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Introduction: The extinction of fear memories is an important component in

regulating defensive behaviors, contributing toward adaptive processes essential

for survival. The cerebellar medial nucleus (MCN) has bidirectional connections

with the ventrolateral periaqueductal gray (vlPAG) and is implicated in the

regulation of multiple aspects of fear, such as conditioned fear learning

and the expression of defensive motor outputs. However, it is unclear how

communication between the MCN and vlPAG changes during conditioned fear

extinction.

Methods: We use dynamic causal models (DCMs) to infer effective connectivity

between the MCN and vlPAG during auditory cue-conditioned fear retrieval and

extinction in the rat. DCMs determine causal relationships between neuronal

sources by using neurobiologically motivated models to reproduce the dynamics

of post-synaptic potentials generated by synaptic connections within and

between brain regions. Auditory event related potentials (ERPs) during the

conditioned tone offset were recorded simultaneously from MCN and vlPAG and

then modeled to identify changes in the strength of the synaptic inputs between

these brain areas and the relationship to freezing behavior across extinction

trials. The DCMs were structured to model evoked responses to best represent

conditioned tone offset ERPs and were adapted to represent PAG and cerebellar

circuitry.

Results: With the use of Parametric Empirical Bayesian (PEB) analysis we

found that the strength of the information flow, mediated through enhanced

synaptic efficacy from MCN to vlPAG was inversely related to freezing

during extinction, i.e., communication from MCN to vlPAG increased with

extinction.

Discussion: The results are consistent with the cerebellum contributing to

predictive processes that underpin fear extinction.
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Introduction

The cerebellum is associated with emotional control (Snider
et al., 1976; Supple et al., 1987; Supple and Leaton, 1990;
Ploghaus et al., 2000; Stoodley and Schmahmann, 2010, 2018),
and is connected with other brain regions to form networks
coordinating fear learning and behavior. There is an array of
anatomical and electrophysiological evidence showing that the
cerebellum (and in particular the medial cerebellar nuclei, MCN)
has reciprocal connections with numerous brain regions associated
with emotional processing (Apps and Strata, 2015), including the
periaqueductal gray (PAG, Teune et al., 2000; Frontera et al.,
2020; Vaaga et al., 2020; Lawrenson et al., 2022), amygdala (Farley
et al., 2016; Jung et al., 2022), and prefrontal cortex (PFC, Watson
et al., 2016). Although the exact role of the cerebellum in fear
processing is still uncertain, evidence suggests that it is involved
in the acquisition, expression, consolidation and extinction of a
fear memory (Sacchetti et al., 2002, 2005; Koutsikou et al., 2014;
Utz et al., 2015; Frontera et al., 2020). A key feature of the
cerebellum is that it forms and updates internal models to minimize
errors in behavioral performance: if there is a mismatch between
predicted and actual experience, a prediction error occurs that is
used to update our internal model thus contributing to learning
through error driven adaptive processes (Itō, 1984; Wolpert et al.,
1998; Ito, 2006). For example, in fear conditioning, the Rescorla-
Wagner learning model proposes that prediction error signals
from an aversive stimulus is the main driver of learning during
the acquisition of associatively conditioned fear memory. In this
context the cerebellum is therefore ideally placed to contribute to
fear prediction processes (Ernst et al., 2019).

The periaqueductal gray (PAG) is a key area for the regulation
of fear behaviors, as well as other survival strategies, and can
be divided into functional columns that regulate distinct aspects
of fear responses. The ventrolateral region of the PAG (vlPAG)
is well known, in rats and mice, for its role in the regulation
of fear-related freezing (Vianna et al., 2001; Walker and Carrive,
2003; Tovote et al., 2016; Watson et al., 2016). Moreover, the
vlPAG encodes teaching signals and prediction error-like activity,
that via feedback circuits with the amygdala, are thought to
regulate fear behavior (McNally and Frederick Westbrook, 2006;
Walker et al., 2019).

