
Process automation instantiation
for intelligence orchestration

Edgar Ramos1* and Senthamiz Selvi Arumugam2*
1Ericsson Research, Kirkkonummi, Finland, 2Ericsson Research, Kista, Sweden

Devices and use case heterogeneity in Internet of Things (IoT) make it challenging
to streamline the creation of processes that orchestrate devices that work
interactively through actuation and sensing (data generation and data
processing) toward fulfilling a goal. This raises the question of what is needed
to realize this vision using serverless technologies and leveraging semantic
description tools that would eventually complement standards to describe
such orchestration in a similar way to microservices (e.g., using TOSCA). This
study analyzes the different requirements necessary in such automation
description and tests them in some practical use cases in a particular
application (vertical agriculture). It also provides a set of analyzed instructions
that might be incorporated into a description language or become a definition
format for an automation orchestration description to provide the necessary
process deployment options and interaction chains between multiple devices
and data sources. These instructions are analyzed by implementing an execution
deployment engine from the intelligence orchestration concept. The practical
utilization of such instructions is verified and tested with the use case.

KEYWORDS

Internet of Things, Artificial Intelligence of Things, orchestration, intelligence,
deployment, workflow, exposure, processes

1 Introduction

The emergence of intelligent devices and applications has increased in recent years. The
need to interconnect such devices and services has resulted in the inception of what is known
as Artificial Intelligence of Things (AIoT) (Arsénio et al., 2014) as an extension of the
Internet of Things (IoT), where devices and systems interrelate without human intervention
to provide intelligent services and automation to a use case. Automation and intelligence
may rely on statistical machine learning models, generative models, or even simple rules and
decision trees that simulate intelligence. To accomplish this vision of interconnected
intelligence, several challenges and problems must be overcome. An initial analysis of
these challenges and a proposed architecture to address them was given in Ramos et al.
(2022).

The current research analyzes what is needed to make such an architecture functional
through experimentation and application design of a real use case. It provides multiple
implementation options and proposes a workflow description to model the process’s
automation and understand the limitations and additional work necessary for a
complete functional solution. It also proposes specific solutions that target some of the
challenges identified during the analysis of the implementations and the use case realization.

This article is organized as follows: Section 1 introduces intelligence orchestration,
discusses the challenges involved, and provides an overview of relevant research already
undertaken on the subject. A detailed analysis of requirements, motivation, and practical
limitations is given in Section 2. Section 3 reviews the applicable methods, tools, and options

OPEN ACCESS

EDITED BY

Sye Loong Keoh,
University of Glasgow, United Kingdom

REVIEWED BY

Antonino Galletta,
University of Messina, Italy
Tomasz Szydlo,
AGH University of Science and
Technology, Poland

*CORRESPONDENCE

Edgar Ramos,
edgar.ramos@ericsson.com

Senthamiz Selvi Arumugam,
senthamiz.selvi.a@ericsson.com

RECEIVED 18 June 2023
ACCEPTED 07 September 2023
PUBLISHED 28 September 2023

CITATION

Ramos E and Arumugam SS (2023),
Process automation instantiation for
intelligence orchestration.
Front. Internet. Things 2:1242101.
doi: 10.3389/friot.2023.1242101

COPYRIGHT

© 2023 Ramos and Arumugam. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in The Internet of Things frontiersin.org01

TYPE Methods
PUBLISHED 28 September 2023
DOI 10.3389/friot.2023.1242101

https://www.frontiersin.org/articles/10.3389/friot.2023.1242101/full
https://www.frontiersin.org/articles/10.3389/friot.2023.1242101/full
https://crossmark.crossref.org/dialog/?doi=10.3389/friot.2023.1242101&domain=pdf&date_stamp=2023-09-28
mailto:edgar.ramos@ericsson.com
mailto:edgar.ramos@ericsson.com
mailto:senthamiz.selvi.a@ericsson.com
mailto:senthamiz.selvi.a@ericsson.com
https://doi.org/10.3389/friot.2023.1242101
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org/journals/the-internet-of-things#editorial-board
https://www.frontiersin.org/journals/the-internet-of-things#editorial-board
https://doi.org/10.3389/friot.2023.1242101


for implementation. An evaluation of a limited implementation is
presented in Section 4. Section 5 discusses the observed challenges,
further work, and conclusions from the work conducted.

1.1 Intelligence orchestration

“Intelligence orchestration” is the process of coordinating the
services provided by several devices and intelligent entities to
facilitate automation by the composition of workflows to achieve
one or multiple goals (use cases) and to consider the relationship
between multiple stakeholders and their assets. The relationships
between the different entities, their goals, and fulfilling their
requirements are established through policies that dictate what
are acceptable outcomes and restrictions related to the
interactions, especially when goals have conflicting best-result
desired outcomes. Policies also help model regulation,
commercial interactions, and security requirements that also need
to be followed to realize the goals.

The use cases, in turn, are realized through workflows. A
workflow can be defined as one or a set of processes that are
executed by particularly defined parties according to a set of
conditions and following a pre-established model or procedure.
The processes are defined through flows that are composed of
chained functions or services resembling an input → processing
→ output pipeline. This is one of the main differences compared to
traditional cloud orchestration, which focuses on micro-services,
their relationships, and their deployment in cloud platforms.
Workflows assume a serverless architecture, which, compared to
the cloud serverless concept, is not only about providing function-
as-a-service (FaaS). Instead, it assumes that the functions are to be
deployed in a platform-agnostic fashion and that the system can
adapt to the underlying platform where the function will be
instantiated.

1.2 IoT intelligence
orchestration—Challenges and
characteristics

The orchestration of intelligence for IoT use cases raises
challenges that can be grouped into three categories. The first is
its large heterogeneity. This refers not only to the different
platforms, devices, and systems that operate in the IoT space but
also to the use cases that are being addressed, the type of
stakeholders and their relationship (including regulations,
policies, and trust levels between them), the type of connectivity
and communication conditions, and the levels of involvement from
consumers and enterprises.

Another challenge is control, logic modeling, and instantiation.
IoT use cases may have multiple levels of control loops and
automation to be considered, and their modeling and
implementation tend to be tailor-made to their intended
deployment. Additionally, such modeling must consider the
granularity of the processes (from a high level—for example, a
maintenance process—all the way to details such as the tightness
assurance of screws) including the interactions between entities that
are external to each other, also known as “choreographies.”

Finally, the interoperability and the semantics utilized by IoT use
cases, processes, and data are another challenge due to the great
number of standards, data formats, and hidden design semantics
(e.g., the meaning of a client, the meaning of a connection, and the
particular context where it is applied). The type of high-level
modeling that later needs to be instantiated and the
interoperability of AI functions and their life-cycle management
processes are implemented mostly by tailor-made processes with
very little interoperability.

1.3 Related work

Automation frameworks or solutions can be designed in two
basic formats: declarative and imperative. Declarative methodology
focuses on what is to be executed or the desired objective, while
imperative methodology focuses on how is to be executed. Both
these methods can be used separately or in combination, depending
on the scenarios in which the components need to be deployed, since
they both have their own advantages and disadvantages. We next
review some examples currently in use in the deployment of
software artifacts.

There are many frameworks that are available for enabling the
automation of deployments in application development. One well-
known framework for deployment in cloud computing and
environments is Topology and Orchestration Specification for
Cloud Applications (TOSCA). TOSCA is an OASIS standard1

that enables the modeling, provisioning, and management of
cloud applications. TOSCA allows the modeling of so-called
“service templates” that describe the topology—the components
and their relationships—of an application to be deployed to a
cloud infrastructure.

