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Editorial on the Research Topic

Multimodal approaches to investigating neural dynamics in cognition

and related clinical conditions: integrating EEG, MEG, and fMRI data

Cognitive processes, such as attention, memory, and decision-making, emerge from

complex and dynamic interactions across multiple brain regions. Each brain imaging

modality provides unique insights into different aspects of these intricate neural networks,

allowing for a more comprehensive understanding of the underlying mechanisms.

Electroencephalography (EEG) measures the electrical activity of the brain by

recording the postsynaptic potentials of neurons with electrodes on the scalp (Thio and

Grill, 2023). Magnetoencephalography (MEG) detects the subtle magnetic fields generated

by synchronized electrical currents from large neuronal assemblies as they communicate

(Myllyla et al., 2017; Gross, 2019).

While magnetic resonance imaging (MRI) provides detailed information about

internal structure of the brain, functional magnetic resonance imaging (fMRI) measures

brain activity by detecting changes in blood flow associated with neuronal activity

(Ebrahimzadeh et al., 2022). Functional near-infrared spectroscopy (fNIRS) also measures

changes in the concentration of oxygenated and deoxygenated hemoglobin in cortical

blood vessels, providing an indirect measure of brain activity (Chen et al., 2020;

Providência and Margolis, 2022).

The Research Topic “Multimodal approaches to investigating neural dynamics in

cognition and related clinical conditions: integrating EEG, MEG, and fMRI data” includes

studies that use combined brain imaging methods such as EEG-MRI, MEG-MRI, and

NIRS to better understand how the brain works in cognitive processes and diseases. The

aim of these studies is to combine different imaging methods to increase the accuracy

of brain measurements and obtain new information about brain function and disorders.

This method helps us better examine the complex relationships between brain structure,

function, and behavior. In particular, two studies examine the combination of EEG

and MRI and show that this combination can give us more detailed and personalized

information about brain activity and its disorders.
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In this Research Topic, Tetsuka et al. utilized neurofeedback

training to prevent cognitive decline in acute stroke patients.

They monitored prefrontal activity using fNIRS and demonstrated

that even short-term interventions can modulate neural activity

and preserve cognitive function. Brain lesion locations in patients

were identified using diffusion-weighted magnetic resonance

imaging (DTI) or computed tomography (CT) scans. These

regions were used as reference points to target specific brain

areas in neurofeedback protocols and to assess the hemodynamic

changes in those regions. This anatomical information can help

personalize neurofeedback and other therapeutic methods. In

addition to the neuroanatomical information, behavioral data

including performance evaluations on a working memory task,

were analyzed as a key indicator of the effects of neurofeedback

and associated cerebral hemodynamic changes over time. The

findings indicated that neurofeedback training was effective in

enhancing prefrontal activity and maintaining cognitive function

in acute stroke patients. The multidimensional approach enabled a

thorough examination of the relationship between brain structure,

function, and behavior.

Jones et al. conducted a detailed examination of EEG patterns

during propofol-induced burst suppression in patients with

treatment-resistant depression. Their study identifies distinct types

of burst activity, highlighting the variability of neural responses

to anesthesia. Participants were randomized to receive either

high- or low-dose propofol infusions. The study identified three

distinct types of burst activity, 1- broadband bursts, 2- spindles,

and 3- low-frequency bursts, each varying significantly across

subjects in terms of occurrence, spectral power, and spatial patterns

across the scalp. Combining EEG with clinical data (e.g., drug

dosages and patient characteristics) provided valuable insights

into the individualization of anesthetic dosing and the diverse

neural responses to propofol, potentially leading to more tailored

treatment strategies in clinical practice.

In another study, Mertiens et al. investigated how Parkinson’s

disease (PD) affects resting state networks (RSNs) using MEG to

measure phase-amplitude coupling (PAC). This study combined

MEG with T1-MRI scans. MEG captured dynamic neural

oscillations and PACwithin RSNs, while T1-MRI provided accurate

source reconstruction of the MEG signals. This integration allows

for precise mapping of RSNs and revealed significant alterations

in these networks in PD patients compared to healthy controls,

particularly in the sensorimotor network (SMN). Levodopa

medication significantly normalized SMN activity toward a

state similar to that of healthy controls, though no significant

changes were observed in the optimal PAC coupling frequencies,

suggesting that levodopa primarily affects motor symptoms

without influencing all RSNs in the same way.

