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Imaging the cerebellum in
post-traumatic stress and anxiety
disorders: a mini-review
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Department of Psychology, Uppsala University, Uppsala, Sweden

Post-traumatic stress disorder (PTSD) and anxiety disorders are among the most

prevalent psychiatric conditions worldwide sharing many clinical manifestations

and, most likely, neural mechanisms as suggested by neuroimaging research.

While the so-called fear circuitry and traditional limbic structures of the brain,

particularly the amygdala, have been extensively studied in sufferers of these

disorders, the cerebellum has been relatively underexplored. The aim of this

paper was to present a mini-review of functional (task-activity or resting-state

connectivity) and structural (gray matter volume) results on the cerebellum

as reported in magnetic resonance imaging studies of patients with PTSD or

anxiety disorders (49 selected studies in 1,494 patients). While mixed results

were noted overall, e.g., regarding the direction of effects and anatomical

localization, cerebellar structures like the vermis seem to be highly involved.

Still, the neurofunctional and structural alterations reported for the cerebellum

in excessive anxiety and trauma are complex, and in need of further evaluation.
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Introduction

The cerebellum is a highly organized brain region located in the posterior fossa, and
most known for its role in motor coordination, and bodily posture and balance (reviewed
in Caulfield and Servatius, 2013; Kandel et al., 2013). While accounting for only 10% of the
total brain volume, the cerebellum harbors more neurons than the rest of the brain (Azevedo
et al., 2009). By its anteroposterior direction, the cerebellum is divided in two hemispheres
and its midline area, the vermis, forming in tandem the three main lobes: flocculonodular,
anterior and posterior lobes, subdivided in lobules I-X that constitute the distinctive folia
(Apps and Hawkes, 2009; Schutter, 2020). The cerebellar cortex congregates gray matter in
its outer part, while white matter is found in the innermost part, innervating the three deep
cerebellar nuclei: dentate, fastigial, and interposed nuclei (Kandel et al., 2013).

Beyond motor-related functions, cumulative evidence support that the cerebellum
modulates higher order and executive functions, including prediction and error-based
learning (Butcher et al., 2017; Sokolov et al., 2017; Uehara et al., 2018), associative and
implicit learning (Timmann et al., 2010), episodic (Andreasen et al., 1999; Habas et al., 2009;
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Almeida et al., 2023) and working (Fafrowicz et al., 2023) memory
systems, language (Murdoch, 2010; Mariën and Borgatti, 2018;
King et al., 2023), as well as emotion regulation (Baldaçara
et al., 2008; Lange et al., 2015; Caria and Grecucci, 2023). Lesion
studies of the posterior cerebellum led to the description of the
cerebellar cognitive affective syndrome (Schmahmann and Sherman,
1998) with a suggested cerebellar regulatory role in emotion
and cognition through reciprocal connections with limbic and
prefrontal regions.

Fear is a biologically basic emotion that has attracted
considerable research interest due to its relevance for many
clinical disorders, and the cerebellum is interconnected to brain
regions comprising the fear circuitry (Apps and Strata, 2015).
Animal and human studies have shown that the cerebellum
is involved in fear conditioning and fear memories (Sacchetti
et al., 2005; Timmann et al., 2010; Lange et al., 2015; Strata,
2015; Adamaszek et al., 2017; Frontera et al., 2020), which could
be tied to the etiology of anxiety, trauma and stress-related
disorders. Anxiety disorders are characterized by excessive fear and
avoidance in presence of stimuli perceived as threatful, as well
as heightened anticipation of threatening future events. Several
clinical features are shared with post-traumatic stress disorder
(PTSD) including fear and avoidance, hyperarousal, increased
autonomic response, psychosomatic symptoms and trauma-related
aversive memories. PTSD, which was separated from anxiety
disorders in the fifth edition of the Diagnostic and Statistical
Manual for Mental Disorders (American Psychiatric Association,
2013), is further characterized by hypervigilance and difficulties in
maintaining concentration (Peters et al., 2021), and by difficulty
in discriminating safety from threat cues (Williamson et al., 2021).
The global lifetime prevalence rates have been estimated to 28.8%
for anxiety disorders and 3.9% for PTSD (Kessler et al., 2005;
Koenen et al., 2017). Comorbidity with other disorders, such as
depression, is common (Whiteford et al., 2013).