The core modeling concepts in TOSCA are nodes and
relationships. Node templates represent components of an
application, such as virtual machines, web servers, or arbitrary
software components; relationship templates represent the
relations between those nodes—for example, that a node is
hosted on another node, or that a node connects to another
node. Node and relationship templates are given a type using
node and relationship types, which define their semantics and
structure them by listing their properties, attributes,
requirements, capabilities, and interfaces. Properties and
attributes are used to configure deployment—for example, a web
server type may specify the property port, which is filled with
concrete values in the node template upon deployment. In the
TOSCA meta-model, nodes become related to each other when
one node has a requirement against some capability provided by
another. For instance, a virtual machine node may offer the
capability that a web server node can be hosted.

Furthermore, TOSCA standardizes the so-called “life-cycle
interface” by specifying that node types may have create,
configure, start, stop, and delete operations to be used for
installing, configuring, starting, and stopping them. Such

1 Topology and Orchestration Specification for Cloud Applications
[Internet]. Available from: http://docs.oasis-open.org/tosca/TOSCA/v1.0/
TOSCA-v1.0.html

Frontiers in The Internet of Things frontiersin.org02

Ramos and Arumugam 10.3389/friot.2023.1242101

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


functions are implemented by “implementation artifacts” in the
form of, for example, executable shell scripts. In contrast,
“deployment artifacts” implement a node’s business logic. For
example, the compressed binary files to run a web server are
meant to be attached as a deployment artifact to the respective
type. In addition, TOSCA uses the notion of “policies” to express
non-functional requirements affecting an application topology at a
particular stage of its life cycle; these are attached to single or groups
of nodes in the application topology. In addition to input and output
parameters to parameterize a service template, TOSCA defines the
Cloud Service Archive (CSAR) packaging format to allow for the
exchange of applications.

The issue of heterogeneity increases even further due to the
availability of many deployment automated technologies that have
their own features and modeling languages. Wurster et al. (2020b)
proposed The Essential Deployment Metamodel (EDMM), which
provides a normalized metamodel for creating technology-
independent deployment models, since the majority of them
follow a declarative form of deployment instruction. The
structure and names of the entities are inspired by the TOSCA
standard and the Declarative Application Management Modeling
and Notation (DMMN) with its graph-based nature. The first
entities to be defined are the components forming an application,
as well as the component types that allow them to distinguish
between each other and give them semantics. They also present a
methodology that shows how the EDMM can be semantically
mapped to configuration management tools such as Puppet,
Chef, Ansible, OpenStack Heat, Terraform, SaltStack, Juju, and
Cloudify.

EDMM has been further developed by Wurster et al. (2020a) by
added tooling support in the form of the EDMM Modeling and
Transformation System, which enables graphical EDMM model
creation and automatic transformation into models supported by
concrete deployment automation technologies (for example, from
EDMM YAML to Kubernetes).

Serverless computing takes advantage of the cloud-computing
benefits of providing a high degree of automation for the execution
of services without having to worry about the infrastructure
setup. The services are scaled according to the application needs,
thus simplifying the management of cloud-native applications. This
is achieved by serverless technologies such as “function-as-a-service”
(FaaS) that are triggered when events are observed by the cloud
applications. RADON (rational decomposition and orchestration
for serverless computing) is a framework based on the serverless
computing paradigm (Casale et al., 2020) that enables defining,
developing, and operating (also known as DevOps) applications
based on FaaS computing. It applies a unified model-based
methodology to define these applications and aims to be
reusable, replicable, and independent of proprietary DevOps
software environments, thus leading to the creation and use of
templates for cloud-based applications.

The RADON framework deployment implementation (Dalla
Palma et al., 2023) is based on the characteristics of serverless
computing such as execution of service on demand, dynamic
scaling, focused and stateless functions, use of third-party
functions, and reusability of templates. Its life-cycle model takes
care of the basic DevOps needs over six phases: verification,
decomposition, defect prediction, continuous testing, monitoring,

and continuous integration/continuous deployment (CI/CD).
RADON also provides a graphical modeling tool to ease the
design of functions in the form of workflows and verifies the
orchestration procedure before deployment. It relies on the
extensive collection of standardized TOSCA-based templates to
abstract deployment characteristics. RADON supports event-
based application deployments involving FaaS as processing
components, object storage services, and database-as-a-service
(DBaaS) offerings as respective event sources. New custom
extensions can be developed using the definitions provided by
RADON’s TOSCA and community-sourced extensions. The main
limitation of RADON is that it only targets cloud-based
orchestration and so does not interoperate with systems that do
not follow their toolkit or devices with their own platform systems,
which cannot instantiate cloud jobs. In addition, some work on FaaS
workflow instantiation is ongoing in the form of an open-source
framework called OpenWolf2 (Sicari et al., 2022), which shares
similar principles but also the limitations of RADON.

2 Intelligence orchestration
requirements (architectures, services,
and support systems)

The ideas outlined in Ramos et al. (2022) and in the
“Intelligence orchestration for future IOT platforms” newsletter
article3 can be reduced to three main components: an exposure and
discovery service, a workflow and processes composition service,
and a workflow instantiation and deployment engine. In relation to
the first and part of the second services, some work was attempted
in Jayagopan and Saseendran (2022) but was limited to an
implementation model where the discovery was provided by a
script that fed a database. The sources of exposure need to be
known in advance for this kind of model to work. Therefore,
dynamically changing sources (for example, a car that moves from
one place to another or a service that is available between some
opening hours) are difficult to incorporate into such an
implementation.The discovery of the exposed services,
capabilities, and functions is a critical functionality for
providing dynamic orchestration and effective mapping to the
blueprints and templates of workflows. The realization of this
discovery is not trivial: it requires not only knowledge of the
location and access information of the different services but also a
semantic description that is understood by the respective domains
that make use of the workflows. The cost and requirements for
discovery would vary according to its implementation models.
With respect to exposure and discovery, we could think of four
types of models (Figure 1).

2 OpenWolf: A Serverless Workflow Engine for Native Cloud-Edge
Continuum. https://github.com/christiansicari/OpenWolf (Accessed July
2023).

3 https://iot.ieee.org/newsletter/november-2021/intelligence-orchestration-
for-future-iot-platforms, IEEE Internet of Things Newsletter (Nov. 2021),
authors: Edgar Ramos, Senthamiz Selvi Arumugam, Roberto Morabito, Aitor
Hernandez, Valentin Tudor, and Jan Höller.

Frontiers in The Internet of Things frontiersin.org03

Ramos and Arumugam 10.3389/friot.2023.1242101

https://github.com/christiansicari/OpenWolf
https://iot.ieee.org/newsletter/november-2021/intelligence-orchestration-for-future-iot-platforms
https://iot.ieee.org/newsletter/november-2021/intelligence-orchestration-for-future-iot-platforms
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


• Centralized data lake, which implies that knowledge of all the
services and capabilities of the devices is in a centralized
repository. Every device change is updated and known, and
every platform or device management system is pre-defined
(known in advance); there is therefore limited support for
dynamic registries. Any update of the central database needs
to be scheduled, and, consequently, information may not
necessarily be up to date between updates. The query of
each registry for the states of devices (active, inactive,
available, etc.) or their capabilities may also consume
bandwidth and time, depending on the context and
number of associated registries and devices.

• Request–reply model, which would require querying the
registries to find the needed functionality or devices. A
typical request–reply model is exemplified by REST
(REpresentational State Transfer) APIs. These queries
might place quite a high load on the network due to the
spread of the request and the replies from each of the registries,
depending on the number of devices and registries accounted.
Some optimizations, like a cache, could be used, and then only
updates to the stored values are needed. However, that would
also require some sort of validity label for the cache; the risk of
changes during such a time interval not to be considered
during the discovery. In addition, the target registers need to
be known in advance or at least pre-registered so they can be
addressed by the query process. Furthermore, a higher-level
query interface to the orchestration layer is necessary to
provide a semantic and contextual environment that can be
translated into the particular API or request that each registry
type supports.

