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A hybrid boundary element-finite 
element approach for solving the 
EEG forward problem in brain 
modeling
Nasireh Dayarian  and Ali Khadem *

Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of 
Technology, Tehran, Iran

This article introduces a hybrid BE-FE method for solving the EEG forward 
problem, leveraging the strengths of both the Boundary Element Method 
(BEM) and Finite Element Method (FEM). FEM accurately models complex and 
anisotropic tissue properties for realistic head geometries, while BEM excels in 
handling isotropic tissue regions and dipolar sources efficiently. The proposed 
hybrid method divides regions into homogeneous boundary element (BE) 
regions that include sources and heterogeneous anisotropic finite element (FE) 
regions. So, BEM models the brain, including dipole sources, and FEM models 
other head layers. Validation includes inhomogeneous isotropic/anisotropic 
three- and four-layer spherical head models, and a four-layer MRI-based 
realistic head model. Results for six dipole eccentricities and two orientations 
are computed using BEM, FEM, and hybrid BE-FE method. Statistical analysis, 
comparing error criteria of RDM and MAG, reveals notable improvements 
using the hybrid FE-BE method. In the spherical head model, the hybrid BE-
FE method compared with FEM demonstrates enhancements of at least 1.05 
and 38.31% in RDM and MAG criteria, respectively. Notably, in the anisotropic 
four-layer head model, improvements reach a maximum of 88.3% for RDM and 
93.27% for MAG over FEM. Moreover, in the anisotropic four-layer realistic head 
model, the proposed hybrid method exhibits 55.4% improvement in RDM and 
89.3% improvement in MAG compared to FEM. These findings underscore the 
proposed method is a promising approach for solving the realistic EEG forward 
problems, advancing neuroimaging techniques and enhancing understanding 
of brain function.
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1 Introduction

Electroencephalography (EEG) is a non-invasive, fast, and inexpensive method to record 
electrical potentials on the head surface. In neuroscience, it is important to characterize the 
sources of measured EEG signals and accurately localize them by solving an EEG inverse 
problem. The EEG inverse problem includes an EEG forward problem using a chosen source 
model (Grech et al., 2008; Güllmar et al., 2010; de Munck et al., 2017). The solution of the EEG 
forward problem yields an accurate calculation of the electromagnetic fields. To solve the EEG 
forward problem, the conductivity profile of the head is modeled, and the relation between 
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the source model and the computed EEG signals is introduced in the 
EEG lead-field matrix, which can then be  used to solve the EEG 
inverse problem. Then, the source locations and strengths are 
estimated from the measured EEG signals with the help of the EEG 
lead-field matrix obtained in the EEG forward model (Hallez et al., 
2007; Akalin Acar and Makeig, 2013; de Munck et al., 2017; Vorwerk 
et al., 2017). Consequently, appropriate modeling of the EEG forward 
problem is an essential prerequisite for the accurate solution of the 
EEG inverse problem (Güllmar et al., 2010; Akalin Acar and Makeig, 
2013). In other words, the physics of the problem is in the forward 
model, and errors caused by an inaccurate forward model cannot 
be corrected while solving the inverse problem.

Two advanced numerical methods called Finite Element Method 
(FEM) (de Munck et al., 2017; Vorwerk et al., 2017) and Boundary 
Element Method (BEM) (Stenroos and Sarvas, 2012; de Munck et al., 
2017; Rahmouni et al., 2017) are widely used to solve the EEG forward 
problem. In the FEM, the entire volume is discretized into small 
elements (tetrahedral elements), and the potentials of all nodes are 
calculated. The FEM can easily incorporate arbitrary geometries and 
heterogeneous and anisotropic electrical conductivity of the head 
tissues (Wolters et al., 2006; Zhang et al., 2014; Beltrachini, 2019a). 
Unfortunately, the difficulty thorough using FEM is that it causes 
singularity when using the point dipoles as current dipoles in the EEG 
forward model, which increases the error of forward solution. 
However, the current dipoles are widely accepted models for modeling 
neuronal activities (Zhang et  al., 2014; de Munck et  al., 2017; 
Beltrachini, 2019a).

Some methods have been proposed to improve the behavior of the 
FEM in singularity cases, e.g., the subtraction method (Awada et al., 
1997; Zhang et al., 2014; Beltrachini, 2019a; Darbas and Lohrengel, 
2019) and the direct methods (Yan et al., 1991; Buchner et al., 1997; 
Hallez et al., 2007; Zhang et al., 2014). The subtraction method has a 
reasonable mathematical basis for point current dipole models. 
However, it is computationally relatively expensive and sensitive to 
conductivity jumps if the source is near them (Awada et al., 1997; 
Wolters et al., 2007; Lew et al., 2009; Beltrachini, 2019a,b). On the 
other hand, The direct FEM approaches such as St. Venant (Buchner 
et  al., 1997) and partial integration (Yan et  al., 1991) are easy to 
implement and have a much lower computational complexity, so they 
are very fast (Lew et al., 2009; Vorwerk et al., 2019b). However, the 
potential distribution strongly depends on the shape of the element at 
the source location (Awada et al., 1997; Medani et al., 2015). Among 
the direct approaches, the St. Venant approach was shown to have the 
most accurate results for the sources of not very high eccentricity 
(Vorwerk et al., 2019b). On the other hand the partial integration 
approach was shown to have higher stability even at the sources of 
high eccentricity (Medani et al., 2015).

On the other hand, the BEM is used for calculating the potentials 
of surface elements on the interface between compartments generated 
by a current source in piece-wise homogenous volume. The BEM can 
construct realistic geometry of piece-wise homogeneous isotropic 
compartments and solve the EEG forward problem accurately (de 
Munck et al., 2017). Also, it has numerical stability and effectiveness 
compared with differential equation-based techniques (Rahmouni 
et al., 2017; Monin et al., 2020). Unfortunately, the BEM formulations 
can be  complicated to model complex geometry such as 
inhomogeneity, anisotropicity and surfaces with holes (Adde et al., 
2003; de Munck et al., 2017; Rahmouni et al., 2017). Also, the BEM 

produces dense matrices that cause high computational cost compared 
with FEM (Adde et al., 2003).

In order to benefit from the advantages of both BEM and FEM, 
some coupled boundary element (BE)–finite element (FE) methods 
have been proposed in electromagnetic and biomedical problems 
(Bradley et al., 2001; Sikora et al., 2004; Olivi et al., 2010; Srinivasan 
et al., 2010; Ghaderi Daneshmand and Jafari, 2013). In Bradley et al. 
(2001), a new high-order cubic Hermite coupled FE/BE method has 
been proposed only for an isotropic three-layer spherical and realistic 
head model, and generalized Laplace’s equation had been solved. Also, 
a hybrid BE–FE method has been applied to the 2D forward problem 
of electrical impedance tomography (EIT) (Sikora et al., 2004) and has 
been used for modeling Diffusion equations in 3D multi-modality 
optical imaging (Srinivasan et al., 2010). A 3D coupling formulation 
was presented in Olivi et  al. (2010) for solving the EEG forward 
problem iteratively. A domain decomposition (DD) framework was 
used to split the global system into several subsystems with smaller 
computational domains. Then, for each subsystem, one of the methods 
(BEM or FEM) was used. Several iterations were needed to solve the 
forward problem on the global system, and a relaxation parameter at 
each interface was compulsory to ensure convergence. The relaxation 
parameters were set manually, and an inappropriate value of these 
parameters would make the scheme diverge. Furthermore, three-layer 
concentric sphere models considering both the isotropic and 
anisotropic conductivity of the skull layer with dipoles of six locations 
and three orientations were modeled. No realistic head model was 
investigated. The coupling process was very time-consuming because 
the BEM and FEM ran iteratively until the relative residuals reached 
below a properly set value (6 × 10−5).