The cerebellum and the vlPAG have reciprocal connections,
which in rodents are predominantly contralateral (Teune et al.,
2000; Vaaga et al., 2020), while no lateralization of activity
has been found in human studies (Cacciola et al., 2019). Our
group and others (Frontera et al., 2020; Lawrenson et al., 2022)
have demonstrated that the MCN to vlPAG pathway regulates
the acquisition and extinction of fear memory as measured by
freezing behavior and defensive ultrasonic vocalizations (22 kHz).
Activation of the pathway during both fear acquisition or extinction
decreases the strength of the fear memory response (Frontera
et al., 2020) while inhibition increases fear-related behavioral
activity (Frontera et al., 2020; Lawrenson et al., 2022). In addition,
neurons within the vlPAG increase their firing frequency in a
temporally precise manner in response to the onset and offset of
a conditioned tone during fear recall (Lawrenson et al., 2022).
Conditioned tone offset related activity in the vlPAG decreases
in parallel with fear extinction, and manipulation of cerebellar
output during fear consolidation causes a loss in its temporal

precision as well as changes in fear behavior (Lawrenson et al.,
2022). While the functional significance of such activity remains
to be determined, we hypothesize that this is a neural correlate
of prediction error, necessary for fear extinction mechanisms,
whereby cerebellar projections contribute toward encoding a
predictive signal in the PAG.

Previous studies have focused on single unit activity, but event
related potentials (ERPs) have also been recorded in response to
the tone onset and offset in fear conditioned paradigms (Watson
et al., 2016; Lawrenson et al., 2022). Event related potentials
(ERPs) are an electrophysiological feature that can be recorded
in brain structures in response to events or stimuli (Blackwood
and Muir, 1990) and are thought to reveal trial-related predictions
errors (Moran R. J. et al., 2013). They represent the summed
extracellular activity reflecting the activation of a population of
neurons. Moreover, they have been found to be a useful marker in
the study of anxiety disorders as differences in the characteristics of
the ERPs (such as variability and timing) were identified [e.g., post-
traumatic stress disorder (Metzger et al., 1997; Neylan et al., 1999;
Skinner et al., 1999)].

In the vlPAG (Lawrenson et al., 2022) the peak amplitude of
ERPs has been shown to decrease between early and late extinction
trials, while cerebellar ERPs did not exhibit significant extinction-
related changes (Lawrenson et al., 2022). Using the same dataset,
here we explicitly assess the dynamic interaction between these two
structures, and ask whether the ERPs reflect coordinated activity
between the MCN and vlPAG during extinction, when the offset
responses have appeared.

For this study we have employed a relatively new method
to analyze ERPs – known as Dynamic causal modeling (DCM).
Initially established in the fMRI field (Friston et al., 2003), this
method has been extended to applications on local field potential
(LFP) and electroencephalography (EEG) data (Moran et al., 2007;
Kiebel et al., 2008). DCM is used to infer effective connectivity, i.e.,
to understand the effect that a neuronal ensemble in one brain area
exerts on another by using Bayesian model inversion. DCMs can be
used to determine causal relationships between neuronal sources
that rely on neurobiologically motivated models to reproduce the
dynamics generated within brain regions (Moran R. et al., 2013).
Distinct DCMs have been developed to model different types of
generated data, such as evoked, induced and steady-state responses.
For this study, DCMs for evoked responses were implemented, to
model the tone offset ERPs.

By applying DCMs to the ERPs recorded at the offset of a
conditioned tone in the cerebellum and vlPAG we found that there
is a predominant influence of the cerebellar to vlPAG pathway
in the generation of the ERP responses, and in particular as the
strength of the connection increases there is a decrease in freezing
behavior. These results indicate that the pathway, via these offset
signals, participates in fear extinction.

Materials and methods

Animals

All animal procedures were performed in accordance with the
UK Animals (Scientific Procedures) Act of 1986 and were approved
by the University of Bristol Animal Welfare and Ethical Review
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FIGURE 1

Fear conditioning protocol and ERP recording sites in the cerebellum and vlPAG. (A) Diagram of the auditory fear conditioning paradigm composed
of habituation, acquisition, and extinction (see Section “Materials and methods” for details). (B) Left, histological placement of recording electrodes
in the MCN and; right, similar but for the vlPAG. Key, each color represents a separate animal TT1-6. (C) Freezing behavior, expressed as percentage,
across blocks of extinction; shown as average ± SEM. (D) Left, MCN average ± SEM ERP responses recorded during each block (1–5) (n = 7, black
arrow indicates offset of tone); right, similar but for the vlPAG.

Body. Data obtained from a total of six adult male Sprague Dawley
rats (280–400 g; Harlan Laboratories) that were used in a previous
study (Lawrenson et al., 2022) were analyzed in the present work.
The animals were housed under normal environmental conditions
in a normal 12 h dark/light cycle and provided with food and water
ad libitum. Animals were single housed after surgery to prevent
damage to implants.