• Pub-Sub model, where it is possible to enable asynchronous
management of exposed capabilities and services. This
feature makes possible dynamic registries and devices,
services, and capabilities that are mobile or have multiple
states or availability. The services being provided with a
semantic that matches topics used to be published in a
directory register. Therefore, a translation between

semantic contexts might be needed to match specific
applications and domains of use cases to match the
vocabularies used by the topic exposure. The network
aspects of pub-sub protocols should also be considered.
The size and number of registries belonging to an
orchestration context might create considerable stress in
the network when the updates or publication process is
executed, especially during bootstrapping or mobility events.

• Gossip protocols operate in a peer-to-peer environment and
use the same principles as an epidemic spread. Even with their
inherent limitations (Birman, 2007), their dynamism and fast
converging features provide a good base to utilize a gossip-like
structure through agents that might represent either a registry
or a device. The system requires a query interface to the
orchestrator that, like the pub-sub, might require semantic
equivalence translation. In addition, a caching system could be
used to optimize semantic search and mapping to the agents
with the capabilities and services required.

2.1 Instantiation and execution control of
workflows

The instantiation of the workflows requires an execution engine
that can access the devices and services that are orchestrated in the
workflow description. The architecture of an execution engine
requires workflow ingestion that resolves any prioritization of the
workflow and a parsing function to interpret the workflow
description. The function calls and triggers are managed by the
engine using adapters that match the function calls to each system
and a platform to their native commands. These adapters
(deployment agents) use the principle of a device driver to
provide the mapping, and each protocol, data model, or platform
can be onboarded in the engine, providing direct support for the
heterogeneity of devices. Mapping to the particular commands
requires a set of primary instructions that can be derived from
the workflow descriptions. These primitives can then be mapped

FIGURE 1
Possible discovery models for capability exposure.

Frontiers in The Internet of Things frontiersin.org04

Ramos and Arumugam 10.3389/friot.2023.1242101

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


onto any of the different platform implementation interfaces
(commands and APIs).

2.2 Workflow composition

A workflow is defined as one or a set of processes that are
executed by particularly defined parties according to a set of
conditions and following a pre-established model or procedure.
Workflows have one or multiple goals, and the processes help realize
such goals by orchestrating the concerns of the digital domain
related to the goals. This means that the workflow does not
model processes that are realized in the physical domain but
represent the role of the digital domain, in, for example, a
business logic. Whenever there is a dependency on a physical
world event, there should be a mapping of this event onto the
digital world so it can be addressed by the workflow processes. For
example, if a process requires that an item is received physically at a
location to start, then the reception of the item should be modeled
with a digital trigger, such as a button, form, or any other digital asset
that could signal such action. The workflows resemble flows or
pipelines of services or functions where the outputs of a function
may be connected to the input of another. The functions may also be
a digital realization of actuation commands or interactions with the
physical world.

2.2.1 Intelligence pipeline
Defining a pipeline means providing a description of how data

flow from one function to another, and the triggers of each function
take into account the cadence of each step. Some functions are
executed at a higher frequency than others, and the data intake
might need to be adjusted accordingly. For example, in some
cases, the input data used are an average over a given period, the
last value, or the most frequent sample from a group. In other cases,
the data need to be collected and used in totality as input or treated in
a moving window fashion. The pipelines may resemble multiple types
of constructions (Figure 2). In the simplest case, a pipeline depicts just
one service that has input and output. However, even in that case, a
service may be a composition pattern using pipelining recursively,

meaning that the single service depictedmay in turn to be a pipeline in
itself.A pipeline defines an operation that implies multiple services. In
some cases, the definition of the pipeline might be abstract, meaning
that it is defined as a blueprint using service definitions that can later
be instantiated from the template to a particular implementation. On
the other hand, the definition may already be particular for a system,
including information that is relevant only to that system. One aspect
to consider is how this blueprint is defined and the differences with an
instance-based definition. Even when the semantic definition of the
services may help mapping, the actual instantiation may require more
parameters and practicalities that also must be addressed during
design. For example, as mentioned previously, the cadence could
be different between two functions in different systems, as well as the
speed of execution and performance and the intake and outtake
volumes of data that can manage each instance. Furthermore, the
nature of the triggers and how they are connected to real systems’
implementations should be considered. Another consideration is data
fetching and forwarding between the functions. In some cases, this can
be handled by the devices themselves, or the exposure platforms used
or required to be implemented as an additional function. Such a
function would ensure the output data are published so that those data
can be retrieved by the function that next uses them as input. Some
possibilities are to store the data in databases, permanent or temporal
data storage, or publish it through an external platform service. In
some cases, data retrieval would be consumable by a device requiring a
similar function. These functions may be also added to the device’s
code base or provided by support infrastructure either in edge,
network, or cloud.

2.2.2 Choreographies
The pipelines may address processes from multiple stakeholders

and subsystems (Figure 3) and model their practical digital
interactions. In Figure 3, a factory that produces goods has its
own processes and requires interaction with customs and the store
that receives the items. Each entity has its own processes and, in
some cases, even separated subsystems such as the security and
inventory of the store. The subsystems and entities may cooperate
and may need to follow up on their own processes and those of other
concerned entities (for example, the clearance process from

FIGURE 2
Pipelining and service composition models.

Frontiers in The Internet of Things frontiersin.org05

Ramos and Arumugam 10.3389/friot.2023.1242101

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


customs). The whole relationship is regulated in many cases by non-
functional requirements provided by policies, regulations, and
agreements.

The workflows are not necessarily static: theymay require updates
that may vary from the actual process to the actual instantiation or
service executer. This may be the case when highly mobile or state-
oriented devices and applications participate in a use case. Devices in
such use cases may appear and disappear from the system context,
such as a truck that moves from a construction site to a supplier
location. This leads to different courses of processes that may be
followed according to the application state—if the truck is fully loaded,
first then it might require unloading before loading new material. In
addition, the policies may have an impact on the process execution
and data sharing between parties that may result in the modeling of
multiple branches of behavior that match each policy type. This also
raises the issue of resource administration, particularly when such
resources are shared (multi-tenancy). Security and policies must be

taken into consideration, such as when, by whom, and for what a
resource can or cannot be used, what are the priorities between the
different tenants, and the need for isolation between their “execution
spaces.” Each workflow has an owner whose goal is being fulfilled by
the workflow, which orders the execution of the processes.

2.2.3 States in workflows
The workflows required from intelligence orchestration may

require states in some cases and can be stateless in others. Several
machine learning frameworks (e.g., reinforcement learning or online
learning) require updating a set of parameters to the model that are
being adjusted according to the learning algorithm during the
execution. This means that the algorithm may sometimes be in
an “inference state”, while, in other cases, the function may be used
for a “learning state” and therefore update the learning operation
parameters. This may be a feature that is specific to the functions
that are applied, and the facilities provided by the platform

FIGURE 3
Functions and intelligence pipelines in the context of use cases, including choreographic workflows.

Frontiers in The Internet of Things frontiersin.org06

Ramos and Arumugam 10.3389/friot.2023.1242101

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


underneath that may facilitate or provide support for state saving.
The implementation of the function may be achieved such that the
state is fetched from storage and updated accordingly. The main
problem with those approaches is the lack of transparency for a
hypothetical automated orchestrator, which would have no way to
fully semantically comprehend the function and its characteristics
(such as the states). This function might require establishing
independent or complementary flows that address the states of
the functions; awareness of this situation would then be better
handled in the orchestrator if made explicit. Therefore, an
explicit definition of state in multiple levels (workflow, pipeline,
function, and trigger) is useful for increasing the flexibility and
simplicity of automation. The states may then be defined as part of a
function description or in the support system for orchestration to
handle the workflow composition.