The cerebellum has been largely understudied in comparison
to traditional limbic regions like the amygdala, but recent
imaging research findings indicate that the cerebellum is involved
in the pathophysiology of anxiety disorders including social
anxiety disorder (SAD), generalized anxiety disorder (GAD),
panic disorder (PD), specific phobia (SP), as well as PTSD.
Anxiety patients have been reported to display both altered
cerebellar activity and connectivity with corticolimbic areas, and
changes have been found after pharmacological interventions with
antidepressants (e.g., Chin and Augustine, 2023) and psychological
interventions such as cognitive behavioral therapy (e.g., Kindred
et al., 2022). There is evidence of hyperactivity both in the
cerebellum and amygdala in SAD patients (Tillfors et al., 2002;
Evans et al., 2008), higher cerebellar baseline activity in PD (Sakai
et al., 2005) and increased cerebellar activity in PTSD (Wang et al.,
2016), although mixed results are found across disorders.

While it can be hypothesized that individual differences in
cerebellar activation underlie reactivity to stressors (Moreno-
Rius, 2019) and the risk for developing anxiety and stress-related
disorders (Caulfield and Servatius, 2013), a clear understanding
of how the cerebellum contributes to excessive anxiety and stress
is lacking. The aim of this mini-review was to describe the main
findings, at the cerebellar level, of human neuroimaging studies
using structural (sMRI) or functional (fMRI) magnetic resonance

imaging, in adult patients suffering from PTSD or anxiety (SAD,
GAD, PD, SP) disorders.

Methodology

Only original MRI research papers published in peer-
reviewed English-language journals reporting findings in the
cerebellum were considered. An advanced electronic literature
search in PubMed database1 without time restriction was
carried out by using the following terms with the Boolean
operator AND: “((cerebellum) AND (anxiety)) AND (MRI)” (290
results); “[(cerebellum) AND (stress)] AND (MRI)” (284 results).
Additionally, advanced sub-searchings were performed for each
of the target disorders: “cerebellum AND acute stress disorder”
(n = 34); “cerebellum AND PTSD” (n = 94); “cerebellum AND
generalized anxiety disorder” (n = 135); “cerebellum AND social
anxiety disorder” (n = 69); “cerebellum AND panic disorder”
(n = 24); “cerebellum AND specific phobia” (n = 18). Furthermore,
recent review papers and citations were scanned for non-detected
original trials, and 11 studies were added from 39 additionally
scanned research articles. Figure 1 shows a flow diagram of
the screening process. Research studies using sMRI or fMRI,
with adult participants (>18 years of age) that had received a
clinical diagnosis, in either patient-control or pre-post-treatment
comparisons were included. Exclusion criteria were research
articles that used: (I) another neuroimaging modality than sMRI
or fMRI; (II) pediatric or adolescent populations, or healthy
individuals only; (III) neuropsychiatric disorders different than the
targeted PTSD/anxiety disorders; and (IV) meta-analyses, reviews
or case reports.

Results

From a total of 987 papers screened, 49 papers matching
inclusion/exclusion criteria were selected: PTSD (n = 30),
PTSD + SAD (n = 1), SAD (n = 9), GAD (n = 2), PD
(n = 4), SP (n = 3). The total number of patients was 1,494 (600
males/894 females). A descriptive summary and imaging results
are presented in Supplementary Table 1 (task-based fMRI studies)
and Supplementary Table 2 (resting state rs-fMRI and/or sMRI
studies) in Supplementary material. Task-based fMRI studies
mainly used disorder-relevant challenges to obtain the neural
activation maps during task (disorder-relevant stimuli) compared
to control conditions (neutral stimuli). Most rs-fMRI studies
measured functional connectivity (FC) between the cerebellum
and other brain regions (intrinsic connectivity distribution), or at
intra-cerebellar network level (intra-network FC). Structural MRI
studies mostly used voxel-based-morphometry (VBM) to identify
variations in gray matter volume (GMV). The vast majority of
studies were cross-sectional comparing patients vs. controls while
some were treatment studies evaluating pharmacotherapy and/or
psychological interventions with pre-post within-group evaluation
or treatment vs. placebo comparisons in patients. Two studies also
used a machine learning approach to classify groups.

