains a higher concentration of CO2, which is essential for
photosynthesis.

On the other hand, the exhaust ventilation fan is responsible for
expelling excess humidity, and accumulated Oxygen or even CO2, if
the threshold is surpassed (As plants respire they release moisture
and CO2 during their growth cycles, the exhaust fan prevents the
buildup of these components to undesirable levels.) By expelling
stale air, the fan helps maintain optimal humidity and
CO2 concentrations, preventing the onset of issues such as
mould or stunted plant growth.

The growbox and dashboard are configured such that the user is
able to adjust the threshold values that trigger the intake and exhaust
fan system. This maintains the desired flow and air composition.
The choice of thresholds depend on the specific requirements of the
user and the crops being cultivated. Ideally, this exchange ensures
that humidity and CO2 levels are regulated within the desired range,
creating an environment conducive to healthy plant growth and
maximizing agricultural yields.

4.1.3 Filtering algorithms for sensors
Filtering algorithms are critical in ensuring the accuracy and

utility of data collected by these sensors, especially in precision
agriculture and environmental monitoring, as they help extract
meaningful information from these sensors, enhancing decision-
making processes. The Kalman and Moving Average filters are
commonly used filtering methods.

The Kalman filter, (Kalman, 1960), is a versatile and adaptive
filtering algorithm that excels at accurately estimating the state of
dynamic systems, making it valuable in applications involving
sensor fusion, state estimation, and noise reduction. The Kalman
filter can enhance data quality from sensors monitoring variables in
precision agriculture.

The Moving Average filter offers a simpler but effective data
smoothing and noise reduction approach in measurement, (Tham,
1998). It operates by averaging a set of recent measurements, thereby
reducing short-term fluctuations and sensor noise. Moving Average
filters are particularly useful for obtaining stable, long-term trends
from sensor data, aiding in identifying patterns and anomalies in
variables in crop growth behaviour.

Kalman and Moving Average filters provide benefits but come
with distinct characteristics. The choice between these filters should
align with the specific requirements of urban farming applications,

where sensors monitor various variables critical for crop growth,
resource management, and environmental control.

The Kalman filter is useful in urban farming scenarios where
accurate and adaptive estimation is vital. For instance, when
managing automated hydroponic systems, the Kalman filter
dynamically adjusts to changing nutrient conditions, helping
optimize plant growth. It excels in sensor fusion tasks, such as
integrating data from environmental sensors measuring
temperature, humidity, and light levels to make informed
decisions about climate control. However, it is worth noting that
implementing a Kalman filter may require expertise in mathematics
and can be computationally intensive.

The Moving Average filter offers a simpler yet effective solution
for urban farming applications, particularly when addressing short-
term fluctuations and noise reduction in sensor data. They
effectively reduce short-term noise and provide smoothed data
for trend analysis. While their performance may be slightly lower
than Kalman filters, they offer a practical balance between accuracy
and simplicity. For example, when tracking the growth of leafy
greens in an indoor farm, a moving average filter can smooth out
sensor measurements, allowing growers to make timely adjustments
to optimize yields. This filtering method is also advantageous for
real-time applications in urban farming, providing noise reduction
while being computationally efficient.

Filtering algorithms are indispensable tools in the growbox
setup, enhancing data quality and supporting informed decision-
making. Whether employing Kalman or Moving Average filters, the
choice should be guided by sensor calibration to align with the
specific requirements. Calibration is essential to ensure the best
filtering is used for a particular sensor. Calibration involves
characterizing the sensor’s behaviour, noise characteristics, and
response to different environmental conditions. This example
growbox uses Moving Average filtering, on the edge, to smooth
out noise from the sensor data.

4.1.4 Climate control
In urban farming, coordinating CO2 and humidity sensors

alongside ventilation fans is pivotal in maintaining optimal
environmental conditions for plant growth. These sensors are
vital components of the automated control system, working in
unison to ensure a controlled and stable indoor climate.