2.2.4 Blueprints and templates
Blueprints are comparable to a reference architecture that can be

used to replicate the design. The blueprints are derived from patterns
observed when certain requirements of use cases match. This
facilitates reuse and replicability, which are crucial for scaling
purposes. This can be applied to workflows. Many processes
follow the same steps and functions, but their pre-conditions,
participant elements, instantiation entities, and output mapping
may differ, so they need to be adjusted to their context. To
facilitate the composition of workflows, templates may need to be
introduced to facilitate the process definition. When used, a
template is only required to explicitly define the instantiation
nodes of the functions, the mapping of the function to the ones
executed in such instantiation nodes, and their trigger configuration.
The blueprints are a more abstract step than templates. They serve
more as guidelines to construct workflows and could be
implemented as a component (or set of processes) to be fulfilled
by a part of the workflow. Such components could also be
provisioned by instantiating a template; however, the difference is
that a blueprint component could map to multiple templates, each of
them fitting some particular case. For example, a massive
monitoring blueprint may have a component where the different
sensors and measurements are defined and fetched; depending on
the monitoring, a template could be used to define the monitoring
of, for example, a power grid. A blueprint component could specify
processing for the monitored results, which could be as simple as
storing them in a database, filtering them through special functions,
or forwarding them to some entity. Yet again, several templates
could be applied, depending on the regulation of a country or a
particular company’s practices, or the type of equipment being
monitored. Finally, the last blueprint component could be the
exposure of the meaningful output. This may be realized by
templates that apply to the exposure platform needed for the
target systems that would use the output. A format definition of
templates could be thought to be derivative of business logic.
Therefore, BPMN (Business Process Model and Notation) could
be a candidate for providing such templates.

2.2.5 Multi-tenancy and shared access
When instantiating multiple workflows, a device might finally be

shared by multiple stakeholders. In the exposure of values or data,
several IoT systems address this by access control combined with an

exposure API that gives access to the data. This access control is
basically another interaction model that should be described by
policies. Therefore, several aspects of policy implementation
(enforcing) and monitoring are important to consider, from the
discovery of the services and the configuration of the data sources to
the actual instantiation, prioritization, and triggering aspects of the
workflows. Another consideration concerns the sharing and
isolation of states and data. For some use cases, it is necessary to
share state and information between stakeholders, while, in other
cases, processing and functions should be preserved and kept
separate between multiple users and the contexts of the
functions’ applications. From a platform perspective, there is
therefore a need for a specific level of isolation of the exposed
result after workflow processing; this would result in multiple
outputs being exposed, depending on the workflow’s stakeholder.
This exposure could be temporal (intermediate results) or persistent
(unchanged until new processing by the same stakeholder).

When considering multi-tenancy and shared access in devices,
some aspects need to be considered. One is the secure execution of
(encrypted) workflow components when required, where enclaving
and access policies play an important role. This needs to be
supported by both software and hardware security solutions.
Access control and policies need to be defined and enforced to
ensure the confidentiality of processes and data in the device itself.
The support of multi-tenancy could be enabled by virtualizing the
device services and capabilities. The virtualization directly supported
by device management systems (such as LwM2M) is a potentially
powerful enabler of multi-tenancy use cases by providing support
for instantiation, shared and private states and outputs, and access
control.

2.3 Orchestration control

Orchestration control should be implemented by the same tools
provided by the orchestration framework. Orchestration control
would become the use case whose goal is to support the
orchestration of workflows, thus becoming its own set of
workflows, policies, and blueprints. The orchestration control
would not only the workflows and functional requirements but
also fulfill non-functional requirements, such as policies.

2.3.1 Workflow management
Workflow management implies the placing of workflows in the

relevant deployment engines, their prioritization, triggering, and
storage, which is highly related to life-cycle management (Section
3.5). Each life-cycle management state would map to a workflow
implementation that is complemented with specific policies that, in
addition to providing access and management control, would also
provide priorities, trust management, and ownership detailing
administration. Workflow management must, in most cases, be
instantiated in a distributed manner so that multiple systems can
manipulate and deploy workflows on associated engines. This
implies a relationship between the entities that control and
manipulate the workflows and the deployment engines that
deploy the services in the nodes. This association could be
performed separately through trust management mechanisms
(Section 2.3.3) or may be inherited on the implementation

Frontiers in The Internet of Things frontiersin.org07

Ramos and Arumugam 10.3389/friot.2023.1242101

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


platform if it does not require multi-stakeholder integration from
the workflows. Workflow management compresses an API that taps
into the different parts of the system where the workflows are
utilized. This set of APIs can also be exposed, for example,
through a proxy agent to provide services to another AI agent
(for example, a reasoner), making it possible to autonomously
manage and orchestrate workflows. Such an agent would either
have additional services to facilitate the association of the AI agent
with the other entities that require a specific trust association or
would have direct access to the management controls.

Another aspect of management is observing and monitoring
workflows and processes. Enabling such observability is possible
with the same pipelining framework. The functions required for
observability are exposed and implemented by the deployment
engines, and they can be organized in observability workflow
templates that are applied to the actual orchestration workflows.
The configuration and specifics related to the timing and detail of the
monitoring can be applied to the triggers and management of the
data collected (exposed, stored, streamed, etc.). Thus, the workflow
concept can be applied to help control other workflows and provide
real-time or close to real-time follow-up of the processes. This
monitoring would allow the control to branch out and create
more complex orchestrations where alternative workflows could
be executed according to the overall system state.

2.3.2 Policy management
As with workflows which require their life cycle to be managed,

policies require a similar handling. In the scope of this framework,
the expectation is that policies are specified with a descriptive
language. Policies populate multiple levels of the stack and
platform, and they must be processed on different levels which
may have totally different consequences for the target systems. For
example, in a cloud system, a policy related to privacy protection
may be just a restriction on visualization from certain database fields
or data anonymization, but, in a device, might mean restricting
reading access to a directory from the persistent storage. Therefore, a
policy engine that configures, enforces, or monitors policies would
have to be present on multiple levels of the platform. In each level,
the actions and the description of the policy might vary to suit the
right level of the stack and might require a reinterpretation of a
general policy for more concrete action to be enforced at a lower
level of the architectural stack. This study does not cover the
generation and life-cycle management of policies; this will be a
matter for future research. Similarly, the implementation required to
manage the policies can be based on their own “systems” workflows.
Another issue is that the sensitivity of the data produced and the
security related to the access on devices might be easy to be
compromised; some work on Shared Secret (SS) (Galletta et al.,
2019) and Nested Shared Secret (NSS) (Galletta et al., 2021) are
being investigated for application to such cases.

2.3.3 Trust management
Framework deployability depends on trust establishment. There

are multiple ways to establish trust and dependencies for each
platform participant of the orchestration framework. The main
requirement is that the different components of the architecture
can communicate and trust that their identities and access rights are
agreed upon. To facilitate this part of the integration, a trust

management function is required that mediates between the
different systems and provides security and trust; it must support
the security associations between the components of different
domains, entities, or platforms. The mediation itself requires a
trusted entity, which may provide either a distributed trust
schema (e.g., ledger-based) or delegated trust that can provide
the roles and certification required to map between multiple
domains. The research questions relevant to this point are not in
the scope of this study, but several possibilities and solutions could
be explored to develop and cover the requirements of trust between
the architectural components.

3 Applicable tools and methods for
intelligence orchestration workflows

3.1 Workflow description

Several factors need consideration when deploying the functions
of the devices. There are considerations apart from the actual
definition of what service the function is providing and how a
machine can match such a service to its own needs semantically.

The first consideration is where the function is being executed or
instantiated by means of exposure. The exposure of functions and
capabilities must be addressable from a network perspective. This
means that the functions can be remotely activated by an API or a
command to access functionality. For example, in a Lightweight M2M
(LwM2M) object, a resource or a function is called by identifying the
resource (an atomic piece of information that can be read, written, or
executed) using a URI to access it. The URI follows the pattern where
the exposure server URL is followed by the clientId/objectId/
instanceId/resourceId (Alliance, 2014). The description of a
workflow utilizes this remote addressing of capabilities and
includes the necessary information to address functionality.

A second consideration is the definition of the triggering
mechanism of the function—control of when the function should
be executed and, in some cases, stopped (execution terminated). The
instantiation of the triggering functions should also occur in the
execution engine, where the triggers could be derived from custom
functions, exposed functions, or a set of predetermined functions
(such as for scheduling). The triggers also apply to the execution of
workflows since a workflow can also be represented as a composed
function.