Surgical procedures for
electrophysiological chronic implants

Rats were anaesthetized and mounted in a stereotaxic frame
with atraumatic ear bars. Surgery was performed under aseptic
conditions, during which craniotomies were performed to gain

access to the cerebellum and/or the PAG as required in each line
of experiment. Dual microdrives (small drives containing movable
tetrodes that can be implanted in animals) were implanted in the
medial cerebellar nuclei (MCN, 11.4 mm caudal from bregma,
1 mm lateral from midline, depth of 4 mm) and contralateral
ventrolateral periaqueductal gray (vlPAG, 7.5 mm caudal from
bregma, 1 mm lateral from midline, depth 4.8 mm). For further
details on the surgical procedure see Lawrenson et al. (2022).

Auditory cued fear conditioning

Animals underwent a 3-day auditory cued fear conditioning
protocol (Figure 1A; see also Lawrenson et al., 2022). On day
0 animals were habituated to the fear conditioning chamber.
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On day 1 animals underwent acquisition training and on day 2
retrieval/extinction testing. For all 3 days the tone was delivered at
1 KHz for 10 s. For habituation the animal had a 5 min baseline
and then received seven tones with a 30 s intertone interval. For
acquisition electrical foot shocks (0.5 s, 0.75 mA) were paired to
each of the seven tones and delivered at offset. For extinction
5 × 7 blocks of tones were delivered. For all sessions, videos were
recorded with OptiTrack Blackrock software and behavior was
manually scored using Solomon Coder software (© 2019 by András
Péter). An epoch of at least 2 s where the animal did not move was
scored as freezing behavior. At the end of the experiment animals
were deeply anaesthetized and terminated by transcardial perfusion
(4% paraformaldehyde in 0.1 m phosphate buffer) and the brains
extracted to perform histological verification of recording electrode
location (Figures 1B, C).

Neural data analysis

Local field potential (LFP) data were acquired using a Blackrock
Microsystems (Utah, USA) data capture system synchronized with
OptiTrack software. Neural data were recorded at a sample rate
of 30 kHz and post-processed offline. Data was down sampled to
1 kHz and band pass filtered at 1–32 Hz (this was found to be the
most appropriate filter to isolate the waveform of the ERPs from
other activity/noise) to extract LFPs using MATLAB. Auditory
event related potentials (ERPs) were extracted by averaging
LFP activity time locked to tone offset using MATLAB (mean
based on n = 7 trials per animal). In each animal the tetrode
recording sites in the MCN and vlPAG yielding, in each case,
the largest mean amplitude peak to trough ERP were identified
and used to calculate group average data of peak amplitude for
each brain site.

Dynamic causal modeling (connectivity
analysis)

Dynamic causal modeling (DCM) was used to infer effective
connectivity between the MCN and vlPAG. Here we will first
describe the model underlying DCMs for ERPs and then describe
some of the key practical information on how to use it.

In this study, DCMs implemented for EEG/LFP data were
adapted from the existing neuronal models (Kiebel et al., 2008;
Moran R. et al., 2013) to reflect cerebellar and vlPAG neuronal
circuitry. The implemented model (ERP neural mass model)
reflects intrinsic excitatory and inhibitory projections between
neuronal classes within one brain region. In the original neuronal
assembly model this is represented by pyramidal cells which receive
inhibitory and excitatory projections from local interneurons (both
excitatory and inhibitory) which then project to other brain areas
through extrinsic excitatory projections (see Figure 2 for the
representation of the adapted models).

A DCM is defined by equations that summarize the synaptic
dynamics of neuronal populations, by defining current and voltage
changes. Each subpopulation of neurons is defined by a different
set of dynamic equations (Eq. 1) that reflect the properties of that

neuronal type defining the time-evolution of the neuronal post-
synaptic potentials (V) as a convolution (⊗) of pre-synaptic firing
rates (S) with a post-synaptic activation kernel p(t).

V = p(t)⊗ S (1)

To simulate the dynamic membrane potentials resulting from
the presence of ion-channels (Eq. 2), the convolution (p) of the
average pre-synaptic firing input (S) on a group of synapses is
obtained to transform the average density of pre-synaptic inputs
(S) into average post-synaptic membrane potential (V) (David
and Friston, 2003), where the convolution kernel is given by the
following operator:

p (t) = A
He/i

τe/i
t exp

(
−t
τe/i

)
(2)

He/i controls the maximum post-synaptic potential and τe/i
the time constant of either excitatory (e) or inhibitory (i) receptors
(time constants are for the main AMPA—8 ms and GABAa—16 ms
receptor types for excitatory and inhibitory synapses, respectively)
and account for receptor opening times. We denote connections as
“A” parameters. If the synapse is not effective, the model should
return a value of A close to zero. If the synapse is effective, then A
should be non-zero.