1 https://pubmed.ncbi.nlm.nih.gov/
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FIGURE 1

PRISMA flow diagram of the mini-review. Adapted from Page et al. (2021).

Task-based fMRI studies

PTSD
The majority of fMRI studies on PTSD used trauma or

autobiographical memory-related visual or mental imagery tasks
or pain-related stimuli (see Supplementary Table 1). Mental
imagery or script-driven imagery tasks are commonly used to evoke
traumatic emotional states upon presentation of autobiographical
written scripts of a traumatic event previously described by the
participant, who is instructed to recall the event and think about
it in the most lucid possible way (Douglas et al., 2019). Results are
mixed, although task-related cerebellar hyperactivity is commonly
reported, e.g., in the culmen and vermis (Ke et al., 2015), crus
I and II (Awasthi et al., 2020), lobule VI (Rabellino et al., 2016;
Naegeli et al., 2018), and lobule V (Terpou et al., 2019), whilst
increased deactivation to reward stimuli was reported in right
cerebellar crus II, and lobules VIIb and VIII (Elman et al., 2018).
The vermis and left cerebellum that showed hyperactivation at
baseline in PTSD, tended to decrease in a 2-year follow-up after the
trauma (Ke et al., 2016). Lateral and left cerebellum also showed
alteration in PTSD patients (Strigo et al., 2010; Vidotto et al.,
2014; Chiasson et al., 2021). As glucocorticoids modulate stress
and memory processes, such as emotional memory consolidation
and recall, hydrocortisone is a potential medication for PTSD and

fear-related disorders (e.g., Soravia et al., 2006; Grillon et al., 2011;
Cawley et al., 2022). Following hydrocortisone administration in
PTSD, Metz et al. (2019) found an increase in the left cerebellum
during an autobiographical memory recall task, relative to a placebo
group, whereas Douglas et al. (2019) reported a decreased blood
flow in left cerebellum during script-driven trauma imagery in the
hydrocortisone group.

Anxiety disorders
A variety of affective and disorder-relevant experimental tasks

have been used in fMRI trials of anxiety disorders with a mixed
pattern of results (Caseras et al., 2010; Nakao et al., 2011; Giménez
et al., 2012; Petrowski et al., 2014; Schwab et al., 2020; Korgaonkar
et al., 2021). One study in SAD reported increased activation in the
bilateral cerebellum and vermis, during a social scrutiny exposure
task, but activation in the left cerebellum was also reported in
controls (Giménez et al., 2012). In this task, red and green dots were
intercalated in the fMRI computer screen, and participants were
told that during presentation of red dots, their facial expressions
and postural movements would be close-up recorded (Giménez
et al., 2012). Similarly, Nakao et al. (2011) found that both SAD and
controls showed cerebellar activation during a social situation task,
although controls displayed greater activation in left cerebellum.
In PD, relatively decreased activation of the right cerebellum
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was reported during processing of emotional faces (Korgaonkar
et al., 2021). In line with this, another study using a similar task
noted decreased activation of the left cerebellum in PD patients
with comorbid agoraphobia, relative to controls (Petrowski et al.,
2014). A negative amygdala to cerebellum connectivity was found
in GAD participants during implicit verbal memory tasks (Park
et al., 2022), and in SAD patients undergoing cognitive-behavioral
treatment positive changes in amygdala-cerebellar connectivity
predicted less improvement (Sandman et al., 2020). Finally, fMRI
studies on SP reported an increased bilateral activation of the
cerebellum of participants with spider phobia and left cerebellum
hyperactivation in blood-injection-injury phobia (Caseras et al.,
2010) during processing of phobia-related visual stimuli. Schwab
et al. (2020) found hyperactivation of the left cerebellum in
spider phobic group after hydrocortisone administration targeting
glucocorticoids-modulated aversive memories.