In Ghaderi Daneshmand and Jafari (2013), a hybrid BE–FE 
method, which directly combines the two BE and FE methods, has 
been proposed to solve the forward problem of EIT for a 3D 
cylindrical model of the human thorax. It should be noted that the 
EEG forward problem is completely different from the EIT forward 
problem regarding equations and boundary conditions. Thus, we must 
reformulate equations and extend them to be suitable for applying to 
the EEG forward problem. The advantage of using such a hybrid 
BE-FE method for solving the EEG forward problem is that the 
isotropic and homogeneous subregions containing the current dipoles 
can be  modeled by the BEM and the other subregions (the 
inhomogeneous or anisotropic subregions or those without current 
dipoles) can be modeled by the FEM. Also, this method solves the 
global system in one step without any iteration. Consequently, it is 
expected that the application of the hybrid BE–FE method increases 
the accuracy of the EEG forward solution and consequently helps to 
more accurate localization of brain sources.

In this paper, BEM, partial integration FEM (PI-FEM), and 
hybrid BE–FE method, are employed to solve the EEG forward 
problem. To validate the hybrid BE-FE method in solving the EEG 
forward problem of isotropic multi-compartment media, we will use 
an isotropic piece-wise homogeneous three-layer spherical head 
model (brain, skull and scalp), which has an analytical forward 
solution, and the results will be compared with those of BEM and 
PI-FEM. To validate the hybrid BE-FE method in solving the EEG 
forward problem of anisotropic multi-compartment media, we will 
use an anisotropic three-layer spherical head model (brain, skull and 
scalp) in which the conductivity of the skull will be  considered 
anisotropic and compare the results with those of PI-FEM. Since the 
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cerebrospinal fluid (CSF) layer highly affects the scalp potentials 
(Ramon et al., 2006; Vorwerk et al., 2014), we will also investigate the 
performance of the hybrid BE-FE method compared with PI-FEM 
when considering the fourth layer for CSF and the anisotropic 
conductivity of the skull.

Because the conductivity uncertainties of head layers (especially 
skull and brain) have a significant influence on the EEG forward 
solution (Vorwerk et al., 2019a), we will repeat the simulation of each 
spherical head model 50 times with different realizations of 
conductivity of layers followed by statistical analysis to demonstrate 
the effect of conductivity uncertainties on the EEG forward solution. 
Finally, the hybrid BE-FE method and PI-FEM will be compared on a 
four-layer realistic head model in which the conductivity of the skull 
will be anisotropic.

This paper is organized as follows: In Section 2, the mathematical 
model for the EEG forward problem and its numerical solutions using 
BEM, PI-FEM, and hybrid BE–FE method was formulated. In Section 
3, the performance criteria for validation were described. In Section 
4, the results of simulated spherical and realistic head models were 
reported. In Section 5, the results were discussed. Finally, in Section 
6, the paper was concluded, and some future works was proposed.

2 Mathematical model

2.1 EEG forward problem

The EEG forward problem entails calculating the electric potential 
𝜑 on the scalp surface 𝑆 (see Figure  1A). These potentials are 
generated by current dipoles within the head volume R. Therefore, 
since the relevant frequencies of the EEG spectrum are below 100 Hz, 
the quasi-static approximation of Maxwell’s equations is used to 
estimate the electric potentials over the scalp with homogeneous 
Neumann boundary conditions at each time sample (t) as follows 
(Hämäläinen et al., 1993):

 

( )( ) ( ) ( ). t .J t R for each time sample t

/ 0

inside

on S

∇ σ∇ϕ = ∇

σ ∂ϕ ∂ =
P

n  
(1)

where 𝜎: R3 → R3 denotes conductivity tensor of tissue conductivity 
in R and 𝑱𝑷 denotes the primary current density of the brain source. 
Also, n is the outward unit normal vector at the surface S (Hämäläinen 
et  al., 1993; de Munck et  al., 2017). In this manuscript, vector 
quantities are denoted by bold characters.

The primary current density 𝑱𝑷 is commonly modeled as two delta 
functions at the current source position 𝒓2 (𝑥2, 𝑦2, 𝑧2) and the current 
sink position 𝒓𝟏 (𝑥1, 𝑦1, 𝑧1) with the current source density I as follows 
(Hallez et al., 2007):

 ( ) ( ) ( )– –I δ δ∇ =  ⋅ − 2 1PJ x r r r r
 (2)

2.2 Boundary element method

In the Boundary element method (BEM), the reciprocal relation 
is applied to derive a boundary integral equation for the boundary 
value problem Equation (1) as given by Ang (2007).
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where 𝑔 (𝑥, 𝑦, 𝑧) = 1/𝜎∇. 𝑱P, λ(𝜉, 𝜂, 𝜁) is a characteristic function 
of the domain R, 𝜎 is the conductivity of domain that must be constant 

FIGURE 1

(A) EEG forward model. Electric potentials recorded by EEG electrodes are generated by dipoles within the head volume. A sample EEG electrode 
placed on the scalp is only shown. (B) The piece-wise homogenous three-layer spherical head model (brain, skull, and scalp). S1, S2, and S3 are the 
interfaces between brain-skull, skull-scalp, and scalp-air, respectively. Also, n1, n2 and n3 are the outward unit normal vectors of brain, skull and scalp 
layers. (C) The piece-wise homogenous four-layer spherical head model (brain, CSF, skull, and scalp). The conductivity of the skull can be isotropic or 
anisotropic. S1, S2, S3, and S4 are the interfaces between brain-CSF, CSF-skull, skull-scalp, and scalp-air, respectively. n1, n2, n3, and n4 are the 
outward unit normal vectors of brain, CSF, skull and scalp layers, respectively.
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and isotropic. The function 𝛷3D (𝑥, 𝑦, 𝑧; 𝜉, 𝜂, 𝜁) is the fundamental 
solution of the three dimensional Laplace’s equation and is given by 
Equation (4) Ang (2007).

 

( )
( ) ( ) ( )

3D 2 2 2

1; , ,
4

x,y,z
x y z

Φ ξ η ζ = −
π − ξ + − η + − ζ  

(4)

Consider the surface of a region to be discretized to N triangular 
elements. The potential ϕ (𝑥, 𝑦, 𝑧) and its normal derivative 𝜕/𝜕𝑛 [𝜑(𝑥, 
𝑦, 𝑧)] are approximated as constant values over each element as 
Equation (5):
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where �̅�(𝑘)and �̅�(𝑘) are the average values of 𝜑 and 𝜕ϕ/𝜕𝑛 on the 
centroid point of the kth surface element, 𝑆(𝑘).

Using these approximations, Equation (3) is simplified as
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Let (𝜉, 𝜂, 𝜁) in Equation (6) be given consecutively by the centroid 
point of S(1), S(2), … , S(N). D1

(k) and D2
(k) were introduced in Equation (7). 

Consequently, Equation (6) can be rewritten as Ang (2007).
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where (𝑥 ̅(𝑚), 𝑦 ̅(𝑚), 𝑧 ̅(𝑚)) is the centroid point of the element 𝑆(𝑚). 
On the typical element S(𝑘), either 𝜑 ̅(𝑘) or 𝑝 ̅(𝑘) is known. Thus 
Equation (8) constitutes a system of N linear algebraic equations 
including N unknowns for a one-layer homogenous region as 
given by Ang (2007).

 BE BE BEA X B=  (9)

where 𝑋𝐵𝐸 is the column vector (column matrix) including both 
�̅� and �̅� for each element, 𝐴𝐵𝐸 is the coefficient matrix and 𝐵𝐵𝐸 is the 

column vector containing values of boundary condition and the 
current dipoles information. Equation (9) describes the matrix form 
of the BEM for just one homogenous subregion.