The CO2 sensors are responsible for monitoring the
concentration of carbon dioxide within the enclosed farming
environment. In our example, the ideal CO2 level for lettuce
typically falls within a range of 400–800 parts per million (ppm).
When CO2 levels fall outside these thresholds it is indicative of
inadequate ventilation and the CO2 sensors trigger the ventilation
fans into action. The ventilation fans, designed to expel stale air and
introduce fresh air from the external atmosphere, effectively
normalize the CO2 levels (atmospheric CO2 being around
424 ppm, (Ian Tiseo, 2023), with indoor environments generally
being higher due to human respiration). This action typically serves
to facilitate photosynthesis, as the rate of consumption of CO2 is
higher than its excretion in plant respiration.

Additionally, the humidity sensors continuously measure the
moisture content in the air, ensuring that it remains within the
desired range. Elevated humidity levels can lead to various issues
such as mold growth, diseases, and poor nutrient uptake by plants.
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When humidity surpasses the predefined upper limit, the humidity
sensors collaborate with the ventilation fans to expel humid air and
introduce drier air into the growing area. This helps to maintain an
optimal humidity level conducive to the wellbeing of crops and
prevents moisture-related problems. For the example lettuce crop
the desired range was set to between 50% and 85% humidity, with
reference to Tibbitts and Bottenberg. (1976). In Tibbitts and
Bottenberg. (1976), it was shown that higher humidity creates
larger leaves and hence yields, this was also reinforced in Chia
and Lim. (2022). However, increasingly high humidity also
promotes soil mould which can eventually detract from the crop
health.

The integration of CO2 and humidity sensors with ventilation
fans forms a feedback control system tailored to the unique
requirements of urban farming. For the proposed growbox
framework, the threshold values can be catered to a specific crop
of interest. The synergy between sensors and fans ensures that the
enclosed growbox remains conducive for plant growth while the
containment helps minimize the risk of external interference, pests,
and helps avoid rapid spread of disease.

4.2 Dashboard specification

Alongside the physical growbox, a web application dashboard is
used to display real-time sensor information from the growboxes.
Dashboard views also allow for the visual assessment of crop health
through image analytics and ML models.

The growbox dashboard serves as the user’s main interface,
providing an overview of all existing growboxes within the system.
Each growbox is listed with its physical location and displays real-
time data retrieved from various sensors. Users can add new
growboxes, customize their settings, and remove them as needed.
The dashboard also includes an analytics page for analyzing sensor
data over different time periods. A ticketing system is integrated into
the dashboard for task management across growboxes. Users can
create, assign, and update tickets for plant or sensor-related issues.
The device inventory page showcases all sensor devices associated
with the growboxes. Users can search and filter for specific devices
and monitor their status. For user management, the profile
management page allows users to view and edit account
information. Administrators can add or remove users from the
system. The dashboard features a standard user login system with
password management.

4.2.1 System architecture
The dashboard uses the MERN architecture (MongoDB, 2023)

that this is a dynamic and flexible approach that adheres to the
current systems at Archisen. This three-tiered architecture includes
frontend, backend, and the Mongo database, using JavaScript and
JSON, see Figure 3.

4.2.2 Functionality
The dashboard is scalable as it allows for the monitoring of a

dynamic set of growboxes. It provides various views and
functionality, these are covered herein.

The growbox Landing page, see Figure 4 top right, presents all
the existing growboxes in the system, alongside their physical

location, and the latest data retrieved from sensors such as
temperature, humidity, moisture level, and light intensity.
Additional growboxes can be added to the dashboard with the
specification of seeding and harvesting dates, intervals for IoT
variable updates, schedules for lighting and water flow, and
threshold values for sensor alerts. Different crops may require
customized setups determined by the crops. Once created, users
can update information and configurations. Growboxes may also be
removed from the system as needed.

The analytics page, see Figure 4 middle right, presents the
user with time-mapped data for sensor values over indicated
periods. Specifically, periods can be viewed as per day, week,
month, or year. This real-time data can be analyzed for trends
and patterns across different sensors. This data is preserved in the
database and will be used to discover correlations through ML
models.

