
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Syst. Neurosci.
Volume 19 - 2025 | doi: 10.3389/fnsys.2025.1547276
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
It has been shown that the choice of preprocessing pipelines to remove contamination from functional magnetic resonance images can significantly impact the results, particularly in resting-state functional connectivity (rsFC) studies. This underscores the critical importance of replication studies with different preprocessing methodologies. In this study, we attempted to reproduce the rsFC results presented in an original study by Bauer et al. in 2017 on a group of sighted control (SC) and early blind (EB) subjects. By using the original dataset, we utilized another widely used software package to investigate how applying different implementations of the original pipeline (RMin model) or a more rigorous and extensive preprocessing stream (RExt model) can alter the whole-brain rsFC results. Our replication study was not able to fully reproduce the findings of the original paper. Overall, RExt shifted the distribution of rsFC values and reduced functional network density more drastically compared with RMin and the original pipeline. Remarkably, the largest rsFC effects appeared to primarily belong to certain connection pairs, irrespective of the pipeline used, likely demonstrating immunity of the larger effects and the true results against suboptimal processing. This may highlight the significance of results verification across different computational streams in pursuit of the true findings.
Keywords: ocular blindness, Resting-state functional connectivity, fMRI, Whole-brain connectivity, Replication studies
Received: 18 Dec 2024; Accepted: 28 Mar 2025.
Copyright: © 2025 Nadvar, Bauer, Pamir, Merabet, Koppelmans and Weiland. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Negin Nadvar, Biomedical Engineering Department, University of Michigan, Ann Arbor, 48109, Michigan, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.