In order to implement BEM for multi-layer piece-wise 
homogeneous media, we used the same approach as that of Ghaderi 
Daneshmand and Jafari (2013). Hereby, we describe that method for 
a three-layer spherical head model with nested regions of constant 
conductivity (see Figure 1B). First, all interfaces are discretized to N 
triangles, and then the first subregion (brain) is represented by 
Equation (1). Other subregions (skull and scalp) are represented by 
the Laplace equation. The first and second boundaries of each 
subregion are assumed to be  Dirichlet and Neumann conditions, 
respectively. Considering the air/scalp interface, the boundary 
condition of the second boundary of the scalp is of Neumann type. 
The system of linear algebraic equations for each subregion is obtained 
as Equation (10) (Ang, 2007):

 A X BBE BE BEj j j
j= =1 2 3, ,  (10)

where 𝑋𝐵𝐸j is the column vector including both �̅� and �̅� for each 
element at the jth subregion. Assembling the equations corresponding 
to all subregions, the same algebraic equation as Equation (9) is 
derived. Then, continuity conditions at the interface between two 
adjacent subregions should be applied to the resulting equation. The 
continuity condition for the electric potential and continuity condition 
for the normal component of the current density at the interface 
surface 𝑆𝐵𝐸−𝐵𝐸 are given as Equation (11)  (Ang, 2007):

 

BE BE

BE

i j

ji

i j

BEBE
BE

i j

ϕ = ϕ

∂ϕ∂ϕ
σ = σ

∂ ∂n n  

(11)

where (𝜑𝐵𝐸𝑖, 𝜎𝐵𝐸𝑖) and (𝜑𝐵𝐸𝑗, 𝜎𝐵𝐸𝑗) are the (electric potential, 
conductivity) of each element on the interface between two 
adjacent subregions Ω𝐵𝐸𝑖 and Ω𝐵𝐸𝑗, respectively. After the 
continuity condition for the electric potential and the normal 
component of the current density, the electric potential and its 
normal derivation of surface elements are computed by using 
Gaussian elimination method.

2.3 Finite element method using partial 
integration approach (PI FEM)

In the FEM, the functional F(𝜑) derived from the Rayleigh-Ritz 
method, a variational method, is minimized to solve the boundary 
value problems. Equation (1) can be written in Cartesian coordinates 
with homogeneous Neumann boundary conditions Equation (12)  
(Jin, 2014).
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Consequently, the functional is defined as Jin (2014):

(8)
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where 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 are, respectively, the conductivity along x, y 
and z axes that are constant and equal to each other in isotropic media 
but unequal to each other in anisotropic media.

The first step of the FEM is the discretization of the regions into a 
number of tetrahedral elements. The unknown potential 𝜑𝑒 at any 
point within each tetrahedral element can be  approximated as 
Equation (14) Jin (2014):
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where the interpolation functions 𝑁j
𝑒(𝑥, 𝑦, 𝑧) are given by 

Equation (15).
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where 𝑎j
𝑒, 𝑏j

𝑒, 𝑐j
𝑒 and 𝑑j

𝑒 are constants and are determined from 
the coordinates of the nodes of elements (Jin, 2014). By minimizing 
the functional 𝐹(𝜑) in Equation (13) for each element and 
assembling all elements in the whole volume, and using the partial 
integration (PI) approach to model the current dipoles (Yan et al., 
1991; Schimpf et al., 2002), the final set of equations can be written 
as follows (Jin, 2014).

 K BFE FE FEϕ =  (16)

where 𝐾𝐹𝐸 is the coefficient (stiffness) matrix, which is a function 
of nodal coordinates and conductivity of each element. 𝜑𝐹𝐸 is the 
column vector of the unknown electric potential of the nodes and 𝐵𝐹𝐸 
is the source column vector contributed by the dipoles that has 
non-zero entries for the set of nodes of the elements that contain the 
dipoles. After the Neumann boundary condition, given in Equation (1) 
is applied to Equation (16), the electric potential is computed by using 
quasi-minimal residual method. It is noteworthy that in FEM, another 
approach called Galerkin which is the weighted residuals method can 
be used (Jin, 2014; Munafò et al., 2023).

2.4 Hybrid BE–FE method

The hybrid BE–FE formulation consists of both FE and 
BE formulations. It is implemented by combining Equation (9) with 
Equation (16) and applying boundary conditions in each interface. First, 
the BEM is used to represent the Poisson Equation (1) at the brain 
subregion (BE region) considering the Dirichlet boundary condition. 
Then FEM is used to represent the Laplace equation  
(∇. (𝜎∇𝜑) = 0) at other subregions (FE regions) considering Neumann 
condition at skull/brain and air/scalp interfaces for the three-layer 

spherical head model, and CSF/brain and air/scalp interfaces for the four-
layer spherical head model to derive Equation (16). The values of 
boundary conditions on each interface are unknown. Assembling 
Equations (9) and (16) gives.

 

0
0
FE BE FE

BE BE BE

K B
A X B

ϕ     
=     

       
(17)

To solve Equation (17), the value of boundary condition at the 
BE-FE interface must be applied but it is unknown. To apply boundary 
condition on a BE-FE interface S𝐵𝐸−𝐹𝐸, the potential on S𝐵𝐸−𝐹𝐸 
computed from both BE region and FE region must be the same. Since 
the potential on a surface BE element is constant, but in a FE element 
is linear, in order to equalize those potentials on the BE-FE interface, 
one may take the average of three FE nodal potentials and obtain the 
following approximation for the BE  surface element potential as 
Ghaderi Daneshmand and Jafari (2013).

 
1 2 3

3
FE FE FE

BE
ϕ + ϕ + ϕ

ϕ =
 

(18)

where 𝜑𝐹𝐸1, 𝜑𝐹𝐸2, and 𝜑𝐹𝐸3 are FE nodal potentials at each element 
in S𝐵𝐸−𝐹𝐸. The continuity condition for the normal component of the 
current density at S𝐵𝐸−𝐹𝐸 yields Equation (19) (Ghaderi Daneshmand 
and Jafari, 2013).

 

FE BE
FE BE

FE BE

∂ϕ ∂ϕ
σ = −σ

∂ ∂n n  
(19)

Applying Equations (18, 19) to (17), the matrices 𝐾𝐹𝐸, 𝐴𝐵𝐸, 𝐵𝐹𝐸, 
and 𝐵𝐵𝐸, are modified as �̃�𝐹𝐸, �̃�𝐵𝐸, �̃�𝐹𝐸, and �̃�𝐵𝐸, respectively; and the 
resulting equation is obtained as.

 

FEFE FE FE

BEBE BE BE

K M B
XM A B
ϕ    

=    
    

 

 

 
(20)

where 𝑀𝐵𝐸 and 𝑀𝐹𝐸 are sparse matrices constructed as a result of 
applying Equations (18, 19), respectively. Using Gaussian elimination 
method, Equation (20) is solved for 𝜑𝐹𝐸 and 𝑋𝐵𝐸.

To use the hybrid BE-FE method, two important points should 
be considered:

First, when an anisotropic piece-wise homogenous multi-layer 
medium is modeled, the layer(s) containing dipoles must be modeled 
with the BEM, and the layers with anisotropic conductivity must 
be modeled with the FEM. Other layers can be modeled with each of 
FEM or BEM depending on our goals, such as less time and memory 
consumption, and computational complexity. So in this paper, we used 
the FEM for other layers. Also, we will show the performance of the 
hybrid BE-FE method when only one layer, including current dipoles is 
modeled with the BEM, and we compare this performance with the 
performance of FEM.

Second, we used linear elements in the FEM. Thus, to couple BEM 
and FEM elements, we  need constant triangular elements or 
continuous linear triangular elements in BE  domain to use 
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Equations (18, 19). We prefer to use constant elements in the BEM 
because solving forward problem with constant elements is more 
accurate than continuous linear elements (Ang, 2007).

It should be noted though the discontinuous linear element is 
more accurate than constant and continuous linear elements, it cannot 
be used to couple with the FEM in our method and because in our 
method, we need the constant potential in the surface BE elements or 
the vertex’s potentials of BE elements to use in Equation (18).

2.5 Tetrahedral mesh generation

To implement the FEM and BEM, the entire region is first 
discretized into tetrahedral volume elements for the FEM, and then 
the required surface triangular meshes in the BEM are prepared from 
the data of tetrahedral elements of the entire region. For mesh 
extraction, we use ISO2MESH (Fang and Boas, 2009) that provides us 
with accurate mesh volume and surface elements.

In the hybrid BE–FE method, the BE regions and the FE regions 
are discretized using a triangular surface mesh and a tetrahedral 
volume mesh, respectively. In order that the BE and FE regions in the 
hybrid method have the same boundary surface elements, the entire 
volume domain is first discretized by irregular tetrahedral volume 
elements, and then irregular triangular surface elements for the 
BE regions are extracted from the data of the tetrahedral elements. It 
is noteworthy that the FEM uses the entire tetrahedral 
volume elements.