Finally, the data flow setup is related to the inputs and outputs of
the functions: how the required inputs are fed into the function, and
what is carried out with the result of the computation and the
function output.

A proposal for a functional structure of a workflow description
could include the following components for addressing the
functions and services.

• Model, code, or script of the function or service to execute.
This field may have a binary or a piece of code to execute that
is compatible with the target platform or device.

• A version number of the current model.
• Description URL pointing to information describing the
operation executed by the function and possible metadata
related to the input and/or output. This description may be

Frontiers in The Internet of Things frontiersin.org08

Ramos and Arumugam 10.3389/friot.2023.1242101

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


just a reference to an ontology vocabulary or a relationship
description in a semantic description language (e.g., by means
of Web Ontology Language—OWL).

• Model URL: If a function that is natively provided and exposed
by the device or platform is to be executed, then instead of a
model, a URL of where to retrieve the model to execute it or a
URI to identify it to execute it (and retrieved with alternative
methods) is provided here.

• Model integrity: The cryptographic checksum that might be
required to ensure that the function meant to be utilized
matches the one to be executed if required by the deployment.

• Model description: A URL pointing to information describing
the operation executed by the function and possibly metadata
related to the input and/or output (e.g., following the model
proposed in Ramos et al. (2020)).

• Inputs: The data sources for the model when it requires them.
It could be a set of links/URLs that are pointing to resources at
the device or from another device to use as input for the model,
or a stored or exposed value to be retrieved.

• Input transforms: Sometimes the input data cannot be used as
is and might require certain transformations. A function or
model used for transforming the data from a local resource/
external source to a format that can be used with the given
model can be declared in this field (or a URI to such a
function).

• Input labels that describe which input source is connected to
which input of the model, mostly to provide semantic
description to the input targeting humans or audit systems.

• Outputs: A set of results of the model operation and
specification of management (store, forward, or expose). In
the case of an actuation function, the output would only
indicate that the service was executed.

• Output transforms: Transforming output from a model-
specific format to a resource-specific format; similar to
input transforms.

• Output labels that identify and semantically describe the
outputs of the model, similar to input labels.

• Condition expression to trigger the execution of the model if
needed, such as executing a service after a specific number of
input samples is received.

• Implementation ID of the particular service implementation
or belonging device.

In order to manage the triggers, these additional components are
also needed in the workflow description.

• Trigger-type: START, STOP, SCHEDULED, SEQUENTIAL,
CONDITIONAL, according to Section 3.2.

• Trigger function URL: If the trigger requires the execution of a
binary function, this URL points to where to retrieve the
model to execute or a URI to identify the model to execute
(and retrieve with alternative methods).

• Trigger function: Code, script, or model of the function or
service to execute (similar to themodel field from the services).

• Variable inputs: A set of links/URLs that point to resources at
the device or from another device to use as input for the trigger
function or as a discriminator (for a trigger to be activated
or not).

• Cycles: Number of repetitions of the trigger activation,
meaning that the target service or function would be
executed several times according to the configured values.

• Transformation: Changes to variable inputs that are required
after each trigger executes (same as the input and output
transformations of the models).

3.2 Trigger control

Like the functions, the triggers need to be instantiated. They
require an execution environment where they are executed and
monitored. The triggers are basically a Boolean function where, due
to the processing of the input, the output is a true or false statement
(or a Boolean bitmap). The output is then connected to the pipeline
logic so that the associated function or functions are executed when
the condition of the trigger is fulfilled. The handler of the pipeline
should then take care of two aspects related to the trigger. One is the
application of the trigger, which has to do with the trigger’s nature. A
trigger could be.

• On-demand: A trigger that monitors a control that, once
activated (e.g., the push of a button), fires up the function
or is explicitly called upon to be executed in the platform that
manages the specific trigger.

• Event-driven: The trigger would activate the function based on
the fulfillment of one or multiple events.

• A sequential trigger is somehow related to an event-driven
trigger. It consists of activating a function once a previous
function’s execution has finished. The ending of the execution
of a function can be modeled as an event; however, in some
platforms without event support, a sequential execution can be
scheduled instead. A variation of a sequential trigger is starting
a function once another function has been started instead of
waiting for the end of the execution.

• A scheduled trigger would execute a function at a specified
time or delay after an event or end of the execution of a
previous function. The scheduling can also include repeating
the activation of the function at certain intervals of time, at the
same time, or as a recurrent activation according to an input
calendar event.

• A condition-based trigger activates a function when a
predefined condition becomes true. This requires that the
precondition is verified either according to an event, at certain
time intervals, or a combination of both. The condition to
trigger the function execution could apply to a particular/
single data source (e.g., if the air temperature is greater than
20℃, then monitor the water pressure) or to a combined data
source condition that requires that multiple conditions are
true (if temperature is 20℃ and humidity is greater than 60%,
then execute the function). In addition, matching a pre-
provisioned pattern test may span multiple samples—for
example, if the temperature follows a +10, −10, and +10℃
change during the last three measurements, then activate the
function. Another interesting possibility is adding a ML or AI
model to make the decision of triggering; since the output
required is Boolean, then any AI model that produces such
output could be used to control a trigger—for example, a

Frontiers in The Internet of Things frontiersin.org09

Ramos and Arumugam 10.3389/friot.2023.1242101

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


match for a face recognition-trained model. In some cases, this
AI model has to be provisioned to the execution environment
through the LCM mechanisms in equal form as the functions
and services.

3.3 Instantiation primitives

The instantiation of workflows requires an adaptation to the
multiple platforms and systems that host the executing engine. An
implementation that parses a workflow description may implement the
same basic commands that can be mapped to each of the different
platforms and systems that have access to the functions and services that
are referenced in the workflow description. This set of basic commands
can be considered primitives that any execution engine would have to
apply. Figure 4 provides a summary of the primitives and their context.
In relation to functions and services, there are two basic primitives: an
execution call for services that do not have any input and a function call
that also includes parameters and inputs. The result of the function
execution may either activate an actuation or produce a data output. In
the latter case, the management of the output needs to be considered,
and there are four options that can also be mapped to primitives.
Workflow output forwarding streams the data over the network to
another location or to another workflow or external process. Persistent
store stores the output so that it can be used later and even retrieved
several times for either other workflows or for later stages of the same
workflow. Store retrieve is itself another primitive command that allows
the fetching of a stored value and uses it directly in a workflow. The
storagemust be defined as a variable in the workflow description and be
instantiated by the executing engine in a particular storage location that
can be retrieved by the same executing engine or exposed for use by
other executing engines or by additional workflows.

Finally, the triggers’ primitives allow the instantiation of all the
types of triggers that are defined in Section 3.2. The trigger start
specifies the function that should be started, either immediately or
after the evaluation of a pre-condition, and the execution should
keep being recalled until the trigger stop for that function is called.
The trigger stop may also have a precondition function (e.g., the
number of executions of the function or a time of the day) with or
without input parameters. All the different trigger types (event-
driven, sequential execution, scheduled, on-demand, or conditional)
can be instantiated as a combination of these primitives.

3.4 Deployment agent

The deployment agents adapt the primitives to the protocol,
management system, or API utilized by the device (e.g., Web of
Things, LwM2M, and OPC-UA). The workflow composition only
considers commands or services that could be possibly
instantiated by the particular device or service. Therefore, the
instruction should allow the system to be mapped. Instructions or
values that are not compatible with the particular protocol,
platform, or API should not be present in a workflow to be
instantiated. The reason is that only supported functions from a
service or device are exposed and possible to be orchestrated.
There could be cases where a template workflow cannot be
fulfilled by the available services; in such cases, the template
needs to be modified to adapt to what the services or capabilities
can offer. However, this would be resolved during the workflow
design, and the deployment agents do not need to deal with such
complexity. A typical deployment agent would, for example, set a
value for a device function (e.g., a thermostat of an air
conditioning system) or execute an actuation function. The
development of Semantic Definition Format (SDF) (Koster
and Bormann, 2023) provides a good starting point for
interoperability between the different types of agents and their
implementations. SDF is being designed to convert most of the
IoT data and interaction models between each other, and it is
certainly a promising technology for supporting the deployment
agents’ development.