The dashboard uses a ticketing system, see Figure 4 bottom left,
to manage tasks across a distributed set of growboxes. All tickets are
displayed to the users and can then be filtered based on their status;
specifically either “pending” or “closed.” These tickets represent
tasks and reminders for users to manage their urban farms. All
dashboard users are also able to create new tickets of different types
for either plant or sensor-related issues. Once created, tickets are
assigned to users. Ticket details can be updated, and tickets can be
closed or even reopened when creating or after being assigned to a
user. This ticket system facilitates the management of a scalable set
of growboxes.

Distributed growboxes systems may contain a variety of
different sensor devices. The device inventory page, see Figure 4
bottom right, displays all these sensors, with their current status and
including with of the growboxes they are associated with. Users can
filter when searching for specific sensor devices, their locations and
their status.

The dashboard is designed to be managed by a collection of
urban farmers. To facilitate this, the profile management page allows
for viewing and editing of the current account information. It is
where the admin can add and remove users from the system. The
dashboard uses a standard user login system, see Figure 4 top left,
and the password can be managed within the management page.

FIGURE 3
MERN stack MongoDB. (2023).
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4.3 IoT communications

The successful implementation of the proposed system relies on
the setup and registration of IoT sensors, as well as the seamless
transmission of sensor data to the backend. This section discusses
the key aspects of IoT sensor setup, the initiation and registration
process, and the methods employed for transmitting sensor data to
the backend database.

4.3.1 IoT sensor setup
The setup of IoT sensors involves configuring and deploying the

physical devices within the target environment. These sensors are
typically equipped with various sensors and communication
modules to collect and transmit data to the database via the Data
Acquisition System. The initial setup process may include hardware
installation, connectivity configuration, and sensor calibration.

Hardware installation involves physically installing the IoT
sensor devices in the desired locations, ensuring proper
placement and connectivity to power sources. The M5Stick-C
(M5Stack, 2019) is chosen as the main IoT device as it can be
found as a complete package that eases deployment. These M5Stick-

Cs are then connected to the sensors via ADC, UART, I2C or SPI.
Sensor calibration may be necessary to ensure accurate
measurements, involving the adjustment of sensor parameters
and settings to align with the intended use case. Connectivity
configuration involves configuring the sensors to establish
network connectivity through Wi-Fi. MQTT has been chosen as
the protocol of choice due to its simplicity and its ability to scale
when needed.

Figure 5 illustrates the eight stages of communication between
the IoT sensors and the backend. The following sections explain how
each stage is designed and implemented.

4.3.2 IoT sensor initialisation
After the physical setup, sensor nodes must initiate and register

themselves with theMongoDB via the Data Acquisition Device. This
step lets the system identify and authenticate the sensor nodes,
enabling secure data transmission. The initiation and registration
process typically involves bootstrapping, authentication and
configuration. Bootstrapping occurs upon power-up, where the
sensor devices initialize the required components, establish
network connections, and prepare for registration. Authentication

FIGURE 4
Web app dashboard pages.
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occurs during the registration process, where the sensors provide
their credentials to verify their identity, and the backend system
grants them appropriate access rights and privileges. Provisioning
and configuration involve the backend infrastructure allocating
necessary resources for the sensors and assigning configuration
parameters such as data transmission intervals or thresholds.

The Data Acquisition Device uses (Node-RED, 2023) to
communicate with the IoT Sensors via MQTT. It then processes
the data and relays it to the MongoDB backend. Any request to
change the configuration of the IoT sensor (e.g., interval time,
UUID, etc.) goes through the Data Acquisition Device.
Subsequently, the Data Acquisition Device communicates with
this database via MongoDB’s API.

Figure 6A illustrates the communication sequence between the
sensor node and the backend systems. The sensor node initiates the
request to join the network when it first boots up by sending an
MQTT request. Upon receiving an MQTT message, the Data
Acquisition Device validates the UUIDShort by comparing it
with the hashed value of the MAC address using a randomly
generated salt. Next, the uniqueness of the UUIDShort is verified
within the sensor nodes collection of the database. If a previous
sensor node is found, the corresponding GrowBoxID in the
GrowBoxList collection updates its UUID to the new value while
also unsubscribing from topics associated with the previous UUID.
Additionally, a subscription is established for the [UUID]/[sensor]/

data topic. Lastly, a message is published to the [UUID]/
connectionApproved topic, indicating “ok” to signify successful
processing or the GrowBoxID if the sensor node was previously
assigned to a growbox.