The results of the three above-mentioned studies demonstrate

how combining different modalities can enhance treatment process

and provide deeper insights into brain diseases and disorders.

However, as previously discussed, integrating multiple modalities

present challenges, and some studies are focused on improving the

integration of these modalities and addressing technical issues.

Karittevlis et al. introduce a novel method for analyzing EEG

and MEG data of evoked responses to somatosensory stimulation,

aimed at identifying early responses in the thalamus and cortex.

EEG-MEG studies often face challenges in accurately determining

brain activity due to the reliance on complex models with many

assumptions. These models can be particularly inaccurate for

EEG because the skull distorts electrical signals. Additionally,

variability in responses to the same stimulus across trials complicate

the achievement of consistent results. The study proposes a

straightforward approach that bypasses complex modeling and

uses a method called virtual sensors (VS), which combines EEG

and MEG data to directly capture brain activity. This method

improves the accuracy of elicited brain activity and identifies

trial-to-trial variability, offering clearer and more reliable insights

into the communication between different brain regions. By

simplifying the computational processes, the authors present a

method with potential applications in real-time neurofeedback and

brain-computer interfaces, highlighting the practical benefits of

multimodal approaches in applied neuroscience.

The study conducted by Dayarian and Khadem leverages

multimodal recording by integrating EEG with MRI-based head

models to introduce a new algorithm for EEG source localization.

Accurate EEG source localization is crucial in clinical applications

for diagnosing and planning treatments for neurological disorders

such as epilepsy, by precisely identifying the location of abnormal

brain activity. It also plays a key role in surgical planning,

helping to minimize damage to critical brain regions, and aids

in in monitoring disease progression and tailoring treatments to

individual patients, thus enhancing personalized medicine (Yang

et al., 2023).

However, EEG source localization faces several challenges due

to the complex geometry of the head and brain, which complicates

accurate modeling. Traditional methods often struggle with the

heterogeneous properties of brain tissues and the low spatial

resolution of EEG, making it difficult to differentiate closely

situated sources. Additionally, EEG signals are susceptible to noise

and artifacts, such as muscle activity or eye movements, which

can obscure the true brain signals and hinder precise localization

(Michel and Brunet, 2019; Hirata et al., 2024). Many techniques

also rely on simplifying assumptions about the head and brain

models, which may not accurately reflect individual anatomical

variations, further impacting localization accuracy (Hirata et al.,

2024). Accurate co-registration of EEG sensors with the headmodel

is critical, as any misalignment can significantly affect the results.

Dayarian and Khadem propose a hybrid method that

combines the strengths of the boundary element method (BEM)

and finite element method (FEM), to address EEG source

localization challenges. BEM effectively models isotropic brain

regions and dipolar sources, while FEM accurately handles

complex, anisotropic tissues in the head with greater accuracy.

By validating this hybrid approach using MRI-based realistic head

models, the study achieves significant improvements in accuracy

for EEG forward problem solutions. The method demonstrates

enhanced performance in error metrics compared to using

FEM alone, highlighting the value of incorporating detailed

anatomical information from MRI to improve the precision of

neuroimaging analyses.

Each brain imaging method has its own advantages and

limitations, as outlined in Table 1. To study fast dynamics, methods

with high temporal resolution are essential to accurately capture
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TABLE 1 A summary of the features of each neuroimaging method.