3.5 Workflow life-cycle management

Several aspects of the workflow life cycle need to be considered,
from the moment of design to the point of decommissioning.

3.5.1 Design and composition
Workflow composition should consider the context of the

workflow’s operation. This is not only domain-oriented but also
concern-oriented, requiring mapping to the stakeholders’ own
goals and reflected in the process’ final result. There could be
workflows that require coordination with each other that would
depend on synchronization functions to enable data sharing
between workflows that may concurrently execute. In addition,
policies would also need to be considered to regulate interactions,
such as prioritization and queuing. The design of workflows is
based on the available and exposed functions to the orchestrator.
There could thus be access policies that limit what an
orchestrator could utilize and a context where the discoverable
functions are set. This means that what is available to the
orchestrator depends on what the discovery functions can
return and make available for the workflow design. Another
consideration is the actual description of the workflow. Once
composed, a workflow requires a way to detail each of the aspects
that are relevant to it, so it can be used to instantiate it or as a
blueprint. Since the principles for the workflow are inspired by
serverless technologies, the descriptions used for FaaS are
relevant. The requirements for the description of the workflow
are studied further to enable their mapping to a particular
description language.

FIGURE 4
Instantiation primitives from the workflow descriptions, which
are then mapped to IoT management systems.

Frontiers in The Internet of Things frontiersin.org10

Ramos and Arumugam 10.3389/friot.2023.1242101

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


3.5.2 Publishing, onboarding, and instantiation
Even when a workflow is distributed in the nature of the

processes that compose it, its description must be specified and
stored (published) in a particular control instance. The workflow
description could be either shared in full with each of the entities
involved and require instantiation, or only the relevant orchestration
commands to a particular entity need to be delivered to be
instantiated. In both cases, there is a need for a control function
to contact the instantiation targets. The reference architecture
introduces the concept of deployment engines, which are capable
of receiving the workflow description and addressing each of the
entities to instantiate the workflows through deployment agents.
One deployment engine must integrate a deployment coordinator
that provides communication and coordination functions with other
deployment engines that have access to a different set of devices or
instantiation entities. The deployment agents are adaptation
functions that translate the orchestration calls or commands
found in the workflow description to a configuration or
programming of a specific device or node. The agent would act
as a device driver that enables the instantiation of the workflow in a
particular node. In some cases, the agent is merely a communication
interface to a device management system, but, in others, it may
deploy a function from a FaaS execution environment in a platform
or device. Once a workflow instantiation is introduced in a device, it
remains instantiated until a new workflow is provided, the workflow
lifespan is finished, or the workflow is explicitly canceled.

3.5.3 Lifetime: time span when a workflow is
applicable

The applicability of a workflow may have a limited time. This
means that a workflow should be functional for a period of time that
is synchronized to all the different entities that instantiate a
workflow. One task of a deployment engine is to track the
lifespan of a workflow and coordinate with other deployment
engines involved to terminate it. The workflow’s lifespan could
be measured in units of time (seconds, minutes, hours, days, etc.), in
its number of iterations (how many times a workflow is executed in
full), or event-based (terminated after an event happens). There is a
connection between the lifespan of a workflow and its termination
(or decommissioning). However, a workflow might be scheduled
periodically or its re-execution is triggered multiple times by an
event. If there is some sort of recurrency configured within the
workflow, the system should not fully decommission it; instead, it
should be reactivated later. This raises the question of how a device
may be mapped to active and inactive workflows and how it
transitions between them.

3.5.4 Updates
A workflow may require updating and re-instantiation after it

has been deployed. This means that it can be modified and change
the process’s sequence or elements, in addition to where the
instantiation is deployed and the impact on the data flow
between its origin and target execution nodes. The transition that
applies to an updated workflow should not only be considered when
the new workflow starts but also in the propagation of workflow
updates to the new and old relevant nodes. Additionally, in some
cases, the target node that implements a workflow may not be the
same in different iterations of the workflow. An example is if a

nomadic (mobile) node that arrives at one location and becomes
part of a workflow leaves, but it is substituted by another node and
requires an instantiation of the function in the new node (and
termination in the previous node). One possible solution is to model
these updates as a “control workflow” that manipulates the process’s
workflows using supporting orchestration functions from the
underlining platform and the deployment engines. This would be
either part of a version or implementation of such workflow control
system or be manually specified by an orchestrator.

3.5.5 Optimizations
Goal-oriented systems always seek ways to optimize and

improve their operation so that their goal fulfillment becomes
optimal. This means that the processes might require updating or
amending to adapt to situations, particular conditions,
infrastructure, or changes in the environment. Such optimization
may sometimes be part of workflows that aim to provide such
adaptations. Another possibility is that such optimizations are
modeled in the workflow itself, where functions make the best
decision according to the optimization model. A third option
basically runs workflows and analyzes their performance using an
external optimization tool to create a new and optimized workflow
that is later updated. Workflows including reinforcement learning
naturally run an optimization method. The changes related to the
optimization are modeled as part of the workflow itself and are a
good example of how the optimization processes can be explicitly
embedded in operations.

3.5.6 Pre-conditions and certifications
Certain processes must be fulfilled as prerequisites for other

processes to commence or finish. This is particularly challenging
when the intelligence orchestration processes have multiple
stakeholders, and platforms or include multi-tenancy aspects. First,
the precondition definition can become quite complicated since it
might require multiple processes and even a limitation on the time
when it was last executed. This means that a workflow or a specific
process execution may need fulfilling in a minimum time range that
might be set in the precondition (e.g., a specific process must be run
within 10 min before starting the new workflow). A possible solution
to simplify the management of preconditions is to introduce
certifications when required. The certification would be proof that
a process or workflow has been completed and include some
additional details such as the time commenced and completed. It
could be signed by a mediator and mapped to either a workflow or a
pipeline execution. The certificate is provided to the orchestrator of
the workflow (owner of the workflow) being executed. The certificate
might need to be exposed to allow other stakeholders to be notified
that those processes have been completed or were completed before
starting their own processes. The certification would mean in some
cases that a verification mechanism be accessible to the mediator for
process execution to be validated. The mediation could be just part of
the workflow and powered by ledger technologies, as one possible
solution, but also could be part of a delegated trust schema.

3.5.7 Quality-of-service (QoS) and quality-of-
experience (QoE)

An additional aspect to be considered when executing a process
is elements such as its cost, performance, resilience, and adaptability.

Frontiers in The Internet of Things frontiersin.org11

Ramos and Arumugam 10.3389/friot.2023.1242101

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


Several of these can be modeled as policies or non-functional
requirements. Thus, in addition to the possibility of executing a
function, service, or process, there are additional requirements that
require consideration. Some can already be addressed during the
design phase of the workflow. In some situations, quality assurance
should be guaranteed during the whole execution of the process and
may either limit other processes or services that compete with the
same resources or limit the type of additional actions for an actor
participating in the process (e.g., restricted mobility). This calls for
prioritization of processes and possible blocking of
resources—challenging in multi-tenancy environments.

One possibility of addressing real-time QoS is utilizing a policy
engine that monitors and ensures that the requirements are always
being fulfilled and maintains the state of the resources to perform
accordingly and also administers availability according to
prioritization policies that are also input to the system. This
would work as an overlay system on top of the workflow, and
the policies applied should possibly be part of the metadata used on
the exposure of the resources and functions whenever used. Changes
in policies should be notified to all the parties affected by the new
policies who depend on the resources.