Figure 6B illustrates assigning a pre-registered sensor node to a
growbox. This is done by transmitting the GrowBoxID to a specific
topic to which the specific sensor node is subscribed. Timestamps
and hashing are incorporated to reduce the chances of replay or
MITM attack. After initiation, the Data Acquisition Device
subscribes to all topics associated with the UUIDhort, i.e., sensor
sampling interval, actuator state value, etc.).

4.3.3 Sensor data transmission
Once the sensor nodes are initiated and registered, they transmit

data to the backend at regular intervals, where it is stored, processed
and analyzed. Figure 6C illustrates the sensor node sequence of sending
sensor data to the backend via the Data Acquisition Device. The
GrowboxID and UUIDShort reference this node to the growbox, while
the hash ensures that this message comes from a verified node.

By default, the sensor data is transmitted every 5 s. However,
the system can update the time interval of any sensor node.
Again, the hash function ensures the sensor node’s message is
authentic. Furthermore, the system can pause or resume the
sensor data transmission at any time using the sequence
depicted in Figure 8A.

FIGURE 5
Data acquisition system.
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4.3.4 Receiving command for actuators
Actuator nodes are connected to actuators, i.e., pumps and

lights. The connection request process is similar to the sensor
nodes process. As seen in Figure 7A, ActuatorsList and
StateValue are sent to the backend via the Data Acquisition
Device to represent the list of actuators connected to this node
and the number of states for each actuator.

The process of assigning the actuator nodes to the growbox is the
same as the sensor nodes, as seen in Figure 7B.

Once the actuator node is assigned a growbox, it listens for
commands via the distinct topic addressed by its UUID. The process
of the actuator node receiving command data from the backend via
the Data Acquisition Device is visually depicted in Figure 7C.
Enclosed within the payload is the updated state value intended
for the actuator, the duration for which this new state should be
maintained, and a timestamp indicating the initiation of the state

transition. The integrity of the message is upheld by hashing the
UUIDShort to ensure its authenticity.

4.3.5 Reliability
IoT systems must also account for potential disconnections

between sensors and the backend, as well as implement measures
for heartbeat monitoring and recovery. Disconnections can occur
due to various factors such as network outages, sensor malfunctions,
or environmental issues. To address this challenge, IoT systems
often incorporate mechanisms to detect and handle disconnections.

One commonly employed technique is the implementation of
heartbeat monitoring. Heartbeat messages are periodically
exchanged between the sensor and the backend to indicate the
sensor’s operational status. It is considered disconnected if a sensor
fails to send a heartbeat within a specified timeframe. Upon
detecting a disconnection, appropriate actions can be taken, such

FIGURE 6
Message sequence diagram for (A) Sensor Node Connect Request, (B) Sensor Node Assignment, and (C) Sensor Data Transmission.
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as generating alerts, initiating troubleshooting procedures, or
attempting to re-establish the connection.

It is important to design robust recovery mechanisms to
minimize data loss and maintain system reliability. These
mechanisms should include error handling procedures,
fallback options, and automated recovery processes to
streamline the re-establishment of communication between
sensors and the backend once the disconnection is resolved.
Alternatively, old sensors that need to be shutdown can send a
notification to disconnect themselves from the network as shown
in Figure 8C.

Designing a protocol that guarantees clarity, transparency, and
robustness against interference and common attacks is paramount.
Clarity and transparency in the protocol ensure that the
communication between sensor nodes and the backend system is
well-defined, understandable, and interpretable by all involved

parties. This enables seamless interoperability, efficient data
exchange, and effective collaboration among increasingly diverse
IoT devices and systems.

Moreover, a robust protocol architecture incorporating security
measures is essential to safeguard against potential interference and
attacks. This is important as IoT systems are susceptible to various
threats, including data breaches, unauthorized access, and malicious
attacks. The integrity, confidentiality, and availability of IoT data
and systems can be ensured by integrating robust security
mechanisms into the protocol design, such as encryption,
authentication, and secure data transmission protocols. This
promotes trust, reliability, and resilience, safeguarding critical
infrastructure, sensitive information, and user privacy. Therefore,
an IoT protocol that combines clarity, transparency, and robust
security measures is vital for the successful deployment and long-
term viability of IoT ecosystems in today’s interconnected world.