Resting-state fMRI studies

PTSD
As listed in Supplementary Table 2, Rabellino et al. (2018)

reported increased FC, between the left cerebellar IV–V lobes and
the right fusiform gyrus and hippocampus, and also between the
right IV–V cerebellar lobes with right posterior insula and planum
polare in PTSD. In contrast, the PTSD group, as compared to
controls, showed decreased FC in left Crus I to frontal gyrus.
The same research group recently found that the FC between
the right flocculus and the right hippocampus was increased
in a PTSD dissociative subgroup compared to PTSD (Rabellino
et al., 2022). Holmes et al. (2018) noted hyperconnectivity between
the cerebellum and the supramarginal gyrus in PTSD, compared
to controls. Nicholson et al. (2015) reported that the PTSD
dissociative subgroup had increased FC between the basolateral
amygdala and left culmen, and the same group (2020) found the
crus I as a network region in the central executive network (CEN)
classifying patient groups. Another five studies found decreased
amplitude of low-frequency fluctuations in the right posterior
cerebellum (Yin et al., 2011), decreased FC between the CEN and
a cerebellar region (Vuper et al., 2021), dorsal anterior cingulate
cortex and the cerebellum (Chen et al., 2019), right cerebellar
vermis relative to the periaqueductal gray, bilateral culmen and
left cerebellar lingual (Thome et al., 2017), and decreased FC
between the cerebellum, dorsolateral and medial prefrontal cortices
(Holmes et al., 2018). In another study, the amplitude of low-
frequency fluctuations was increased in the right cerebellum of
PTSD individuals (Bing et al., 2013). In studies using a support
vector machine learning approach, the bilateral cerebellum was one
the most informative regions separating patients with PTSD from
controls at rest (Zhang et al., 2016), or remitted vs. persistent PTSD
patient groups, measuring intra-network FC in Crus I, following a
12-week treatment with paroxetine (Yuan M. et al., 2018).

Anxiety disorders
Social anxiety disorder subjects, showed reduced resting state

FC across different cerebellar subregions, especially in left Crus
I with frontal areas (Yuan et al., 2017). Moreover, increased
pretreatment FC in vermis Crus I relative to angular gyrus and

right dorsolateral prefrontal cortex, predicted treatment response
and symptom improvement. Another two studies of SAD found
decreased FC in bilateral posterior cerebellum with bilateral
putamen and right thalamus (Zhang et al., 2022), and decreased
connectivity among left precuneus and left posterior cerebellum
(Yuan C. et al., 2018). GAD was also marked by a reduced FC
between right amygdala and cerebellum (Du et al., 2021), whereas
in PD a decreased intra-cerebellar FC was found in right lobules V–
VI, vermis, and left lobule VI of the cerebellum network (Ni et al.,
2021).

sMRI studies of cerebellar gray matter
volume

PTSD
Increased cerebellum GMV has been noted in cerebellar lobules

VIIb, VIIIa, and VIIIb of PTSD subjects (Sussman et al., 2016).
Increased gray matter density in left cerebellum, but decreased in
the frontal lobe, right amygdala and hippocampus, was reported in
PTSD, compared to controls (Sui et al., 2010). Baldaçara et al. (2011,
2012) showed that PTSD participants had lower left cerebellar
hemisphere and vermis volume, compared to resilient controls, and
volume correlated negatively with PTSD symptomatology. Holmes
et al. (2018) found that the volume of the right cerebellar crus
was decreased in PTSD. Apart from that, Cheng et al. (2015), in
a study with a multi-neuropsychiatric sample, reported decreased
left cerebellum GMV in PTSD compared to obsessive-compulsive
disorder subjects. A twin-study compared GMV variations in the
midline vermis in combat-exposure PTSD individuals relative to
non-PTSD twins (Levitt et al., 2006). No differences in GMV were
reported by the authors, although the vermis was not parcellated
into gray or white matter. Likewise, a study of intimate partner
violence-related PTSD did not find significant cerebellar GMV
alterations (Fennema-Notestine et al., 2002).