In the realistic head model, we can leverage on FieldTrip software 
to obtain an automatic segmentation of the brain, CSF, skull, and scalp 
(Oostenveld et al., 2011). By using FieldTrip, the surface boundaries 
of these four structures are extracted. Then, based on the boundaries, 
a finite element model can be constructed by ISO2MESH (Fang and 
Boas, 2009).

3 Validation method

3.1 Validation platform

To validate the precision of the proposed hybrid BE-FE method, 
it was essential to employ a model with a known analytical solution 
within the domain of bioelectromagnetism, serving as a reliable 
reference or “ground truth.”

To fulfill this requirement, we opted for spherical models due to 
their similarity to real-world scenarios and the availability of analytical 
solutions. So, the proposed hybrid BE-FE method is validated and 
compared with the FEM and BEM, with simulating piece-wise 
homogeneous three- and four-layer spherical head models.

We will first simulate an isotropic, piece-wise homogeneous three-
layer spherical head model with radial and tangential dipoles of six 
different eccentricities. Then, we will repeat the same simulation but 
with an anisotropic layer (skull) to show the performance of FEM and 
the proposed hybrid BE-FE method when the skull is modeled as a 
layer of homogenous and anisotropic profile. Afterward, we will add 
a fourth layer for CSF to the previous anisotropic model. This layer has 
an important role in distributing the currents in the head model and 
scalp potentials (Ramon et  al., 2006; Vorwerk et  al., 2014). Next, 
we will repeat the same procedure to assess the performance of the 

hybrid BE-FE method on this anisotropic and piece-wise 
homogeneous four-layer medium.

To extend the applicability of our findings to authentic scenarios, 
we will conduct additional investigations using a real head model. 
Consequently, we will compare the proposed hybrid BE-FE method 
with the FEM on an anisotropic piece-wise homogeneous four-layer 
realistic head model. Based on this comprehensive approach, 
encompassing both analytical and real-world evaluations, will 
contribute to a robust validation of the efficacy and reliability of our 
proposed numerical method.

To assess the precision of our proposed numerical method in 
addressing the forward problem and its associated influencing factors, 
it is essential to hold all influencing factors constant while varying 
only one selection variable. These factors are the precision of head 
model segmentation, mesh quality, conductivity variations in different 
head layers, and the positioning and orientation of dipoles 
(Miinalainen et al., 2019; Vorwerk et al., 2019a; Nielsen et al., 2022). 
Therefore, we  will evaluate hybrid BE-FE method according to 
conductivity uncertainties of head layers for each of the above 
spherical head models and dipoles’ positions and orientations. We will 
simulate 50 realizations using randomly chosen conductivity values 
from realistic intervals. This allows us to gain a statistical overview of 
the precision of solving EEG forward problem with regard to the 
electromagnetic properties of head layers.

In each of the above models, unit radial (along z-axis) and 
tangential (along x-axis) dipoles of six different eccentricities will 
be considered. For each dipole, the source eccentricity is defined as 
the percentage of the Euclidian distance between the dipole location 
and the sphere center divided by the radius of the innermost shell 
(Wagner et al., 2016). In our implementations, the most eccentric 
dipole has an eccentricity of 98%.

In this paper, for spherical head models, we use the analytical 
solution given in Zhi (1995) that calculates the electric potential on 
the outmost surface (scalp) of isotropic/anisotropic multi-layer 
spherical head model generated by a dipole inside the innermost layer 
(brain). For the realistic head model, we use a refined model of the 
FEM to obtain a reference FE solution because an analytical solution 
is unavailable for real models.

It is noteworthy that in all of our simulations, in order to have fair 
comparisons between the accuracy of the FEM, BEM and hybrid 
BE-FE method, we choose the mesh resolution that their computation 
times are nearly the same.

3.2 Error criteria

The error between the numerical solution and analytical solution 
can be  obtained by Relative Difference Measure (RDM) and the 
Magnitude ratio (MAG) (Mejis et al., 1989; de Munck et al., 2017). 
These measures are, respectively, defined as Equations (21) and (22):

 

Ana Num

Ana Num
RDM ϕ ϕ

= −
ϕ ϕ

 
(21)

 

Num

Ana
MAG ϕ

=
ϕ  

(22)
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where 𝜑𝐴𝑛𝑎 and 𝜑𝑁𝑢𝑚 are analytical and numerical solutions, 
respectively and | | denotes the square root of Euclidean distance. In 
this paper, 𝜑𝐴𝑛𝑎 is calculated by using the analytical solution given in 
Zhi (1995) for spherical head models and the reference FE solution 
obtained from the refined model of the FEM for the realistic 
head model.

4 Simulation results

In this paper, the performance of the hybrid BE-FE method to 
solve the EEG forward problem will be assessed using both spherical 
and realistic head models. In the spherical models, the solution will 
be evaluated on all outer boundary (scalp) nodes instead of the small 
number of them so that the results are nearly independent of the 
choice of electrode positions (Vorwerk et al., 2017). On the other 
hand, for the realistic head model, the results will be assessed on 90 
positions of the scalp surface. It is noteworthy that other influential 
factors on solving forward problem were considered completely 
the same.

4.1 Example I: isotropic piece-wise 
homogenous three-layer spherical head 
model

To compare the performance of hybrid BE-FE method with the 
BEM and PI-FEM, a numerical validation will be performed using 
a three-compartment (brain, skull and scalp) spherical head model 
as shown in Figure  1B with parameters indicated in Table  1 
(Malmivuo and Plonsey, 2002; Vorwerk et al., 2019a). The optimized 
anisotropy ratio in Table  1 is defined as the ratio of radial 
conductivity (𝜎𝑟) to tangential conductivity (𝜎𝑡) of the skull 
(Dannhauer et al., 2011). In this simulation, the PI-FEM mesh has 
6,808 nodes and 34,428 tetrahedral volume elements, the BEM mesh 
has 3,092 triangular surface elements, and the hybrid BE-FE mesh 
has 2,578 nodes, 10,688 tetrahedral volume elements and 1894 
triangular surface elements.

Figures 2, 3 show boxplots of RDM and MAG of PI-FEM, BEM, 
and hybrid BE-FE method for isotropic and piece-wise homogeneous 
three-layer spherical head models versus different eccentricities of the 
dipole for radial and tangential dipoles, respectively. For each model, 
50 realizations were simulated by randomly chosen conductivities 
from intervals shown in Table  1. Also, the mean and standard 
deviation of RDM and MAG and p-values of Wilcoxon signed-rank 
tests are reported in Table 2. It should be noted that some datasets did 
not pass the Gaussian test (p-value < 0.05). For this reason, we used 

Wilcoxon signed-rank test to calculate p-values. The significant 
differences are shown as gray in Table 2.

Comparing the PI-FEM, BEM, and hybrid BE-FE method with 
regard to the RDM for isotropic piece-wise homogeneous three-layer 
spherical head model (Figure  1A) shows that the hybrid BE-FE 
method significantly outperforms the PI-FEM for dipoles of both 
radial (Figure 2A) and tangential (Figure 3A) directions and all six 
eccentricities. In the radial direction, the hybrid BE–FE has a 
maximum RDM of 0.0639 ± 0.0189 at 98% source eccentricity, and the 
PI-FEM has its maximum RDM of 0.0955 ± 0.0405 at the same source 
eccentricity (Figure 2A). Also, the PI-FEM leads to a larger RDM 
variance than the hybrid BE-FE method. In the tangential direction, 
the maximum RDM obtained from the hybrid BE-FE method is 
0.049 ± 0.012 at 98% source eccentricity, while the FEM is higher RDM 
(0.0902 ± 0.0508) at these eccentricities. On the other hand, the 
maximum RDM obtained from the PI-FEM is 0.1004 ± 0.0295 at 90% 
source eccentricity (Figure 2A).

For dipoles of radial directions, the hybrid BE-FE method 
significantly outperforms the BEM. The hybrid BE– FE method has 
a maximum RDM of 0.0639 ± 0.0189 at 98% source eccentricity and 
the BEM has its maximum RDM of 0.2831 ± 0.0725 at the same 
source eccentricity (Figure  2A). In the tangential direction, the 
BEM outperforms both the hybrid BE-FE method and PI-FEM at 
50, 60 and 70% source eccentricities. However, its error increased 
and more than other approaches at 80, 90 and 98% source 
eccentricities. The RDM obtained from the hybrid BE-FE method 
is 0.049 ± 0.012 at 98% source eccentricity, while the BEM has a 
maximum RDM 0.1388 ± 0.0669 at 80% source eccentricities 
(Figure 3A).