FIGURE 7
Message sequence diagram for (A) Actuator Node Connect Request, (B) Actuator Node Assignment, and (C) Receiving Command for Actuator
Node.
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4.3.6 Throughput
IoT communication plays a fundamental role in the

scalability of the proposed growbox setup. One factor of
significant importance is the message throughput required for
such a system, or set of systems, as the farming requirements
scale. The implication of having a multi-growbox
environment led to using MQTT and considering brokers that
scale sufficiently. Performance evaluations of broker services, in
Mishra. (2018), concluded that there were minimal performance
differences with the choice of broker. Notably, under MQTT
stress tests, all brokers were able to achieve broker-to-client
message delivery throughput in the tens of thousands.

For our example growbox setup, the HiveMQ broker was selected.
HiveMQ is a free, public MQTT broker which is scalable and reliable,

with its Quality of Service levels (QoS) ensuring dependable data
exchanges. The cluster-based architecture supports growth,
accommodating additional devices and messages efficiently.
Additionally, HiveMQ prioritizes data security, implementing
Transport Layer Security encryption and multiple authentication
methods, in line with managing sensitive agricultural data.

According to the findings presented in Mishra. (2018) (Figure 9),
the HiveMQ broker can support a minimum throughput of
3166 messages per second (and a maximum of 522298), translating
to 189960 messages per minute, in the worst case. Within the agritech
domain, considering a demanding scenario where a crop sensor node
dispatches one message every minute (opposed to the our implemented
rate of one message per hour), the HiveMQ broker can effectively cater
to 189960 clients. Nevertheless, should the system necessitate scaling

FIGURE 8
Message sequence diagram for (A) Changing Sampling Interval, (B) Pause Resume Data Transmission, and (C) Sensor Disconnection.
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beyond this threshold, an alternative public broker or local broker that
can support higher publisher throughput can be deployed to meet the
heightened demand.

4.4 Image analytics approach

The integration of automation into the domain of urban farming
is a growing practice that offers numerous potential enhancements
to production efficiency and process management. This practice,
commonly referred to as agritech, utilizes technology to improve
agricultural yield and efficiency. This section specifically focuses on
the application of image analytics to automate the assessment of
crops cultivated in an urban farming setting.

The image analytics approach, comprises several stages.
Specifically, the utilization of the OpenCV (Pulli et al., 2012) and
PlantCV (Gehan et al., 2017) libraries facilitated the determination
of the ratio between healthy and unhealthy crops, with unhealthy
crops defined as those exhibiting symptoms of chlorosis and
tip burn.

Each image undergoes a series of processing steps to eliminate
background elements, followed by the isolation and quantification of
unhealthy sections within the plant using pixel count. The resulting
proportion of unhealthy sections relative to the entire crop was then
employed to classify the presence or absence of chlorosis and tip burn.

This section discusses the methodology of the image analytics
approach used for disease detection. The solution comprises four
phases: image acquisition, white balancing, background removal,
and pixel colour detection.

4.4.1 Image acquisition
Our proposed solution is targeted for urban farming system

involving indoor hydroponics that grow crops with protection
from the elements. The first phase, image acquisition, is
performed by capturing images against their native

background for automated crop health assessment. Ideally,
these crops grow against a single colour tone backdrop, such
as white. Crop images are preferably taken from a top-down
perspective, providing a wider view of the growing environment.
This view is suited to urban farming as crops can be tightly
packed. If multiple crops are captured in one view segmentation
can be used to isolate individual crops, or one images can be used
to assess the whole area captured. A view of the whole growth
environment is necessary for assessing and identifying the
current health of batches of crops.

In this study, a total of 200 images of lettuce crops were
acquired from Archisen’s urban farms, using the ESP32-CAM,
(Espressif Systems, 2023), a cost-effective and low-power camera
device chosen to facilitate an accessible and scalable approach.
The ESP32-CAM possesses desirable attributes, including its
affordability when purchased in bulk and its application in
other pertinent studies such as (Narvios et al., 2022), where it
has proven effective for lettuce crops.