Finally, to close the loop from input to output to input,
the membrane potentials of each subpopulation (V) are then
transformed into firing rate of this post-synaptic population
(S, Eq. 3), and represents the input to other downstream
subpopulations. S is represented as a sigmoid nonlinearity:

S (V) =
1

1+ exp (−rV)
−

1
2

(3)

In this operator, r is a fixed parameter that controls the
curvature (r = 0.56). A priori inter-regional conduction delays of
2 ms (delay within a region) and 16 ms (delays from vlPAG to MCN
and MCN to vlPAG) complete the model specification. Parameters
are optimized around a prior distribution with a Gaussian density—
specified by a mean and variance (Table 1).

For further detail on the DCM development (see Jansen and
Rit, 1995; David and Friston, 2003; David et al., 2005, 2006; Kiebel
et al., 2007).

DCM implementation and specification

Dynamic causal models are available in the “Statistical
Parametric Mapping” (SPM)1 toolbox on MATLAB.

In this case the “spm_dcm_erp.m” function was used to
model the ERPs. This function requires the user to define specific
parameters that will provide information on the characteristic of
the neural responses under investigation.

The specifications used in this study are reported in Table 1,
and were chosen as they provide the best fit of the data, i.e., the one
that fitted most closely the model curve to the experimental ERP
data (shown in Figure 3C).

The dataset consisted of five blocks from extinction (each
consistent of an average of seven trials) that were computed

1 https://www.fil.ion.ucl.ac.uk/spm/
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FIGURE 2

Schematic representation of neural mass models for the cerebellum and PAG. (A–D) Schematic neural mass model of the cerebellum (violet box)
and vlPAG (green box). Each circle represents a population of neurons. Within the boxes, intrinsic connections are represented in red (inhibitory) and
in blue (excitatory). Each panel shows a plausible type of extrinsic connection between the two areas, these are represented between the boxes and
synapse on different populations: (A) A connection from PAG to cerebellum reaching only glutamatergic neurons (yellow). (B) A connection from
cerebellum to PAG reaching only an excitatory glutamatergic population (blue). (C) A connection from cerebellum to PAG reaching glutamatergic
and inhibitory GABAergic connections (violet). (D) An “all” connection from cerebellum to PAG, reaching all PAG populations (light gray), PC, Purkinje
cells; IO, Inferior olive; MCN, Medial cerebellar nuclei. (E) Schematic summary of models tested, source areas are connected to either glut (Model
#1), glut+GABA (Model #2) or all other excitatory and inhibitory connections (Model #3 and 4) [same key color as panel (A)]. Model #5 represents
the null hypothesis.
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separately. For each model, a matrix showing the changes in the
strength of coupling between areas was defined with connections
from cerebellum to vlPAG and from vlPAG to cerebellum both
switched on. Finally, experimental inputs on connections were
defined with all inputs were switched on, indicating that the
stimulus (the offset of the tone) may influence both regions.

Connectivity models were built based on current literature on
the cytoarchitecture of the cerebellum and vlPAG: (1) projections
from the vlPAG to the cerebellum were tested as “IO” projections
(glutamatergic), as based on previous studies (Koutsikou et al.,
2014) it is likely that projections from the vlPAG to the MCN
pass via the inferior olive (IO; Figure 2A) (2) projections
from the cerebellum to the vlPAG included multiple options,
as studies from our group and others (Frontera et al., 2020;
Vaaga et al., 2020; Lawrenson et al., 2022) have shown that MCN
glutamatergic projecting neurons synapse to different classes of
neurons in the vlPAG such as excitatory glutamatergic or inhibitory
GABAergic neurons as well as modulatory dopaminergic neurons.
Therefore three separate models were included for MCN-PAG
connectivity: a connection from cerebellum to PAG reaching only
an excitatory glutamatergic population (Figure 2B), a connection
from cerebellum to PAG reaching glutamatergic and inhibitory
GABAergic connections (Figure 2C), an “all” connection from
cerebellum to PAG, reaching all PAG populations (Figure 2D),
DCM does not currently model dopaminergic neurons behavior,
therefore these were not modeled directly, but are likely to

TABLE 1 Dynamic causal model (DCM) specification.