Anxiety disorders
Increased cerebellum GMV has been found in the left (Talati

et al., 2013) and posterior (Talati et al., 2015) cerebellum of SAD
participants, compared to controls. Volumetric decreases were
reported in the vermis and left cerebellum after 12-weeks of
treatment with escitalopram (Cassimjee et al., 2010) whereas Talati
et al. (2015) reported cerebellar findings in the opposite direction
following 8-week paroxetine treatment. Other studies did not
report significant GMV cerebellar changes in SAD in comparison to
controls (Zhang et al., 2022) or patients with obsessive-compulsive
disorder (Cheng et al., 2015). In PD, Asami et al. (2009) identified
a decreased left vermal GMV and sex-dependent differences with
a reduced GMV in the right vermis of PD females compared to
males. Conversely, in SP, increased GMV in the vermis was found
in a combined dental and snake phobia group compared to controls
(Hilbert et al., 2015).

Discussion

It has been increasingly recognized that the functions of
cerebellum extend into emotions, including fear and anxiety.
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The cerebellum could work as a complementary region to the
amygdala in emotional reactivity and modulation (Strata, 2015),
and the amygdala-cerebellum reciprocal link has been shown to
be aberrantly functioning in post-traumatic stress and anxiety
disorders (Nicholson et al., 2015; Thome et al., 2017; Sandman et al.,
2020; Du et al., 2021; Park et al., 2022). Hence, this mini-review
evaluated functional (task activity, resting state connectivity) and
structural (gray matter) findings on the cerebellum reported in MRI
studies of patients with PTSD or anxiety disorders.

Results showed that PTSD was the single most studied disorder,
targeted in 63% of the included studies. The cerebellum tends to
show hyperactivation in the task-based fMRI studies. Among the
cerebellar subregions, the vermis (Ke et al., 2015, 2016), lobule VI
(Rabellino et al., 2016; Naegeli et al., 2018), and crus I (Rabellino
et al., 2018; Yuan M. et al., 2018; Awasthi et al., 2020; Nicholson
et al., 2020), emerge as key cerebellar distinctive structures that
could be involved in the symptomatology or developmental course
of PTSD. The vermis has been highlighted for its role in enhancing
episodic memory of emotional stimuli (Fastenrath et al., 2022), its
contribution to fear-related memories maintenance (Strata et al.,
2011) and is considered to be the limbic cerebellum (Klein et al.,
2016).

It is noteworthy that the baseline vermis and left cerebellum
hyperactivation in PTSD decreased over a long-term perspective,
with baseline vermis activity being predictive of symptom
improvement (Ke et al., 2016). It could be expected that successful
treatment would contribute to downregulation of emotion-related
cerebellar/vermal activity, although treatment effects should be
further explored, especially considering the divergent findings
noted for hydrocortisone interventions aimed at targeting the
glucocorticoid system (Douglas et al., 2019; Metz et al., 2019;
Schwab et al., 2020).

Across the anxiety disorders, results were mixed with regard
to cerebellar hyper- or hypoactivation in task-based fMRI trials.
Altered amygdala to cerebellum FC was noted in GAD (Park
et al., 2022) and also following psychological intervention in SAD
(Sandman et al., 2020). In SP, even when considering different
types like blood and spider phobia, fMRI results seemed more
homogeneous, showing increased activation of the left cerebellum
and lobule VI. The cerebellar lobule VI is thought to be decisive for
higher-order cognitive functions, such as working memory (Lange
et al., 2015; Ashida et al., 2019). Studies supporting a functional
topographic organization of the human cerebellum have noted
idiosyncratic subregions to modulate sensorimotor, cognitive, and
limbic processes (Stoodley and Schmahmann, 2010; Habas and
Manto, 2018) with possible left-right lateralization (Baillieux et al.,
2010). Following this, cerebellar activation patterns would depend
largely on type of task or context (Schmahmann et al., 2019) which
varied notably in the fMRI studies evaluated here.