The policy engine may also be modeled as a workflow, but it
might have dependencies on each particular node or equipment. The
challenge of this approach is related to transparency. If the policies
are handled in a separate workflow, then how they impact related
workflows is communicated as a concern. Furthermore, if a
workflow has already started and suddenly a function is blocked
or unavailable due to prioritization of another function in the node,
the fate of such a workflow must be defined and not left to the
implementation. The risk of re-prioritization should be known at the
time of design and the workflow provisioned with contingencies.

3.5.8 Decommission
Asmentioned previously, a workflowmay terminate its execution

cycle, but it might be re-executed at a different time, sometimes even
sequentially after finishing the previous execution, and, in some cases,
even in parallel. This termination would not mean that the workflow
is decommissioned since is re-used again. Whenever a workflow is no
longer meant to be used, it can be considered decommissioned.
Decommissioning implies that the publishing of the instantiation
of the workflow will be eliminated from all the related deployment
engines, and whatever policies related to such a workflow are also
removed from use. Some workflows may be kept in the form of
templates, which means that they are used to instantiate other
workflows. A template normally lives in a workflow design
environment and is not visible to deployment engines. The trigger
for decommissioning could be on-demand or follow a condition, such
as the programmed lifespan of the workflow to expiration or an error
condition. A clean-up procedure for decommissioning needs to be
exposed by the orchestration platform and tailored to each
deployment engine involved.

4 General execution engine
implementation and testing

To test the technical requirements and needs of the instantiation of
an execution engine, a prototype was built and tested using a vertical

agriculture use case. The prototype was built using a simple architecture
composed of a parser that interpreted the workflow description using a
JSON input file. The parser translates the workflow description to a set
of primitives (Section 3.3); depending on which platform, protocol, or
data model interface was used for the exposure, the primitives were
then evaluated and the execution commands called by a deployment
agent plugin. The deployment agent was built in this prototype only for
the LwM2M protocol since the test environment operated only with
that management protocol. However, the design allowed the
introduction of additional deployment agents for the APIs of other
protocols or platforms. The triggers are instantiated and controlled in
the prototype engine, and the scheduling functions are implemented in
it. The engine implemented also had some limitations. In this first
version, there was no support for persistent storage or exposure of the
workflow or process results. Additionally, the life-cycle management of
the workflows was very limited, and only the onboarding and
termination operations were supported. The engine had direct
access to the function exposure platform and no dynamic security
establishment was needed.

4.1 Vertical agriculture use case

Vertical agriculture or farming is a growing trend where
vegetables are cultivated using vertical surfaces under a fully
controlled environment4. Such crops utilize control systems to
provide irrigation, fertilizer, pest control, and light that are
optimized for the specific type of crop to maximize production
or produce a specific improvement in the final result (e.g., to
heighten the sweetness of strawberries). Our deployment engine
was tested in a testbed including devices with sensors and actuators
using LwM2M for device management. The main studied use case
was the irrigation, humidity control, and ventilation of specific crops
during the growing phase (after germination).

A complete system would include the components outlined in
Figure 5. However, for this testbed, wemanaged an irrigation valve, a
fertilizer fluid valve (to mix with the water), and a fan switch control.
Every crop was located in a particular part of the vertical trellis and
the location and type of crop were recorded at the start of the
growing phase, as well as the state of their development cycle. The
location was matched to specific valves and fans that affected that
specific crop as well as the sensors collecting information from the
different types of crops. This information could be controlled by
means of digital twins (Purcell and Neubauer, 2023) and follow-up
and control of their values according to the life cycle of the crop,
following the model of the digital twin.

4.2 Modeling of crops management by
workflows

Different varieties of crops require different care, not only in the
quantity of water, airflow, fertilizer, or soil type but also depending

4 “What Is Vertical Farming? Everything You Should Know About This
Innovation,” https://www.edengreen.com/blog-collection/what-is-
vertical-farming, Edengreen Technology, January 2023.

Frontiers in The Internet of Things frontiersin.org12

Ramos and Arumugam 10.3389/friot.2023.1242101

https://www.edengreen.com/blog-collection/what-is-vertical-farming
https://www.edengreen.com/blog-collection/what-is-vertical-farming
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


on the time in their life cycle. Different treatment is thus needed in
different stages of their growth. These models can be also
customized according to growing management wishes for
optimization; they could lead to proprietary growing recipes
according to the entity. As an example of particular models (or
growing recipes), take two crops: radish and sunflower. These
recipes are optimized for mass growth for maximum yield of
edible greens.

1. Radish recipe:
• Growing cycle: 4 days.
• Irrigation: 3 L/2 days, first irrigation at the beginning of cycle.
• Fertilizer: First irrigation without, second with nutrients.
• Airflow: Full ventilation whole cycle.

2. Sunflower recipe:
• Growing cycle: 4 days.
• Irrigation: 3.5 L/2 days, first irrigation at the beginning of
cycle.

• Fertilizer: First irrigation without, second with nutrients.
• Airflow: First 2 days, no ventilation; last 2 days full ventilation.

These recipes are then translated into two different workflow
templates. The templates are then instantiated into the actual
equipment mapping the management of those crops. Figure 6
shows the example for radishes.

The implementation could handle these vegetable recipes since
the system exposed all the needed functions, and they were fully
connected and remotely accessible through the LwM2M
management server. The devices required customized object
templates, but their implementation was quite trivial. The
mapping of the crop location to which the devices were
operating for a specific crop was more complicated. Additional
metadata needed to be formulated to separate the resources per crop
batch. This is part of the semantic description of the device exposure
capabilities, which means that the description is also not fully static
since the same devices can be used for different crops and the crop’s
life-cycle stage also must be considered. To also automate the device
assignment and documentation through the metadata, use of the
digital twins of the infrastructure plus the digital twin of the crops
(Purcell and Neubauer, 2023) is a very feasible way to maintain the
right state and device assignments.

One major benefit of using the approach described in this
application use case is that there is no need for coding or extra
equipment, such as services or appliances, to make the application
work. If the recipes or crops change, then only a configuration
adjustment is necessary to repurpose the equipment and
accommodate the new processes. Moreover, if new equipment is
added to the infrastructure, it can be easily adapted to the workflows
using templates and exposed functions, which may only require
changes to the workflow description.

FIGURE 5
Vertical agriculture control systems.

FIGURE 6
Vertical agriculture workflow template example.

Frontiers in The Internet of Things frontiersin.org13

Ramos and Arumugam 10.3389/friot.2023.1242101

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


5 Discussion and conclusion

Automation and control systems are mostly integrated and
managed by design. All possible functionalities, services, and
devices are thus known beforehand, and very little variation is
expected. Today’s systems evolve quite rapidly, as do their
characteristics, capabilities, and services, their adaptability to the
environment, and their requirements for executing their functions
(data sources, sensor characteristics, output formats, etc.). Therefore,
systems integration by design is not fully evolvable, and the
integration of new components, nomadic devices or services, or
connection to new services and interfaces has become challenging.
The standardization of interfaces, data models, and APIs has eased
integration difficulties, but their use has also made it part of the static
design of processes and system components.

The orchestration of intelligence enables the possibility of
process dynamism where the processes can be changed and
assigned to different components to optimize the results or adapt
to the local characteristics of the components available to execute the
processes. The architecture suggested by Ramos et al. (2022) enables
the handling of heterogeneous platforms and systems, even on
several separated operative domains. One of the main
components required to realize this vision is the possibility of
describing the processes and their mapping to operations
(functions and services) that are executed in specific components
(devices, platforms, networks). This description concept is
composed of the design of workflows using a simple
input–output pipelining of functions. Another aspect is how such
a description can be instantiated and deployed by each of the
heterogeneous components. The analysis of the deployment of
such workflows helps our understanding of the requirements of a
practical implementation. The set of instructions required and their
mapping to the implementation when considering a variety of use
cases and tested with a vertical agriculture application allow us to
understand and realize the potential challenges and issues that need
to be addressed to enable the intelligence orchestration vision.