Specification
(DCM.options)

Description Parameter
used

Common parameters

Analysis Data feature to be modeled ERP

Model Type of neural mass model ERP

Spatial Type of spatial (forward) model LFP

Trials Indices of trials (conditions) 1

Tdcm Time window in ms (start, end) (1, 200)

Onset Stimulus onset in ms (component 1,
component 2)

(10, 40)

Dur Stimulus dispersion (standard deviation)
in ms (component 1, component 2)

(8, 8)

τ Receptor time constant (excitatory,
inhibitory)

(8, 16)

Distinct model parameters

“Glu”; “IO” Extrinsic rates, region to region
connectivity

1

“Glu-GABA” Extrinsic rates, region to region
connectivity

1/2

“All” Extrinsic rates, region to region
connectivity

1/8

List of the specifications and their description used in this study. Trial was set as 1 as each trial
block was computed on a separate DCM. The time window (Tdcm) was set to include the
time window of the main ERP component. The onset parameter estimates when the stimulus
(in this case tone offset at time 0) might be activating the areas of interest, two values were
selected to reflect the two deflections found in the ERPs. The stimulus dispersion provides
an indication of the standard deviation of the estimated onset.

be involved in the dynamics between these areas and will be
considered in the discussion.

Bayesian model selection

Bayesian model selection (BMS) is used to test the best model
among a set of different hypotheses about how a specific dataset
was generated (Stephan et al., 2009). The inversion of DCMs gives
the posterior estimates of intrinsic (within brain area) and extrinsic
(between brain areas) connectivity and the marginal likelihood (or
evidence) for that model.

The evidence for each model is then compared to select the
best model. In this study BMS was used to (i) select between two
neurobiological models, one with self-recurrent connection that
enhances inhibitory interneurons activity (with ii-to-ii) and one
without this connection (without ii-to-ii) [see Moran R. et al. (2013)
for detailed differences between these models] (as both produced
a good fit of the data) and (ii) select between models of extrinsic
connectivity between cerebellum-PAG (in this case a null model
was also added, this is the simplest model, with two parameters
set with a mean of zero and a prior variance of zero meaning that
cannot be optimized during model inversion). In both cases, the
model with highest evidence is then selected as the best model.

A BMS random-effect analysis (RFX) was used in this paper, to
consider that the best model could differ between subjects, that have
an unknown population distribution.

Parametric empirical bayes

Parametric Empirical Bayes (PEB) is a hierarchical statistical
model over parameters that allows one to test hypotheses on
behavioral covariates across animals. Here we used the method
to investigate the relationship between connection strengths and
freezing, as an alternative to classical statistical methods, as it
accounts for uncertainty in parameter estimates (variance) using
the full parameter posterior, allowing to look at group effects and
also between-subjects differences. Moreover, PEB was particularly
appropriate for this data set as it is a more sensitive statistical
method for small group size data with high variance. In addition, it
allows to test for the absence of null hypothesis, therefore allowing
to check for the absence of an effect.

Parametric Empirical Bayesian uses the DCMs per animal
(n = 6) and session (n = 5) (total of 30 models in this case).
The “between subject” design matrix contains information of
the commonalities across subjects and the effects of interest
(covariates). In this case, covariates of group mean, trial in
extinction block and freezing were included. The data were
mean-centered so that the first regressor represents group mean
effective connectivity. In the within-subjects design matrix it was
instead defined that the connectivity matrix can receive between-
subject effects. In other words, indicating that the strength of the
connections between cerebellum and PAG is the effect of interest.

The evidence of the estimated parameters is compared
by selecting full and reduced models in which the estimated
parameters are switched either on or off (i.e., the models that take
into account all, some or none of the covariates, see Figure 5B).
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Finally, significant changes in connections (when they have a
posterior probability of being greater than 0.95) are identified using
Bayesian Model Reduction (BMR), a tool used to prune parameters
that do not contribute to the model evidence. For a more detailed
description of this methods see Zeidman et al. (2019).

Statistical analysis

Graphical figures were plotted either in MATLAB or GraphPad
Prism and statistical analysis was performed using either GraphPad
Prism or R software. One-way ANOVA was used to compare
changes in the peak amplitude of the ERPs across different blocks
of extinction. A linear mixed-effects model with random intercept
was used to investigate the relationship between the strength of
the connection and freezing. Diagrammatic figures were made on
Inkscape and BioRender.