With regard to the MAG (Figures  2B, 3B), the hybrid BE-FE 
method outperforms the PI-FEM and BEM. In the radial direction, 
the hybrid BE–FE has a maximum MAG of 1.0709 ± 0.0298 at 98% 
source eccentricity. While the PI-FEM and BEM have maximum 
MAG error of 1.1856 ± 0.2946 and 0.8178 ± 0.0273 at 90 and 98% 
source eccentricity, respectively (Figure  3B). In the tangential 
direction, the worst result of MAG from the hybrid BE-FE method is 
1.0203 ± 0.0006 at 80% source eccentricity while the PI-FEM is higher 
MAG (1.1979 ± 0.2284) at these eccentricities. On the other hand, the 
maximum MAG obtained from the BEM is 1.0423 ± 0.019 at 90% 
source eccentricity (Figure 3B). Also, the PI-FEM leads to the largest 
MAG variance with p-value < 0.05 at all source eccentricities, as 
shown in Table 2.

4.2 Example II: anisotropic piece-wise 
homogenous three-layer spherical head 
model

For modeling anisotropicity in the EEG forward problem, the 
hybrid BE–FE method offers an alternative solution. So to assess the 
performance of the hybrid BE-FE method for the anisotropic three-
layer spherical head model, we compared its performance with that of 
PI-FEM. The radius and conductivity of each layer were the same as 
those in Table 1, but the conductivity of the skull was anisotropic with 
an optimized anisotropy ratio 0.0093: 0.015 (Dannhauer et al., 2011). 
It is noteworthy that in this model, the brain (containing dipoles) is 
modeled by using the BEM, while other layers are modeled by using 
the FEM.

TABLE 1 Parameters of the concentric three-layer spherical head model 
(Malmivuo and Plonsey, 2002; Vorwerk et al., 2019a).

Tissue Brain Skull Scalp

Outer shell radius (cm) 8.0 8.6 9.2

Conductivity interval (S/m) 0.2200–0.6700 0.0016–0.0330 0.2800–0.8700

Optimized anisotropy ratio 

(𝝈𝒓/𝝈𝒕)

- 0.0093: 0.015 -

The conductivity values, radius and optimized anisotropy ratio are based on Vorwerk et al. 
(2019a), Malmivuo and Plonsey (2002), and Dannhauer et al. (2011), respectively.
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Figures 4, 5 show the resulting RDM and MAG for various dipole 
eccentricities when dipoles are radial and tangential, respectively. 
Also, the mean and standard deviation of RDM and MAG, and 
p-values of the Wilcoxon signed-rank test are reported in Table 3. It 
should be noted that some datasets did not pass the Gaussian test (p-
value < 0.05). For this reason, we used Wilcoxon signed-rank test to 
calculate p-value. The significant differences are shown as gray in 
Table  3. The numbers of nodes, tetrahedral volume elements and 
triangular surface elements of volume mesh are the same as the 
previous simulation in Section 4.1.

Comparing the hybrid BE-FE method and PI-FEM with regard to 
the RDM (Figures  4A, 5A) shows the hybrid BE-FE method 
outperforms the PI-FEM in both directions, especially in the radial 
direction (p-value < 0.05) (Figure  4A). For radial dipoles, the 
maximum RDM obtained from the hybrid BE-FE method is 
0.08326 ± 0.0178 at 98% source eccentricity, while the PI-FEM is 
higher RDM (0.0917 ± 0.0501) at this eccentricity. While the PI-FEM 
has a maximum RDM error of 0.126 ± 0.0548 at 80% source 
eccentricity (Figure 4A). For tangential dipoles, the PI-FEM has a 
maximum RDM of 0.1762 ± 0.0594 at 98% source eccentricity while 
the hybrid BE-FE method leads to a maximum RDM of 0.1158 ± 0.0474 

at the same source eccentricity. The variance of RDM obtained from 
the PI-FEM is much greater than that of the hybrid BE-FE method, 
with p-value < 0.05 for all source eccentricities.

The results of MAG (Figure 4B, 5B) clearly show that the hybrid 
BE-FE method outperforms the PI-FEM for dipoles of both directions. 
The variance of MAG obtained from the PI-FEM is much greater than 
that of the hybrid BE-FE method with p-value < 0.05 for all 
source eccentricities.

4.3 Example III: anisotropic piece-wise 
homogenous four-layer spherical model

We simulate the anisotropic piece-wise homogenous four-layer 
spherical head model to assess the performance of the hybrid BE-FE 
method compared with the PI-FEM when a fourth layer (CSF) 
was considered.

Figure  1C indicates the piece-wise homogeneous four-layer 
spherical head model. The radius and conductivity interval of these 
four layers are indicated in Table 4. In this simulation, the PI-FEM 
mesh has 14,350 nodes and 81,942 tetrahedral volume elements, and 

FIGURE 2

Example I: isotropic piece-wise homogenous three-layer spherical head model for radial dipole orientation (z-axis), (A) RDM and (B) MAG boxplots of 
PI-FEM, BEM, and hybrid BE-FE method at six different source eccentricities.
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the hybrid BE-FE mesh has 7,248 nodes, 33,855 tetrahedral volume 
elements and 3,550 triangular surface elements.

Figures 6, 7 show boxplots of RDM and MAG of the PI-FEM and 
the hybrid BE-FE method for anisotropic and piece-wise 
homogeneous four-layer spherical head model (Figure 1C) versus 
different eccentricities of the dipole for radial and tangential dipoles, 
respectively. For each model, 50 realizations were simulated by 
randomly chosen conductivities from intervals shown in Table 4. Also, 
the mean and standard deviation of RDM and MAG and p-values of 
Wilcoxon signed-rank tests are reported in Table 5. It should be noted 
that some datasets did not the pass Gaussian test (p-value < 0.05). For 
this reason, we  used the Wilcoxon signed-rank test to calculate 
p-value. The significant results in this table are shown as gray.

As shown in Figures 6A, 7A, with regard to the RDM, the hybrid 
BE-FE method is more accurate than PI-FEM for both dipole 
directions. In fact, the mean RDM obtained from the hybrid BE-FE 
method is significantly smaller (p-value < 0.05) than that of PI-FEM 
for both dipole directions and at most of the eccentricities. The 
maximum RDM obtained from the PI-FEM is 0.1641 ± 0.027 at 50% 
source eccentricity at the radial direction, whereas for the hybrid 

BE-FE method, this value at this source eccentricity is 0.043 ± 0.0115. 
On the other hand, at the tangential direction (Figure 7A), the mean 
RDM obtained from the PI-FEM has a maximum of 0.1092 ± 0.0252 
at 60% source eccentricity, while the hybrid BE-FE method has a 
maximum RDM of 0.0848 ± 0.0068 at 90% source eccentricity. Also, 
with regard to the MAG (Figures 6B, 7B), the influence of considering 
the CSF layer to the spherical head model is apparent. As shown in 
Figures 6B, 7B, the mean MAG obtained from the PI-FEM is highly 
decreased by considering the fourth layer. On the other hand, the 
MAG error obtained from the hybrid BE-FE method is significantly 
much better than PI-FEM (p-value < 0.05) in both directions. For 
radial dipoles, the best results of MAG for the PI-FEM and the hybrid 
BE- FE method are 0.7623 ± 0.162 at 98% source eccentricity and 
1.0133 ± 0.0688 at the same source eccentricity. On the other hand, for 
tangential dipoles, the mean MAG obtained from the hybrid BE-FE 
method is significantly better (p-value < 0.05) than that of PI-FEM at 
all eccentricities. Also, the variance of MAG obtained from the PI- 
FEM is much bigger than that of the hybrid BE-FE method, which 
implies the hybrid BE-FE method to be more precise than PI-FEM for 
tangential dipoles.