The image dataset was divided into two distinct categories:
100 images depicting crops affected by chlorosis and tip burn,
which is characterized by necrosis of the leaf tips, and another
100 images showcasing healthy crops. To minimize crop wastage, a
deliberate cultivation of 20 lettuces was conducted to exhibit the
chlorosis and tip burn phenotypes, while an additional 20 lettuces
were specifically grown to generate images of healthy crops. Each
image represented an individual lettuce plant and was captured from
diverse angles, employing a top-down perspective and covering
various growth stages. Consequently, approximately five unique
images were obtained per lettuce. The image acquisition process
spanned a period of 4 weeks, during which the lettuces were
cultivated in a controlled indoor hydroponics growth
environment that is typical of Archisen’s urban farming practice.
This hydroponics system involved the growth of lettuces in PVC
pipes filled with a growth mediuma, while precise control over the
water supply was maintained.

FIGURE 9
White balancing: Original image (A), White-balanced image (B).
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4.4.2 White balancing
White balancing is used to mitigate the affect of warmth (yellow)

and cool (blue) in the images, as these could affect the pixel colour
detection. This phase reduces the white shade variations of the
images’ backgrounds which could lead to inaccuracies in subsequent
phases.

To begin with, the system identifies a Region of Interest (ROI)
for white balancing, the total Hue, Saturation, and Values (HSV)
value for each pixel in the image is calculated. The total value per
array is then compared to determine the maximum value. White
has the HSV value [0-255 0-255 255], so the ROI with the closest
HSV value is chosen for white balancing. A ROI size of 50 ×
50 pixels was empirically tested to show an accurate and time-
efficient outcome (smaller sizes led to whitewashing, and larger
ones less effect). An example ROI is identified (red circle) in
Figure 9.

The right image shown in Figure 9 shows the outcome after the
white balancing phase is completed. The image is brighter, and the
background is closer to the shade of white than the original image,
where the background looks greyer.

4.4.3 Background removal
Removal of the background isolates the relevant crop area for

further processing. Objects found in the background of the image, if
not removed, are likely to impact the subsequent stages.

To facilitate the background removal, processing was done using
HSV values. This approach is evidenced by Mohd Ali et al. (2013),
where a comparison between RGB and HSV was used for
segmentation and detection of road signs. The accuracy of the
HSV was concluded to be at least 88% as compared to the RGB
colour space accuracy of only 80% on non-occluded images. Hence,
the first step to removing the background the RGB is converted to
HSV. The separation into hue, saturation, and luminance channels
allows the extraction of the image binary using the saturation
channel.

Figure 10 illustrates the greyscale image (left) that is processed
through its HSV values and then translated using the binary

threshold algorithm to generate a binary image (shown on the
right). This differentiates between the plant and the background,
which facilitates the background removal to obtain only the image of
the crop leaves. An additional median blur filter is then applied to
the binary image, which reduced the noise in the binary image. The
noise can be seen in the grainy area of the image as denoted by the
red circle in Figure 10.

Similar to the earlier step of converting the image from RGB to
HSV, the white-balanced image is presented as the noise-removed
binary image in Figure 11A and it is also converted from the RGB
colourspace, specifically the blue-yellow channel, as seen in
Figure 11B. The use of multiple channels improves the contrast
between the plant and the background of an image.

Subsequently, both the noise-removed HSV binary image and
LAB binary image are combined using a logical OR operation. The
outcome of the final filter can be seen in Figure 12. Finally, this filter
is applied to the white-balanced image (shown in Figure 9B) to
obtain the image of the plant without the background as shown in
Figure 12 (right).

4.4.4 Pixel colour detection
In the last phase, a pixel colour detection algorithm is used to

detect chlorosis and tip burn. A yellow to brown hue appears when
there is chlorosis, whereas a brown to black hue appears when there
is tip burn present. This range of hues is identified as the area of
interest from the images (representing illness of the crop). These
highlighted by performing a bitwise AND on the background-
removed image with the mask formed from the areas of interest.
This resulted in the identification image, e.g., Figure 13 right, that
highlights the areas of disease.