Results

Analysis of neural recordings in the MCN and vlPAG during
an auditory fear conditioning task (Figure 1A) revealed that these
two brain areas reliably generate ERPs (see Figure 1D for the group
average waveforms) time locked to the offset of the conditioned
tone. The characteristics of these ERPs, such as onset latency and
changes in peak to peak amplitude during extinction were first
reported in Lawrenson et al. (2022, see their Figure 3). The focus
of the current paper is to use the same dataset and apply DCMs to
determine the dynamics of connectivity between MCN and vlPAG
and its relationship to freezing behavior.

A Bayesian model selection (BMS) was performed to verify
which was the best neural mass model between the with ii-to-ii and
the without ii-to-ii, that were both found to produce a good fit of the
dataset. The winning model was without ii-to-ii which obtained a
0.93 exceedance probability, indicating that there is 93% confidence
that this model is better suited to represent our data.

Two adapted models were then created using the “without
ii-to-ii model” to represent cerebellar and PAG circuits, while
maintaining the existing DCM structure (Figure 2, as described
in Section “Materials and methods”). These models were used to
identify the most likely extrinsic (between-region) connectivity
model to represent MCN-vlPAG dynamics (see Section “Materials
and methods” for rationale of these models). Five models
were tested (Figure 2E); Four models were based on different
representations of MCN-PAG connectivity while the last was a null
hypothesis model with no extrinsic connection and therefore no
input between the MCN and vlPAG (note that this is the simplest
model).

To define the winning model, for each model (1–5), a parameter
estimation was performed and the obtained DCMs were then
placed in a BMS-RFX. Model 1 (Figure 3B) had the highest
exceedance probability (0.59; Figure 3A), and therefore we selected
this to continue the investigation of connectivity and behavior.

Model 1 includes bidirectional glutamatergic (i.e., excitatory
only) connections (Figure 3B). In summary, the proposed circuitry
between MCN and vlPAG assumes that: MCN has an excitatory
projection to glutamatergic vlPAG neurons (and/or dopaminergic

neurons, but this is not possible to test with the current models),
while vlPAG projection neurons send excitatory input to the
cerebellar nuclei neurons via the inferior olive (IO). The model
provides a good fit for the majority of individual responses,
predicting ERPs in both the MCN and vlPAG (Figure 3C). In one
case (TT5) the MCN response was modeled less well, suggesting
that in this specific case a different neuronal architecture may have
been involved. Indeed, in this animal, histological reconstruction
of the recording electrode tip position revealed a more dorsal
position in the cerebellum compared to the other cases (see
Figure 1B).

Reassuringly, the model was able to distinguish between 50 Hz
electrical noise and biological response, for example in TT6
(Figure 3C) the predicted response was smoothed to follow the ERP
waveform and not the noise related signal. This provides us with
confidence that the model is indeed fitting the biological response.

The outputs from the DCMs of model 1 were then used
to investigate changes in the strength of coupling between trial
blocks for each direction of the connection (MCN to vlPAG
versus vlPAG to MCN). For the MCN to vlPAG projection, an
initial increase in strength of the connections in blocks 1, 2 was
observed followed by a decrease in most animals and a subsequent
increase at block 4 (by which most animals have extinguished
fear), in block 5 there was again a reduction in strength of the
connection. However, no significant statistical difference was found
between the trial blocks [Figure 4A; F(1.393,6.619) = 0.8398,
p = 0.432, mixed-effects analysis]. The strength of the vlPAG to
MCN coupling, was more linear, showing a gradual increase of
strength of connection. This was observed from trials 1–3, with
a sudden decrease in trial 4 and 5, but there was no significant
difference [Figure 4B; F(1.690,10.14) = 1.919, p = 0.198, mixed-
effects analysis].

In addition we tested if the strength of the coupling between
these regions correlated to freezing behavior. In both cases there
was no significant correlation between the two variables (MCN-
vlPAG; Figure 4C; R2 = 0.061, p = 0.194; vlPAG-MCN; Figure 4D;
R2 = 0.016, p = 0.511; Pearson’s correlation).

PEB analysis

To address the variance (noise of the data) amongst the
subjects, another statistical method was used to assess dependencies
between covariates: PEB, that allows for more precise estimates
compared to classical methods.

Parametric Empirical Bayesian uses DCM output modeled
as commonalities between subjects and takes into account
trial number and freezing levels as covariates (Figure 5A).
A comparison of reduced and full models (see Section “Materials
and methods” and Figure 5B) is then used to identify which model
best represents the data (Figures 5A–C).

Application of PEB to the dataset revealed that the full model
(that accounts for the influence of both trial number and freezing
levels on the neural data) was the best performing (98% model
probability, Figure 5C), demonstrating that both trials and freezing
parameters are needed to explain the group effects.