FIGURE 3

Example I: isotropic piece-wise homogenous three-layer spherical head model for tangential dipole orientations (x-axis), (A) RDM and (B) MAG 
boxplots of PI-FEM, BEM, and hybrid BE-FE method at six different source eccentricities.
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TABLE 2 Example I: isotropic piece-wise homogeneous three-layer spherical head model, mean  ±  std. and p-value of Wilcoxon signed-rank test of 50 realizations of RDM and MAG obtained from PI-FEM, BEM and 
hybrid BE-FE method for dipoles of six different source eccentricities and both radial and tangential directions.

Radial direction (z-axis) Tangential direction (x-axis)

Source 
eccentricity

50% 60% 70% 80% 90% 98% 50% 60% 70% 80% 90% 98%

RDM PI- FEM 0.05981 ± 

0.0253

0.05644 ± 

0.0334

0.09152 ± 

0.0313

0.101 ± 0.0492 0.0945 ± 0.039 0.0955 ± 

0.0405

0.0637 ± 

0.0221

0.0763 ± 

0.0235

0.0699 ± 

0.0338

0.097 ± 0.0284 0.1004 ± 

0.0295

0.0902 ± 

0.0508

BEM 0.0128 ± 

0.0011

0.0194 ± 

0.0035

0.0379 ± 

0.0242

0.1154 ± 

0.0701

0.2119 ± 

0.0907

0.2831 ± 

0.0725

0.0197 ± 

0.0073

0.0218 ± 

0.0116

0.0301 ± 

0.0169

0.1388 ± 

0.0669

0.1277 ± 

0.0762

0.1269 ± 

0.0355

Hybrid BE-FE 0.0100 ± 

0.0035

0.0114 ± 

0.0034

0.0107 ± 

0.0044

0.0157 ± 

0.0035

0.0301 ± 

0.0069

0.0639 ± 

0.0189

0.0463 ± 

0.0206

0.0465 ± 

0.0208

0.0419 ± 

0.0185

0.0311 ± 

0.0115

0.0245 ± 

0.0054

0.049 ± 0.012

P-value1 7.5569 × 10−10 7.5569 × 10−10 1.3238 × 10−7 0.4544 6.0236 × 10−9 9.6344 × 10−10 9.6344 × 10−10 1.3025 × 10−9 7.5248 × 10−7 0.00013 0.1167 0.0015

P-value2 7.5569 × 10−10 7.5569 × 10−10 7.5569 × 10−10 7.5569 × 10−10 7.5569 × 10−10 1.7253 × 10−6 0.0021 1.0972 × 10−5 0.00017 8.0311 × 10−10 7.5569 × 10−10 2.9793 × 10−5

P-value3 8.0203 × 10−6 1.6552 × 10−9 7.5569 × 10−10 7.5569 × 10−10 7.5569 × 10−10 1.0872 × 10−9 6.3812 × 10−9 1.0235 × 10−9 7.5569 × 10−10 7.5569 × 10−10 7.5569 × 10−10 7.5569 × 10−10

MAG PI-FEM 1.1852 ± 

0.2257

1.1856 ± 

0.2515

1.1817 ± 

0.2733

1.158 ± 0.2875 1.1856 ± 

0.2946

1.1481 ± 

0.1944

1.1609 ± 

0.2631

1.1567 ± 

0.2527

1.1431 ± 

0.2377

1.1979 ± 

0.2284

1.1845 ± 

0.2038

1.0774 ± 

0.1586

BEM 1.0268 ± 0.006 1.02875 ± 

0.0212

0.9795 ± 

0.0212

0.9431 ± 

0.0364

0.861 ± 0.0305 0.8178 ± 

0.0273

1.0201 ± 

0.0077

1.0222 ± 

0.0085

1.0271 ± 

0.0087

1.035 ± 0.0171 1.0423 ± 0.019 1.0393 ± 

0.0077

Hybrid BE-FE 1.0069 ± 

0.0044

1.0082 ± 

0.0046

1.0294 ± 

0.0138

1.025 ± 0.0142 1.0198 ± 0.003 1.0709 ± 

0.0298

1.0159 ± 

0.0019

1.0172 ± 

0.0018

1.0187 ± 

0.0013

1.0203 ± 

0.0006

1.0166 ± 

0.0007

0.9836 ± 

0.0034

P-value1 0.0017 0.0015 8.3898 × 10−6 2.8864 × 10−7 1.0872 × 10−9 8.0311 × 10−10 0.0016 0.002 0.0053 4.348 × 10−5 5.5719 × 10−5 0.166

P-value2 0.0004 0.0003 0.0014 0.0023 2.0268 × 10−5 0.0267 0.0014 0.0014 0.0023 7.3274 × 10−6 2.9108 × 10−6 0.0005

P-value3 7.5569 × 10−10 7.5569 × 10−10 7.5569 × 10−10 7.5569 × 10−10 7.5569 × 10−10 7.5569 × 10−10 8.0203 × 10−6 3.3651 × 10−7 9.0681 × 10−10 8.0311 × 10−10 7.5569 × 10−10 7.5569 × 10−10

p-value1 corresponds to comparing the results of PI-FEM, and BEM, p-value2 corresponds to comparing the results of PI-FEM and hybrid BE-FE method, and p-value3 corresponds to comparing the results of BEM and hybrid BE-FE method. The significant results are 
shown as gray.
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4.4 Example IV: anisotropic piece-wise 
homogenous four-layer realistic head 
model

Although spherical head models (and associated analytical 
solutions) are fundamental for reliable assessment of any proposed 
forward solution strategy, it is of fundamental importance to validate 
the applicability and performance of the technique proposed here on 
realistic MRI-obtained head models (Figure 8). These models allow 
for an individual-based head model to be used in solving the forward 
problem and result in more precise source localization.

The single-subject anatomical MRI used in this study, has been 
available in Fieldtrip. It is scaled based on one of the templates from 
the Montreal Neurological Institute (MNI) (Holmes et  al., 1998; 
Oostenveld et al., 2011). The values of conductivity of brain, CSF and 
scalp layers are considered 0.33, 1.79 and 0.43 S/m, respectively 
(Vorwerk et al., 2019a). Although the three-layer heterogeneous skull 
model is more accurate than a single-layer homogenous and 
anisotropic the skull, we used the simplified model of the skull as a 
single-layer homogenous and anisotropic profile obtained by 
automatic segmentation of FieldTrip software (Oostenveld et  al., 
2011). However, our method is able to model a complex profile of the 
skull when it is available. We  use optimized anisotropy ratio 
0093/0.015 S/m for skull in this study (Dannhauer et al., 2011).

In the realistic head model, the PI-FEM mesh has 221,779 
nodes and 1,380,065 tetrahedral volume elements, and the hybrid 
BE-FE mesh has 108,623 nodes, 655,756 tetrahedral volume 
elements and 7,004 triangular surface elements. Since the analytical 
solution is unavailable in this case, the PI-FEM served as the 
reference method.

The forward problem was solved by using the PI-FEM on a refined 
model having 10,850,052 tetrahedrons and 1,717,389 nodes.

The results of this benchmarking can be seen in Figures 9, 10 for 
radial and tangential dipoles, respectively, where a dipolar source 
was moved from 50 to 98% of the source eccentricity from the center 
to the surface of the brain, as shown in Figure 8. The RDM and MAG 
obtained from the hybrid BE-FE method, and PI-FEM presented in 
this section have been computed with respect to the 
reference solution.

The hybrid BE-FE method outperforms the PI-FEM with regard 
to the RDM in both directions (Figures 9A, 10A). The highest RDM 
values obtained from the hybrid BE-FE method and PI-FEM, for 
radial dipoles, are 0.0177 at 50% source eccentricity and 0.02686 at 
98% source eccentricity, respectively, and for tangential dipoles, are 
0.0187 and 0.0245 respectively, both at 98% source eccentricity.

The MAG analysis (Figures 9B, 10B) showed the same results as 
the RDM except in 98%. The worst MAG values of the hybrid BE-FE 
method and PI-FEM are, respectively, 0.7771 at 98% source 

FIGURE 4

Example II: anisotropic piece-wise homogenous three-layer spherical head model for radial dipole orientation (z-axis), (A) RDM and (B) MAG boxplots 
of PI-FEM and hybrid BE-FE methods at six different source eccentricities.
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eccentricity and 0.8598 at 60% source eccentricity for radial dipoles, 
and 1.3734 and 0.8284 at 98% source eccentricity for tangential 
dipoles. These results may only be seen as hints since no exact solution 
exists that can be taken as reference.