The lower and upper bounds for the yellow, brown and
black colours were derived from the HSV colour spectrum and
further calibrated through empirical analysis of the set of
lettuce crop images gathered for initial configuration. These
bounds were adjusted over multiple images to produce suitable
ranges for the categorization of healthy and unhealthy
(diseased) crops. This process is automated to analyze

FIGURE 10
Greyscale image (A), and Binary image (B).
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different images that may have slightly different colour tones.
By defining a lower and upper bound colour range, the
algorithm is able to successfully identify the appropriate
coloured pixels for classification. The initial use of this
method is to consider both tip burn and chlorosis as disease
factors, these areas are combined together for the classification
of healthy and unhealthy crops.

Lastly, once the area of interest has been identified, the
proportion of healthy crop to diseased areas is quantified, with
chlorosis and tip burn again being combined for these calculations.
The percentage of disease is calculated by totalling the pixels found
in diseased areas of the crop and comparing this with the image of
the crop with the background removed.

5 Results and analysis

In this section, we present the results of using the growbox setup
and analyse a comparison of the image analytics against an ML
approach—using the same dataset.

In contrast to the image analytics approach, a ML approach was
employed as a comparison using Teachable Machine (Carney et al.,
2020) to train a Tensorflow (Abadi, 2016) model, using a 28-layer
convolutional neural network (CNN) O’Shea and Nash. (2015). The
purpose of this model was similarly to identify unhealthy lettuce
crops in comparison to healthy ones. However, it was also
constrained by the same small dataset for the specific growth
environment. Therefore, training of the model involved

FIGURE 11
Noise-removed Binary image (A), and LAB Binary image (B).

FIGURE 12
Final filter and Background-removed image.
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80 images each of healthy and diseased crops exhibiting chlorosis or
tip burn symptoms. The model was designed to provide binary
classification of the test data, which consisted of 20 healthy and
20 unhealthy images. The resulting accuracy of the model was
calculated to be 92.5%. The confusion matrix for the machine
learning approach is shown in Figure 14.

The image analytics approach was tested on the same test set of
images and achieved a perfect accuracy score of 100%, surpassing
the ML approach. Notably, the image analytics approach did not
require the acquisition and utilization of training data for model
building. Furthermore, the approach was evaluated across the entire

combined training and test data, as the training data was not
employed in this method. For the analysis of 200 images, the
resulting accuracy of the image analytics approach was calculated
to be 90.5%. The confusion matrix for the 200 image analysis is
shown in Figure 14. It is worth mentioning that the erroneous
categorizations occurred in cases where there were minor
indications of chlorosis. Ultimately, the disease threshold used in
the image analytics approach differed from the initial human
classification of the training images, resulting in a slight
reduction in accuracy. However, this threshold can be adjusted in
future applications to align with the definition of a diseased crop.

FIGURE 14
Confusion matrices.

FIGURE 13
Identification of diseases.
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6 Discussion

The production of this agnostic growbox system helps inform
decisions of which sensors are necessary and cost-effective in urban
farming environments. Ideally, arriving at fundamental
configurations of IoT sensors for automated monitoring and
assistance crop growth. This work will be used more broadly to
establish and optimize the efficiency of growth conditions to
enhance crop health and yields, alongside arriving at a cost-
effective and scalable set of IoT devices and software.

In addition to the focus on scalable growbox solutions, this work
also considers accessibility. In contrast to commercial growbox
products, where fixed sensors and proprietary software are used,
the approach presented here considers cheap sensors and actuators
alongside open-source software. This provides more affordable
solutions. Furthermore, the focus on cost-effective and modular
hardware components supports a more customisable growbox
solution (plug and play, providing components are configurable
to the common MQTT protocol).

Scalability plays a crucial role in an urban farming solution that
utilizes IoT sensors, and is a vital step towards achieving sustainability.
In urban farming, scalability refers to the ability of the solution to
accommodate and handle an increasing number of IoT sensors and
data points as the agricultural operation expands. By designing a
scalable solution, urban farming systems can easily adapt to larger
farming areas, additional crops, and a growing number of sensors,
ensuring seamless integration and data management. This scalability
allows farmers to efficiently monitor and manage their agricultural
operations at a larger scale, optimizing resource allocation, improving
productivity, and reducing costs.