Some additional considerations for further research are the
seamless integration of data management solutions to the
framework (storing, streaming, exposing, etc.) considering the
addition of an instruction set to describe the management of the
data in a particular execution environment, in a whole system, or
even between separated platforms and domains. The descriptive
approach may need implementation in place of similar primitives as
the one discussed for execution which would be instantiated by the
deployment engines. A wider and deeper study of the requirements
and data-intensive use cases will help outline such a set of
instructions and recommend an implementation framework.

In addition, the networking aspects related to mobility and
topology, and network reachability, availability, latency, and

reliability should be considered in some use cases. They could be
modeled as a service exposure if there is the possibility of interacting
with the network to signal a required quality of service or expose
network observed characteristics (such as load and latency); they
could then be accessed as a service that can be used in the workflow
orchestration. Furthermore, the possibility of discovering, joining,
or departing a network could be another set of services that a device
and a network interface may expose.

The proposed description of the workflows and the intelligence
orchestration architecture are designed to accommodate any type of
automation process, regardless of their domain. The results and
attributes observed during the development of this work suggest that
this approach is both feasible and effective. Moreover, any practical
limitations or challenges encountered can be addressed by utilizing
state-of-the-art solutions, standardization, and additional
developments based on known solutions. In conclusion, a
comprehensive implementation of this concept should be able to
realize the vision of intelligence orchestration for any domain.

Data availability statement

The original contributions presented in the study are included in
the article; further inquiries can be directed to the corresponding
authors.

Author contributions

ER is the main contributor to the manuscript and helped
finishing its main body. SA helped finish Section 1.1. All authors
contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Alliance, O. M. (2014). Lightweightm2m technical specification v1. 0. Tech. rep.

Arsénio, A., Serra, H., Francisco, R., Nabais, F., Andrade, J., and Serrano, E. (2014).
“Internet of intelligent things: bringing artificial intelligence into things and
communication networks,” in Inter-cooperative collective intelligence: Techniques and
applications, 1–37.

Birman, K. (2007). The promise, and limitations, of gossip protocols. SIGOPS Oper.
Syst. Rev. 41, 8–13. doi:10.1145/1317379.1317382

Casale, G., Artač, M., VanDenHeuvel,W.-J., vanHoorn, A., Jakovits, P., Leymann, F., et al.
(2020). Radon: rational decomposition and orchestration for serverless computing. SICS
Software-Intensive Cyber-Physical Syst. 35, 77–87. doi:10.1007/s00450-019-00413-w

Frontiers in The Internet of Things frontiersin.org14

Ramos and Arumugam 10.3389/friot.2023.1242101

https://doi.org/10.1145/1317379.1317382
https://doi.org/10.1007/s00450-019-00413-w
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101


Dalla Palma, S., Catolino, G., Di Nucci, D., Tamburri, D. A., and van den Heuvel, W.-
J. (2023). Go serverless with radon! a practical devops experience report. IEEE Softw. 40,
80–89. doi:10.1109/MS.2022.3170153

Galletta, A., Taheri, J., Fazio, M., Celesti, A., and Villari, M. (2021). “Overcoming
security limitations of secret share techniques: the nested secret share,” in 2021 IEEE
20th international conference on trust, security and privacy in computing and
communications (TrustCom), 289–296. doi:10.1109/TrustCom53373.2021.00054

Galletta, A., Taheri, J., and Villari, M. (2019). “On the applicability of secret share
algorithms for saving data on iot, edge and cloud devices,” in 2019 international
conference on Internet of things (iThings) and IEEE green computing and communications
(GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data
(SmartData), 14–21. doi:10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00026

Jayagopan, M., and Saseendran, A. (2022). Intelligence orchestration in IoT and cyber-
physical systems. Master’s thesis. School of Information Technology.

Koster, M., and Bormann, C. (2023). Semantic definition format (sdf) for data and
interactions of things. Working Draft, Internet Engineering Task Force. Internet-Draft 1.

Purcell, W., and Neubauer, T. (2023). Digital twins in agriculture: A state-of-the-art
review. Smart Agric. Technol. 3, 100094. doi:10.1016/j.atech.2022.100094

Ramos, E. J., Montpetit, M.-J., Skarmeta, A. F., Boussard, M., Angelakis, V., and
Kutscher, D. (2022). “Architecture framework for intelligence orchestration in aiot and

iot,” in 2022 international conference on smart applications, communications and
networking (SmartNets), 01–04. doi:10.1109/SmartNets55823.2022.9994029

Ramos, E., Schneider, T., Montpetit, M.-J., and De Meester, B. (2020). “Semantic
descriptor for intelligence services,” in 2020 international conferences on Internet of
things (iThings) and IEEE green computing and communications (GreenCom) and IEEE
cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData) and
IEEE congress on cybermatics (cybermatics), 45–53. doi:10.1109/iThings-GreenCom-
CPSCom-SmartData-Cybermatics50389.2020.00027

Sicari, C., Carnevale, L., Galletta, A., and Villari, M. (2022). “Openwolf: A serverless
workflow engine for native cloud-edge continuum,” in 2022 IEEE intl conf on
dependable, autonomic and secure computing, intl conf on pervasive intelligence and
computing, intl conf on cloud and big data computing, intl conf on cyber science and
technology congress (DASC/PiCom/CBDCom/CyberSciTech), 1–8. doi:10.1109/DASC/
PiCom/CBDCom/Cy55231.2022.9927926

Wurster, M., Breitenbücher, U., Brogi, A., Falazi, G., Harzenetter, L., Leymann, F.,
et al. (2020b). “The edmm modeling and transformation system,” in Service-oriented
computing – ICSOC 2019 workshops. Editors S. Yangui, A. Bouguettaya, X. Xue, N. Faci,
W. Gaaloul, Q. Yu, et al. (Cham: Springer International Publishing), 294–298.

Wurster, M., Breitenbücher, U., Harzenetter, L., Leymann, F., Soldani, J., and
Yussupov, V. (2020a). TOSCA light: Bridging the gap between the TOSCA
specification and production-ready deployment technologies.

Frontiers in The Internet of Things frontiersin.org15

Ramos and Arumugam 10.3389/friot.2023.1242101

https://doi.org/10.1109/MS.2022.3170153
https://doi.org/10.1109/TrustCom53373.2021.00054
https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00026
https://doi.org/10.1016/j.atech.2022.100094
https://doi.org/10.1109/SmartNets55823.2022.9994029
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00027
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00027
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927926
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927926
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1242101

	Process automation instantiation for intelligence orchestration
	1 Introduction
	1.1 Intelligence orchestration
	1.2 IoT intelligence orchestration—Challenges and characteristics
	1.3 Related work

	2 Intelligence orchestration requirements (architectures, services, and support systems)
	2.1 Instantiation and execution control of workflows
	2.2 Workflow composition
	2.2.1 Intelligence pipeline
	2.2.2 Choreographies
	2.2.3 States in workflows
	2.2.4 Blueprints and templates
	2.2.5 Multi-tenancy and shared access

	2.3 Orchestration control
	2.3.1 Workflow management
	2.3.2 Policy management
	2.3.3 Trust management


	3 Applicable tools and methods for intelligence orchestration workflows
	3.1 Workflow description
	3.2 Trigger control
	3.3 Instantiation primitives
	3.4 Deployment agent
	3.5 Workflow life-cycle management
	3.5.1 Design and composition
	3.5.2 Publishing, onboarding, and instantiation
	3.5.3 Lifetime: time span when a workflow is applicable
	3.5.4 Updates
	3.5.5 Optimizations
	3.5.6 Pre-conditions and certifications
	3.5.7 Quality-of-service (QoS) and quality-of-experience (QoE)
	3.5.8 Decommission


	4 General execution engine implementation and testing
	4.1 Vertical agriculture use case
	4.2 Modeling of crops management by workflows

	5 Discussion and conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