5 Discussion

Although each BEM and FEM have several advantages, they 
have drawbacks in solving EEG forward problem. BEM cannot 

FIGURE 5

Example II: anisotropic piece-wise homogenous three-layer spherical head model for tangential dipole orientation (x-axis) (A) RDM and (B) MAG 
boxplots of PI-FEM and hybrid BE-FE methods at six different source eccentricities.

TABLE 3 Example II: anisotropic piece-wise homogeneous three-layer spherical head model, mean  ±  std. and P-value of Wilcoxon signed-rank test of 
50 realizations of RDM and MAG obtained from PI-FEM and hybrid BE-FE method for dipoles of six different source eccentricities and both radial and 
tangential directions.

Radial direction (z-axis) Tangential direction (x-axis)

Source 
eccentricity

50% 60% 70% 80% 90% 98% 50% 60% 70% 80% 90% 98%

RDM PI- FEM 0.0562 ± 

0.0206

0.0843 ± 

0.0422

0.1059 ± 

0.0395

0.126 ± 

0.0548

0.096 ± 

0.0502

0.0917 ± 

0.0501

0.105 ± 

0.0265

0.1312 ± 

0.0314

0.1411 ± 

0.0426

0.1266 ± 

0.0306

0.1399 ± 

0.0376

0.1762 ± 

0.0594

Hybrid BE-FE 0.0356 ± 

0.0084

0.0323 ± 

0.0061

0.0344 ± 

0.0087

0.0322 ± 

0.0075

0.0437 ± 

0.014

0.08326 

± 0.0178

0.0785 ± 

0.0126

0.0901 ± 

0.012

0.098 ± 

0.0098

0.0979 ± 

0.006

0.094 ± 

0.0051

0.1158 ± 

0.0474

P-value 1.1913 × 

10−7

8.0311 × 

10−10

9.0681 × 

10−10

7.5569 × 

10−10

1.3025 × 

10−9

0.6887 0.237 1.0717 × 

10−7

2.0113 × 

10−7

2.742 × 

10−7

7.5824 × 

10−9

1.0872 × 

10−9

MAG PI-FEM 1.1072 ± 

0.273

1.1035 ± 

0.2646

1.105 ± 

0.2517

1.0996 ± 

0.2326

1.2453 ± 

0.2309

1.2934 ± 

0.2143

1.1564 ± 

0.2656

1.1317 ± 

0.2517

1.0951 ± 

0.233

1.0993 ± 

0.2143

1.0745 ± 

0.188

0.9709 ± 

0.1446

Hybrid BE-FE 0.9474 ± 

0.016

0.9372 ± 

0.0255

0.9632 ± 

0.0289

0.9931 ± 

0.0392

1.0801 ± 

0.0442

1.0925 ± 

0.0722

1.0072 ± 

0.0168

0.9901 ± 

0.0159

0.9683 ± 

0.0143

0.9454 ± 

0.0115

0.9333 ± 

0.0087

1.0925 ± 

0.0722

P-value 0.0007 0.0002 0.0014 0.0104 4.348 × 

10−5

2.4737 × 

10−7

0.0006 0.0026 0.0169 0.0088 0.0219 0.1333

The significant results are shown as gray.
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model complex geometry such as inhomogeneity and anisotropicity 
and surfaces with holes head model (de Munck et  al., 2017; 
Rahmouni et al., 2017). On the other hand, using the FEM causes 
singularity in right-hand side of EEG forward Equation (1) (Zhang 
et al., 2014; de Munck et al., 2017). The coupling method proposed 
in Olivi et al. (2010) for iteratively solving the EEG forward problem 
has two major drawbacks. First, it is very time-consuming to 
achieve the relative residuals below a properly set value. Second, to 
solve the global system iteratively, relaxation parameters need to 
be  set at the interfaces to ensure convergence. These relaxation 

parameters are set manually, and inappropriate values of these 
parameters would make the scheme diverge. The values of relaxation 
parameters are not accurate. For using the advantages of both 
methods, the hybrid BE–FE method offers an alternative solution. 
The idea behind the hybrid BE-FE method has already been 
proposed for solving EIT forward problem (Ghaderi Daneshmand 
and Jafari, 2013). In this study, we  proposed reformulating the 
hybrid BE– FE method for solving the EEG forward problem. The 
hybrid BE-FE method provides an elegant solution to the practical 
problem of EEG forward problem of how to model heterogeneity 
and anisotropicity in tissues whose boundaries are known, without 
complex volume meshing of the whole 3D domain. It is noteworthy 
that in this method, the volume meshing is not eliminated, but it is 
limited to regions without dipoles.

Using the PI-FEM, BEM, and hybrid BE-FE method, we compared 
simulated results for spherical and realistic head models at six different 
dipole eccentricities and for radial and tangential dipoles. In this 
study, a layer homogenous isotropic/anisotropic skull model with 
optimized value was used.

Regarding RDM and MAG, the results of the isotropic 
inhomogeneous three-layer spherical head model showed that the 

TABLE 4 Example III: parameters of the concentric four-layer spherical 
head model (Wagner et al., 2016; Vorwerk et al., 2019a).

Tissue Brain CSF Skull Scalp

Outer shell radius (cm) 7.6 8.0 8.6 9.2

Conductivity interval 

(S/m)

0.2200–

0.6700

1.7696–

1.8104

0.0016–

0.0330

0.2800–

0.8700

Optimized anisotropy ratio - - 0.0093: 0.015 -

The conductivity values, radius and optimized anisotropy ratio are based on Vorwerk et al. 
(2019a), Wagner et al. (2016), and Dannhauer et al. (2011), respectively.

FIGURE 6

Example III: anisotropic piece-wise homogenous four-layer spherical head model for radial dipole orientation (z-axis) (A) RDM and (B) MAG boxplots of 
PI-FEM and hybrid BE-FE methods at six different source eccentricities.
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TABLE 5 Example III: anisotropic piece-wise homogeneous four-layer spherical head model, mean  ±  std. and p-value of Wilcoxon signed-rank test of 
50 realizations of RDM and MAG obtained from PI-FE and hybrid BE-FE methods for dipoles of six different source eccentricities and both radial and 
tangential directions.

Radial direction (z-axis) Tangential direction (x-axis)

Source 
eccentricity

50% 60% 70% 80% 90% 98% 50% 60% 70% 80% 90% 98%

RDM PI- FEM 0.1641 ± 

0.027

0.0992 ± 

0.0281

0.0773 ± 

0.0243

0.0782 ± 

0.0253

0.1041 ± 

0.0244

0.1072 ± 

0.0215

0.0801 ± 

0.0147

0.1092 ± 

0.0252

0.0901 ± 

0.0225

0.0941 ± 

0.0218

0.1031 ± 

0.025

0.1019 ± 

0.0338

Hybrid BE-FE 0.043 ± 

0.0115

0.0436 ± 

0.0114

0.0483 ± 

0.0122

0.0385 ± 

0.008

0.103 ± 

0.0283

0.0984 ± 

0.0256

0.0216 ± 

0.0016

0.0269 ± 

0.0021

0.0329 ± 

0.0028

0.0395 ± 

0.0031

0.0848 ± 

0.0068

0.0526 ± 

0.0045

P-value 7.5569 × 

10−10

0.5592 1.1713 × 

10−6

5.3259 × 

10−6

0.9807 0.0733 1.1962 × 

10−8

0.023 0.0033 0.0295 0.7611 0.8963

MAG PI- FEM 0.6797 ± 

0.1572

0.6324 ± 

0.1476

0.6289 ± 

0.1472

0.6375 ± 

0.146

0.6843 ± 

0.1496

0.7623 ± 

0.162

0.6903 ± 

0.1489

0.6733 ± 

0.1426

0.6614 ± 

0.1384

0.6473 ± 

0.1329

0.6306 ± 

0.1248

0.615 ± 

0.1179

Hybrid BE-FE 0.9828 ± 

0.0097

0.9744 ± 

0.0143

0.9809 ± 

0.0226

0.9783 ± 

0.0355

1.1064 ± 

0.0373

1.0133 ± 

0.0688

0.913 ± 

0.0318

0.8965 ± 

0.0303

0.8743 ± 

0.0287

0.8469 ± 

0.0269

0.8323 ± 

0.0259

0.8002 ± 

0.0231

P-value 7.5569 × 

10−10

7.5569 × 

10−10

7.5569 × 

10−10

7.5569 × 

10−10

7.5569 × 

10−10

1.7569 × 

10−9

7.5569 × 

10−10

7.5569 × 

10−10

7.5569 × 

10−10

7.5569 × 

10−10

7.5569 × 

10−10

7.5569 × 

10−10

The significant results are shown as gray.