Method Advantages Disadvantages

EEG - High temporal resolution

- Direct measure of

neuronal activity

- Relatively low cost

- Non-invasive

- Portable

- Low spatial resolution

- Excessive artifacts

- Limited depth

penetration

MEG - High temporal resolution

- Direct measure of

neuronal activity

- Better spatial resolution

than EEG

- Expensive

- Limited to specialized

facilities

- Sensitive to magnetic

noise

fNIRS - Portable

- Allows natural movement

- Non-invasive

- Easy to use

- Low spatial resolution

- Limited depth penetration

- Sensitive to scalp

hemodynamics

- Requires baseline

fMRI - High spatial resolution

- Whole-brain coverage

- Can study deep

brain structures

- Low temporal resolution

- Expensive

- Non-portable

- Requires stillness from

subjects

rapid changes in brain activity. Among non-invasive brain imaging

techniques, EEG and MEG stand out for their millisecond-level

temporal resolution, making them ideal for studying fast cognitive

processes. In contrast, fMRI and fNIRS offer temporal resolution

on the order of seconds, which limits their applicability for

investigating rapid brain dynamics.

In terms of spatial resolution, the most sensitive methods are

fMRI, followed by fNIRS, MEG, and EEG. High spatial resolution

is crucial for accurate brainmapping. fMRI offers the highest spatial

resolution (inmillimeters), allowing for visualization of active brain

regions, including deeper layers. In contrast, EEG has the lowest

spatial resolution. Although source localization methods have been

developed to mitigate this limitation, they face challenges due to

volume conduction and require a high density of EEG electrodes to

accurately determine the source of brain activity (Liu et al., 2023).

Apart from the challenges of temporal and spatial resolution,

factors such as usage complexity, portability, and cost are also

crucial considerations when se Apart from the challenges of

temporal and spatial resolution, factors such as usage complexity,

portability, and cost are also crucial considerations when selecting

a neuroimaging method.

To leverage the advantages of various brain imaging methods

and address the limitations of each technique, multimodal

recording is recommended. However, the simultaneous use of two

or more different techniques presents several challenges, which are

detailed in the following sections.

1 EEG and fMRI

The primary advantage of EEG-fMRI co-recording studies is

their ability to provide both high temporal resolution (through

EEG data) and high spatial resolution (through fMRI data),

resulting in a more comprehensive understanding of brain function

and cognitive processes. However, EEG-fMRI studies face several

challenges. One significant issue is the need for MR-compatible

EEG hardware, which can increase costs. MR-compatible systems

are designed to be non-magnetic and to minimize induced voltages

and currents that could arise from radiofrequency and gradient

fields during MRI scans (Mele et al., 2019; Scrivener, 2021;

Warbrick, 2022). If these voltages and currents are not adequately

controlled, they can cause heating of the EEG or ECG leads,

potentially posing risks to the participants (Kugel et al., 2003).

To mitigate these risks, careful design of the wires and the use

materials resistant to electrical currents or incorporating built-

in resistors are necessary. In addition, the magnetic fields in the

MRI environment affect the quality of EEG signals, reduce the

signal-to-noise ratio, and increase post-processing time. Although

EEG electrodes can also influence the MRI’s magnetic fields,

this effect is generally minimal and often disregarded. EEG-fMRI

studies are typically conducted while participants are lying down,

which may not be suitable for studies requiring participants to

be in different positions, such as sitting, standing, or walking.

Moreover, the MRI environment’s cold temperatures and intense

noise can be uncomfortable and may influence brain activity,

especially in children and the elderly, potentially confounding

the results. Lastly, EEG-fMRI studies are not well-suited for

investigating sleep and its disorder due to the discomfort of the

MRI environment and the impracticality of extended scanning

sessions (Duyn, 2012; Mele et al., 2019; Ebrahimzadeh et al.,

2022).

Analyzing EEG and fMRI data from simultaneous recordings

presents unique challenges and requires specific methods.

Common approaches to data analysis in EEG-fMRI studies include

(Huster et al., 2012; Abreu et al., 2018):

1. Symmetrical approaches

• Model-based techniques: these involve creating and using

mathematical models to understand the relationship

between EEG and fMRI data.

• Data-driven techniques: methods such as independent

component analysis (ICA) and canonical correlation

analysis (CCA) are used to extract and correlate

components from EEG and fMRI data.

2. Asymmetrical approaches

• fMRI-Driven EEG: this approach uses fMRI data to inform

and enhance the interpretation of EEG signals.

• EEG-Informed fMRI: conversely, EEG data can be used to

guide and refine fMRI analysis.