Furthermore, developing a robust solution is paramount for
sustainability in urban farming. Robustness ensures the solution
can withstand various challenges and uncertainties, such as
sensor malfunctions and cyber attacks. By anticipating and
addressing potential issues through fault-tolerant designs, and
authentication and verification mechanisms, a robust urban
farming solution can minimize downtime, maintain
continuous data collection, and uphold the overall system
integrity. This reliability fosters sustainable farming practices
by enabling accurate decision-making, timely interventions, and
effective resource utilization. Ultimately, the combination of
scalability and robustness in an urban farming solution paves the
way for long-term sustainability, empowering farmers to
optimize their operations, improve yields, and promote
environmentally conscious practices.

Additionally, this solution allows the possible profiling of crop
characteristics at various stages of growth is beneficial for optimising
growbox systems for a given budget or other constraints. Moreover,
using automated growboxes facilitates easier and more efficient
urban farming.

Regarding disease detection, the image analytics approach
presented provides a possible preferential choice for analysis of
crop health due to the distinct features of identification, and the ease
of which they can be isolated using common image processing
libraries.

A primary benefit of the presented image analytics approach
is the ability to use it without having to gather hundreds of
images to train a model. Creating relevant images to compose

the dataset for specific urban farming environments is time
consuming in several ways. Firstly, the time needed to
capture the images themselves. Secondly, the time required to
grow crops to the relevant growth stages—in the specified
growth environment. Thirdly, when these models are used to
classify disease, there is wastage of otherwise viable crops in
order to generate diseased training and test images. The image
analytics approach can essentially be carried out with minimal
hardware and software requirements, and without the need of
growing crops for image capture.

The authors are aware that comparing the accuracy of these
approaches may be seen as an unfair comparison due to the
relatively few images that the ML model was trained with. It is
accepted that this comparison is not fully reflective of the
accuracy afforded a more rigorously trained model. However,
this study was intentionally working with the type of reduced
datasets available in specific urban farming setups. Hence,
applying this handicap to both options yields a relevant
comparison in this case. Importantly, the preliminary results
do indicate many salient benefits to the use of image analytics
opposed to a machine learning approach. These findings are to
be further explored in future works that incorporate more crop
images and additional approach comparisons.

7 Conclusion

Overall, this manuscript presents a modular system for
monitoring environmental factors in urban farming using IoT
protocols and embedded controllers. The specific environmental
factors monitored were identified through elicitation with the
Singaporean urban farmer Archisen, and the system is designed
to monitor and regulate these sub-environments for optimal crop
growth.

The resulting augmented growbox uses sensors, controllers, and
actuators to manage the environment. The sensors and actuators are
managed through a web application dashboard. The dashboard uses
MERN architecture and presents real-time sensor information from
one or many connected growboxes, For the initial setup sensor data
includes temperature, humidity, moisture level, and light intensity.
The dashboard is designed to be managed by a collection of urban
farmers, with a standard user login system and profile management
page. Furthermore, the dashboard is dynamic, allowing users to add,
update, remove growboxes, manage configurations, and assign tasks
through the ticketing system.

The main contribution of this work is the development of a
standardized and modular system that can monitor and regulate
crop growth in urban farming. In addition to this, the effective
detection of crop disease is automated through image analytics. This
manuscript has laid out a modular framework which combines
embedded controllers and a standard IoT protocol which facilitates
heterogeneity. The web application dashboard presented was
designed with requirements from the Singaporean urban farming
context and allows for real-time monitoring and management of
multiple agnostic growboxes.

The feasibility and effectiveness of the proposed approach has
been described, with emphasis being placed on its potential to
improve efficiency and scalability in urban farming. The
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scalability and modularity of the system also make it adaptable to
various crops and farming environments. Overall, this
manuscript contributes to progress in the research discipline
by presenting a novel approach to monitoring and regulating the
environment in urban farming that addresses current challenges
and opens up new opportunities for automation and
optimization in the field.
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