FIGURE 7

Example III: anisotropic piece-wise homogenous four-layer spherical head model for tangential dipole orientation (x-axis). (A) RDM and (B) MAG 
boxplots of PI-FEM and hybrid BE-FE methods at six different source eccentricities.
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FIGURE 8

(A) MRI-based realistic head model with four layers: (B) brain, (C) CSF, (D) skull, and (E) scalp.

FIGURE 9

Example IV: anisotropic piece-wise homogenous four-layer realistic head model for radial dipole orientation (z-axis), (A) RDM and (B) MAG boxplots of 
PI-FEM and hybrid BE-FE methods at six different source eccentricities.
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FIGURE 10

Example IV: anisotropic piece-wise homogenous four-layer realistic head model for tangential dipole orientation (x-axis). (A) RDM and (B) MAG 
boxplots of PI-FEM and hybrid BE-FE methods at six different source eccentricities.

hybrid BE-FE method outperforms the BEM, especially at the radial 
direction (see Figures 2, 3). However, with regard to RDM, the BEM 
performs better than the hybrid BE-FE method at 50, 60 and 70% of 
source eccentricities in the tangential direction, but it performs the 
worst at 80, 90 and 98% of source eccentricities and with regard to 
MAG the hybrid BE-FE method outperforms the BEM. To be noticed 
that the BEM cannot simulate inhomogeneous and anisotropic media, 
the hybrid BE-FE method can be a good alternative to be used instead 
of the BEM in the multi-layer medium.

In the isotropic three-layer spherical head model, the PI-FEM has 
the worst performance at 50, 60 and 70% of source eccentricities in 
both directions (see Figures 2, 3). Also, it has worse performance than 
the hybrid BE-FE method in all eccentricities. Nevertheless, the hybrid 
BE-FE method clearly performs well. On the other hand, the MAG of 
the PI-FEM has a large variance in both directions. While the hybrid 
BE-FE method has the best results in both directions.

By considering the skull as a layer homogenous anisotropic 
model, results showed that the hybrid BE-FE method outperforms the 
PI-FEM at all eccentricities in both directions (Figures 4, 5). In the 
radial direction, the RDM of the hybrid BE-FE method is much 
smaller than the PI-FEM. On the other hand, although the difference 
between their RDM in the tangential direction is not as much as in the 
radial direction, the RDM of the hybrid BE-FE method is still better 
than the PI-FEM (see Figures 4A, 5A). Therefore, the hybrid BE-FE 
method clearly performs well and has small RDM less than 0.08326 
for radial direction and 0.1158 for tangential direction. While the 

PI-FEM has a maximum RDM of 0.126 and 0.1762  in radial and 
tangential direction, respectively (Table 3). On the other hand, the 
MAG of the PI-FEM has a large variance in both directions (see 
Figures 4B, 5B). While the hybrid BE-FE method has the best results 
in both directions.

In the next step, we compared the PI-FEM and hybrid BE-FE 
method when a fourth layer (CSF) was considered. With regard to the 
RDM, in radial direction, the hybrid BE-FE method is more accurate 
than the PI-FEM (see Table 5). With regard to the MAG, the hybrid 
BE-FE method performs clearly better than the PI-FEM. At the 
tangential direction, the hybrid BE-FE method outperforms the 
PI-FEM with regard to the RDM and MAG.

The results of the spherical head model show that the hybrid 
BE-FE method has higher accuracy than the PI-FEM in both 
directions. Also, the variance of the PI-FEM is very higher than the 
hybrid BE-FE method. It shows that by variation of conductivity, the 
performance of the hybrid BE-FE method is more stable than the 
PI-FEM. The comparison with the hybrid BE-FE method and PI-FEM 
for dipoles of different orientations and eccentricities showed that the 
hybrid BE-FE method leads to higher accuracy.

The result of the realistic head model shows that the hybrid BE-FE 
method outperforms the PI-FEM in both directions regarding 
RDM. Also, with regard to MAG, the hybrid BE-FE method 
outperforms the PI-FEM in both directions except at 98% source 
eccentricity. However, no exact solution exists as a reference to 
conclude about the realistic head model.
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The results obtained from the single reference utilizing the 
coupling formulation of a three-dimensional domain decomposition 
method (3-DD) for solving the EEG forward problem yielded RDM 
ranging from 0.012 to 0.13 for a three-layer anisotropic spherical head 
model (Olivi et  al., 2010). The achieved outcomes were based on 
dipoles oriented along the z-axis in the x, y, and z directions. Notably, 
the referenced study only presented results using the RDM criterion. 
Remarkably, our findings align with the outcomes of this study. It is 
important to note, however, the research employed an iterative 
approach, conducting their coupling method with 40 iterations.

The overall higher accuracy of the hybrid BE-FE method was 
expected due to theoretical considerations behind the hybrid BE-FE 
method since it uses each of the BEM and FEM on the domains better 
suited for them. It uses the BEM to model the brain layer containing 
dipoles to avoid the singularity problem of the FEM. On the other 
side, it uses the FEM to model inhomogeneous and anisotropic 
compartments to overcome the BEM disability in modeling 
inhomogeneity and anisotropicity.

There are some limitations in our study that should be addressed. 
First, the hybrid BE-FE method is more time consuming than the 
PI-FEM. For example, in the four-layer spherical head model with the 
same DOF, in our computer simulation study at hand, on the 
Microsoft Windows 10 Enterprise N, PC with Intel core i7-4510U 
2.6- GHz CPU and 6-GB RAM, the total forward simulation time of 
the hybrid BE-FE method was three times more than the FEM. Also, 
the extracting mesh algorithm of the hybrid BE-FE method is more 
complex than FEM. There are some academic software tools that 
generating volume mesh for the FEM very fast and accurately. But to 
generate mesh for the hybrid BE-FE method, first, we need to generate 
volume mesh, then to extract mesh to use in the hybrid BE-FE 
method. Hence, it is more time consuming and complex than 
the FEM.

6 Conclusion

We presented the theory, verification, and evaluation of a hybrid 
BE-FE method for solving the EEG forward problem. The simulation 
results of spherical head models demonstrated that the hybrid BE-FE 
method is more accurate and precise than the PI-FEM. The error 
(measured by RDM and MAG) obtained from the hybrid BE-FE 
method indicated that it performs well for deep dipoles. However, 
when dipoles became close to the first conductivity jump, the error of 
the hybrid BE-FE method increases, but still less than the PI-FEM at 
the same eccentricities.

The EEG forward simulation in the realistic head model showed 
that the hybrid BE-FE method outperforms the PI-FEM in both 
directions. Overall, our simulations confirm that the hybrid BE-FE 
method is a promising new approach for solving heterogeneous 
isotropic/anisotropic EEG forward problems that can outperform 
the FEM.

To maintain methodological consistency, other influencing 
factors, including the accuracy of head layer segmentation and mesh 
quality, should also be considered. So, the directions of the future 
work can include further development of the proposed method in 
other properties of head layers, such as the radius of layers and 
different meshes. Also, we have an idea to develop a mesh generation 
algorithm to be used in well-known academic software packages and 
to be simulated faster. Moreover, we can compare the FEM and our 
proposed hybrid BE-FE method for a three-layer heterogeneous skull 
model and consider the anisotropic profile of white matter. 
Additionally, developing the methodology for use in some 
applications, such as increasing the accuracy of source localization to 
detect some diseases, is an attractive field of future research.
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Appendix 1
TABLE A1 List of abbreviations.

EEG Electroencephalography

FE Finite element

FEM Finite element method

PI-FEM Partial integration- finite element method

BE Boundary element

BEM Boundary element method

RDM Relative difference measure

MAG Magnitude ratio

MRI Magnetic resonance imaging
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