3. Data quality and artifact correction

• Gradient artifacts (GA): artifacts caused by the MRI

gradient fields that can distort EEG data.

• Pulse artifacts (PA): artifacts resulting from the MRI

scanner’s pulse sequences that can interfere with

EEG recordings.
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• Correction techniques

◦ Time-domain subtraction: a method to subtract artifacts

based on time-domain signals.

◦ Independent component analysis (ICA): a technique

used to isolate and correct artifacts by decomposing the

data into independent components.

◦ Hardware solutions: implementing specialized hardware

to minimize or correct artifacts.

These methods are essential for addressing the complexities

of integrating EEG and fMRI data and ensuring the accuracy of

the results. Despite the mentioned challenges, EEG-fMRI studies

are more frequently used than other multimodal approaches. This

preference is likely due to the maturity of these technologies and

their relatively lower cost compared to other multimodal systems.

2 EEG and fNIRS

While fMRI offers high spatial resolution, it has notable

limitations such as lack of portability, inability to record in

sitting or standing positions, restricted recording duration, and

an environment that is cold and noisy. Functional near-infrared

spectroscopy (fNIRS) addresses these limitations by measuring

brain metabolic or hemodynamic activity similarly to fMRI but

with greater flexibility. Although fNIRS has relatively lower spatial

resolution and its accuracy can be influenced by individual

differences such as skin color and hair type, it is well-suited

for recording in various positions (sitting, standing, or walking)

and over extended periods. Consequently, EEG-fNIRS provides

an effective solution for combining both temporal and spatial

resolution without the concerns of portability and MR-compatible

EEG systems. Moreover, fNIRS offers advantages such as lower cost

and smaller maintenance requirements (Liu et al., 2021; Uchitel

et al., 2021).

One technical challenge in the simultaneous EEG and fNIRS

recording is configuring the sensors related to two modalities

for minimal interference. Ongoing technological development are

needed to improve the integration of these modalities (Ahn and

Jun, 2017; Chen et al., 2020; Li et al., 2022).

Pre-processing and processing for each modality involve

specific steps, but simultaneous recording introduces additional

challenges, including the potential negative impact of one modality

on the other and the integration of data from both modalities. The

following solutions address these challenges (Hossain et al., 2022;

Li et al., 2022; Mughal et al., 2022):

1. Data synchronization

• Clock synchronization or temporal alignment

2. Artifact removal

• Shared artifacts (e.g., motion artifacts)

• Physiological artifacts (e.g., heartbeat, respiration)

3. Signal filtering

• Bandpass filtering for EEG

• Spatial filtering for fNIRS

4. Motion artifact correction

• Simultaneous correction (e.g., wavelet-based)

• Correlation-based methods

5. Baseline correction

• Common baseline establishment

• Global signal regression for fNIRS

6. Data integration

• Feature extraction (e.g., EEG alpha power, fNIRS

HbO/HbR concentrations)

• Joint analysis (e.g., canonical correlation analysis,

joint ICA)

7. Statistical analysis

• Cross-modality correlation or multimodal data fusion

This approach facilitates a more comprehensive analysis and

integration of EEG and fNIRS data, thereby improving the overall

understanding of brain function.

3 MEG and fMRI

Simultaneous use ofMEG and fMRI recording can achieve both

high temporal and spatial resolution. However, integrating these

two modalities presents significant challenges, including the high

cost of both techniques, the necessity for MR-compatible MEG

systems, and the adverse effects of fMRI magnetic fields on MEG

recordings. To mitigate these challenges researchers can employ

several strategies (Im et al., 2005; Plis et al., 2010; Hall et al., 2014;

Cichy et al., 2016):

1. Minimize temporal overlap: reduce the concurrent time of MEG

and fMRI data to lessen interference.

2. Use precise timing triggers: ensure accurate alignment of MEG

and fMRI recordings with precise timing triggers.

3. Shield MEG sensors: protect MEG sensors from external

electromagnetic interference.