With regard to resting-state fMRI findings, PTSD is marked
by reduced FC between the cerebellum and the central executive
network (CEN) (Vuper et al., 2021), in which the cerebellar
crus II takes part. Disrupted CEN might reflect difficulty in
concentration in adults with PTSD, and it has previously been
shown to be affected in GAD (Kolesar et al., 2019). Altered crus
I, that participates in the default mode network (DMN) (Halko
et al., 2014), was found by Yin et al. (2011) measured with
amplitude of low-frequency fluctuations. The DMN, also composed
by cerebellar lobule IX, is further involved in mental imagery and
long-term episodic memory processes (Habas et al., 2009), that

are potential clinical features of PTSD (Zlomuzica et al., 2018;
Petzold and Bunzeck, 2022; Almeida et al., 2023). Disrupted FC
between the cerebellum and the dorsal anterior cingulate cortex
(Chen et al., 2019) may reflect altered motor and cognitive
processing involved in reward (Bush et al., 2002), while a reduced
FC between the right vermis and the periaqueductal gray, bilateral
culmen and left lingual might reflect a disrupted limbic system. The
culmen, congregated in the anterior vermis, might be functionally
connected to limbic structures, such as amygdala (Nicholson
et al., 2015), hippocampus, nucleus accumbens and orbitofrontal
cortex (Lange et al., 2015). Functional hypoconnectivity in anxiety
disorders may be characterized by the interruption between the
cerebellar nodes involved in the processing of social and aversive
stimuli, such as Crus I (Chen et al., 2022), frontal (Yuan et al., 2017)
and corticostriatal regions (Zhang et al., 2022). Interestingly, the
cerebellar Crus I, shown to be altered in some studies on PTSD and
anxiety disorders included herein (e.g., Yin et al., 2011; Yuan et al.,
2017, Yuan M. et al., 2018; Rabellino et al., 2018; Nicholson et al.,
2020) participates in hippocampus-dependent spatial navigation
(e.g., Rondi-Reig et al., 2022) which may be impaired in PTSD (e.g.,
Smith et al., 2015). Still, further neuroimaging studies are needed
to achieve better understanding of potentially altered cerebellum-
hippocampus interactions (Watson et al., 2019) in PTSD and
anxiety disorders.

Varying structural alterations in the cerebellum have been
reported in PTSD (Blithikioti et al., 2022). Baldaçara et al.
(2011, 2012) hypothesized that cerebellar hyperactivity might be
characterizing the first post-trauma months, and as a consequence
of this, cerebellar volume reduction may appear later. Likewise,
MRI studies on cerebellar gray matter alterations in anxiety
disorders do not provide a coherent picture since increases,
decreases as well as null results have been reported even in
circumscribed subregions like the vermis (Asami et al., 2009; Cheng
et al., 2015; Hilbert et al., 2015). Also, the effects of antidepressant
pharmacotherapy on cerebellar GMV have varied in direction
(Cassimjee et al., 2010; Talati et al., 2015) which could be related to
differences in antidepressant type, treatment duration, MR scanner
and absence of control group in one of the studies. Further research
aiming at finding sex differences at the cerebellar level could be
relevant as sex-dependent results in PD were demonstrated (Asami
et al., 2009).

Several limitations of the present mini-review should
be considered. Firstly, the included studies differ widely in
disorder type, characteristics of the samples, experimental design,
intervention, neuroimaging modality, and type of analyses,
which could limit the comparability. Small samples in several
studies constrain the statistical power (Cremers et al., 2017) and
reproducibility of findings (Turner et al., 2018). Moreover, in
comparison to regions like the amygdala, only a small fraction
of imaging studies has had an explicit cerebellar focus and,
anatomically, results are frequently described in broad terms like
anterior/posterior or right/left cerebellum, instead of providing a
more specific localization (Strata, 2015). Also, the whole cerebellum
has not been eligible for analysis in many trials (Fastenrath et al.,
2022) as it has been common to remove part of the cerebellum
from the field of view of the MR scanner (Anteraper et al., 2022).

In conclusion, this mini-review described and briefly evaluated
functional and structural neuroimaging studies reporting on the
cerebellum in adult participants with anxiety disorders or PTSD.
While the vermis, acting as a limbic node in the cerebellum for
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emotions, could have a more prominent role in these disorders,
it is also evident that the MRI studies evaluated herein report
anatomically distributed findings, involving motor as well as
non-motor regions of the cerebellum. The functionality of each
cerebellar subregion is complex and the consistency and direction
of cerebellar involvement across the disorders need further
evaluation. To contribute to this, longitudinal and cross-sectional
studies and large-scale networks, in combination with the use of
ultra-high field MR scans offering improved anatomical precision,
could provide a better understanding of the role of the cerebellum
in post-traumatic stress and anxiety disorders.
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