The winning full model was used to determine the influence
of each covariate (trial number and freezing) on the two neural
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FIGURE 3

Winning neural model of MCN-vlPAG connectivity. (A) The model probability for each model tested, obtained from BMS. (B) Schematic
representation of the winning model (model #1) showing excitatory extrinsic projections from the PAG to the cerebellum. (C) For each animal
(TT1-6) the predicted ERP (dashed lines) using Model 1 is plotted in comparison with the real ERP data (filled lines) for the vlPAG (blue) and MCN (red).

pathways (i.e., MCN- vlPAG versus vlPAG to MCN). While neither
direction better accounted for the commonalities (strength of
connections, Figures 5D, G), the MCN-vlPAG projection had
higher probability of explaining changes due to trial number and
freezing (Figures 5H, I). Examination of the effect size showed
that the MCN-vlPAG pathway had a negative effect of trial and
freezing, i.e., higher connectivity strength of MCN-vlPAG would
lead to reduced freezing behavior (Figures 5E, F), reproducing the
trend seen with the correlation analysis (Figure 4C).

These results are in agreement with our hypothesis that
offset signals are a correlate of predictive processes and are

modulated by the MCN-vlPAG pathway during extinction of
conditioned freezing.

Discussion

While it is now widely accepted that the cerebellum contributes
to survival circuits, and is involved in the acquisition, consolidation
and extinction of fear processes, the underlying neural activity and
mechanisms that encodes these adaptive changes is still unclear.
Here we propose that the cerebellum supports extinction to reduce
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FIGURE 4

Changes in MCN-vlPAG coupling strength throughout extinction. (A) The strength of MCN-vlPAG connectivity during each trial block (1–5). Bar
graph shows mean ± SEM, individual data points are shown in different colors for each animal. (B) Same as A but for vlPAG-MCN connectivity.
(C) Correlation between strength of connection and freezing percentage for the MCN-vlPAG pathway, data points shown in different color for each
animal, black line shows overall linear regression of data. (D) Same as C but for PAG-MCN pathway. No statistical difference was found in any of the
comparisons shown in this figure.

the conditioned fear memory by increasing its connectivity with
the vlPAG, time locked to the offset of a conditioned tone;
where a prior US (footshock) has been paired with a predictive
CS (auditory cue).

We show that DCMs can be reliably used to study the
connectivity of rodent ERP signals from subcortical structures
to investigate the relationship between changes in coupling and
behavioral outputs. In particular, we have shown that MCN-vlPAG
pathway connectivity changes over the time course of extinction,
reflected by changes in freezing behavior. Lower freezing levels
are paralleled by increases in coupling between these two regions,
suggesting that the communication between the cerebellum and
vlPAG might be important in the extinction of conditioned
freezing. The role of the PAG has been extensively studied
in defensive states and many neural signatures encoding fear
related processes have been identified. Our latest study (Lawrenson
et al., 2022) and other groups have identified neural responses at
tone onset and related such activity to multiple aspects of fear
processing, such as maintenance of an aversive memory (Watson
et al., 2016), prediction error (Johansen et al., 2010; Ozawa et al.,
2017) and threat probability (Wright and McDannald, 2019). By
comparison, responses to a conditioned tone offset within the
vlPAG and MCN, are much less well described, although such
responses have been observed in other brain regions (Quirk et al.,
1997; Kim et al., 2015; Liu et al., 2019). As such, the functional and
behavioral role of such a response is yet to be determined.

Several studies (Koutsikou et al., 2014; Cacciola et al., 2019;
Frontera et al., 2020; Vaaga et al., 2020; Lawrenson et al., 2022)
have investigated the interactions between the cerebellum and the
PAG (a key area in the regulation of defensive behaviors), and
have shown that pathways connecting these two areas participate
in the expression of fear behaviors, during both acquisition and
extinction of aversive stimuli. None of these studies have found
evidence that modulation of the MCN-vlPAG pathway changes
general motor coordination, suggesting that changes in freezing
behavior are related to defensive state. Together with behavioral
changes during early extinction (recall of the fear memory), we
previously found that the vlPAG offset responses were affected
by cerebellar manipulation (Lawrenson et al., 2022). To further
investigate if MCN-vlPAG connectivity reduces conditioned fear
during extinction, we applied DCM to the ERPs at tone offset
recorded from the cerebellum and PAG.