4. Apply ICA: use ICA to separate fMRI noise fromMEG signals.

These strategies help address the technical difficulties of

combining MEG and fMRI, facilitating more effective integration

of their data.

4 MEG and fNIRS

To address the limitations of the MEG-fMRI co-recording,

replacing fMRI with fNIRS can be advantageous. This substitution

leverages the benefits of MEG and fNIRS while reducing some of

the associated challenges.
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Despite MEG’s higher spatial resolution and superior signal-

to-noise ratio compared to EEG, simultaneous use of EEG and

fNIRS is more common than MEG-fNIRS due to the high

cost and complex maintenance of MEG systems. MEG-fMRI

is also used more frequently than MEG-fNIRS. The technical

difficulty in achieving simultaneous recordings with MEG and

fNIRS arises from the differing physical requirements of each

modality. For instance, the spatial configuration for fNIRS optodes

necessitates specific placement that may not align optimally with

the measurement points for MEG sensors (Ru et al., 2022).

To effectively analyze and integrate MEG and fNIRS data,

specific preprocessing and fusion methods are recommended:

1. Temporal alignment: synchronize MEG and fNIRS data to a

common time reference.

2. Artifact removal and noise reduction

• MEG: apply temporal filtering to remove drifts and

high-frequency noise, and use ICA to address eye and

muscle artifacts.

• fNIRS: perform baseline correction and detrending to

manage slow drifts and noise, and use wavelet or adaptive

filtering to handle motion and physiological noise.

3. Spatial alignment: align the spatial coordinates of MEG and

fNIRS data to a common anatomical reference.

4. Data standardization: ensure comparability by standardizing

MEG and fNIRS data.

5. Feature extraction and fusion: extract relevant features from

both datasets and combine them using advanced fusion

techniques such as canonical correlation analysis (CCA), joint

independent component analysis (jICA), and multimodal

fusion algorithms.

These methods enable effective integration of MEG and

fNIRS data, thereby enhancing the analysis and interpretation of

combined datasets.

5 Brain imaging and behavioral data

Along with these methods, recording and analyzing behavioral

data is also crucial for understanding cognitive functions and

the brain processes. Behavioral data includes information about

a person’s performance in cognitive and psychological tasks,

response time, and accuracy. These data enable researchers

to correlate brain activity results with observed behaviors,

providing a deeper understanding of how information is processed

in the brain. Combining behavioral data with imaging and

electrophysiological methods can reveal complex patterns of brain-

behavioral interactions and offer a more comprehensive view of

cognitive functions.

Thus, the choice of methods and their integration with

behavioral data depends on the research type and objectives.

Table 2 presents the benefits and challenges of various multimodal

recording approaches.

TABLE 2 A summary of the benefits and challenges of multimodal

recording methods.

Combination Benefits Challenges

EEG-fMRI - Combines high temporal

resolution of EEG with

high spatial resolution of

fMRI

- Technical complexity

(need MR-compatible

EEG)

- Artifact correction is

challenging

- Expensive and

non-portable

EEG-fNIRS - Portable

- Combines temporal

resolution of EEG with

hemodynamic

information from fNIRS

- Allows natural movement

- Limited spatial

resolution

- Artifact correction is

challenging

- Sensitive to noise

MEG-fMRI - Combines high temporal

resolution of MEG with

high spatial resolution of

fMRI

- Extremely expensive

- Requires specialized

facilities

- Artifact correction is

challenging

MEG-fNIRS - Combines temporal

resolution of MEG with

hemodynamic

information from fNIRS

- Low spatial resolution

- Artifact correction is

challenging

- Limited to superficial

brain activity

In summary, as multimodal approaches continue to

advance, they are likely to be pivotal in developing more

effective diagnostic and therapeutic strategies for psychiatric

and neurological disorders. Future research should focus on

improving computational methods for data integration and

analysis, optimizing sensor configurations, and developing more

robust techniques to mitigate artifacts. Such advancements could

further deepen our understanding of brain function and pathology,

offering new opportunities for research in cognitive neuroscience

and clinical applications. Notably, while some review articles cover

each modality combination separately, this Research Topic of

original research offers unique empirical insights that enhance

its value.
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