This allowed us to infer that the strength of the coupling
between the cerebellum and vlPAG is inversely related to freezing
behavior. We have reported results acquired both with classical
statistics and PEB, although classical statistics did not show a
significant effect, the PEB regression coefficient was high. We
believe that PEB is the most suited statistical approach for this
specific data set. In fact, PEB allows to identify differences with
small group size data that has high variance (noisy estimates); it
allows us also to test for the absence of the hypothesis, therefore
enabling to check for the absence of an effect together with the
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FIGURE 5

Parametric Empirical Bayesian (PEB) analysis of cerebellar-vlPAG connectivity during extinction. (A) The design matrix used to compute PEB. Each
line is a different combination of animal/trial; column 1 represents the commonalities (group mean), column 2 represents the trials and column 3
represents the corresponding freezing levels. (B) Connectivity matrix indicating the models used in the BMS. A white square indicates that the
parameter was included (on), while black square indicate that the parameter was excluded (off). (C) Model probability for each of the models shown
in panel (B) shows that both trial and freezing effects (Second level Model 1) were present in changes in connectivity. (D–F) Bayesian Regression
Coefficient of commonalities, trial and freezing on CB-PAG and PAG-CB connections; values of 0 indicate no statistical influence of the parameters
on the changes in connectivity. (G–I) Posterior probabilities for CB-PAG and PAG-CB connections for commonalities, trial and freezing effect.

presence of it. The results reported with PEB are consistent with
behavioral findings from our group (Lawrenson et al., 2022), where
an inhibition of the pathway resulted in lower rates of extinction
(higher freezing levels for a prolonged time). Our results are
also consistent with Frontera et al. (2020) who provided evidence
in mice that chemogenetic inhibition of the pathway during
extinction increases freezing levels, while optogenetic activation
decreases them. The model here presented provides for a causal
analysis of information flow using a plausible biophysical model,
that cannot be assumed by correlating units with behavior. In
associatively conditioned fear learning, prediction error signals
play an important role in the acquisition and extinction of fear

memories. During the initial stages of unreinforced extinction
training the conditioned tone predicts an aversive shock when none
occurs, resulting in a negative prediction error. Offset responses are
present during these early extinction trials. Repeated omission of
the aversive shock results in extinction learning in which the tone
no longer predicts the occurrence of the aversive shock (instead
predicting its absence). Offset responses decrease in amplitude
during this extinction learning process. Therefore, tone offset
responses could be representative of predictive signals that support
conditioned behavior and their absence may contribute to fear
extinction processes. Although the current study has allowed us
to explore the dynamics between MCN and vlPAG by relying on
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neurobiologically motivated models, there are some limitations on
the use of DCM in this context. First, Vaaga et al. (2020) has shown
that although the MCN targets glutamatergic and GABAergic
neurons, it also targets a high percentage of dopaminergic neurons
in the vlPAG. Studies in vitro demonstrated that activation of the
MCN projection onto dopaminergic neurons favors inhibition of
glutamatergic neurons that are known to directly regulate freezing
behavior (Vaaga et al., 2020), leading them to the conclusion that
suppression of cerebellar activity may facilitate freezing which is
consistent with our hypothesis. This suggests that the mechanisms
modeled here with glutamatergic and GABAergic neurons might
also require dopaminergic activity. In support of the hypothesis
that offset responses might encode predictive signals, dopaminergic
neurons were previously shown by Groessl et al. (2018) to encode
a positive prediction error in the vlPAG (although in this case the
response was likely to be related to both shock and offset response).
The influence of dopaminergic activity might still be implicitly
captured in these models, but is not accounted for directly as
neuromodulators such as dopamine operate at different (slower)
time scales that cannot be captured in the DCM biophysical models.
Nonetheless the overall synaptic gain that is represented in the
current model can still represent the modulation described by
Vaaga et al. (2020) and that regulates the final freezing behavior.

Another important consideration is that the neuronal models
used did not reflect the detailed structure of the brain regions
under study. For example, the current cerebellar model lacks an
excitatory climbing fiber projection from the inferior olive to
Purkinje cells. Nonetheless, the models fitted the dataset very well,
presumably because they were able to reflect the overall balance
of intrinsic excitatory and inhibitory connections on the output
neuronal populations.

Despite these potential limitations, the present study presents
a first interpretation of the neural mechanisms that underpin
cerebellar-PAG pathway modulation of fear behaviors, using ERPs
and DCM. Offset responses likely represent an important neural
feature in fear circuits and could be a key to understanding how
fear extinction is regulated.
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