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There is general agreement that cerebrocerebellar interactions via

cerebellothalamocortical pathways are essential for a cerebellar cognitive

and motor functions. Cerebellothalamic projections were long believed target

mainly the ventral lateral (VL) and part of the ventral anterior (VA) nuclei, which

project to cortical motor and premotor areas. Here we review new insights from

detailed tracing studies, which show that projections from the cerebellum to the

thalamus are widespread and reach almost every thalamic subnucleus, including

nuclei involved in cognitive functions. These new insights into cerebellothalamic

pathways beyond the motor thalamus are consistent with the increasing evidence

of cerebellar cognitive function. However, the function of cerebellothalamic

pathways and how they are involved in the various motor and cognitive functions

of the cerebellum is still unknown. We briefly review literature on the role of

the thalamus in coordinating the coherence of neuronal oscillations in the

neocortex. The coherence of oscillations, which measures the stability of the

phase relationship between two oscillations of the same frequency, is considered

an indicator of increased functional connectivity between two structures showing

coherent oscillations. Through thalamocortical interactions coherence patterns

dynamically create and dissolve functional cerebral cortical networks in a task

dependent manner. Finally, we review evidence for an involvement of the

cerebellum in coordinating coherence of oscillations between cerebral cortical

structures. We conclude that cerebellothalamic pathways provide the necessary

anatomical substrate for a proposed role of the cerebellum in coordinating

neuronal communication between cerebral cortical areas by coordinating the

coherence of oscillations.

KEYWORDS
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Introduction

A defining characteristic of cerebral cortical function is
interaction between multiple cerebral cortex areas forming a
temporary task-specific functional network [e.g., (Damasio, 1989;
Vaadia et al., 1995; Mesulam, 1998; Ayzenshtat et al., 2010)]. The
formation and resolution of such task specific network involves
precisely coordinated modulation of functional connectivity,
defined as periods of increased correlation of neuronal activity
(Aertsen et al., 1989; Vaadia et al., 1995). How functional
connectivity is modulated at time scales compatible with normal
brain function is not fully understood but evidence suggests a
crucial role of the thalamus in coordinating functional connectivity
between cerebral cortical areas in a task dependent manner
(Ketz et al., 2015; Nakajima and Halassa, 2017; Schmitt et al.,
2017). The term functional connectivity in essence describes
the temporal correlation of neuronal activity between two
structures measured as spike activity, local field potentials or
using BOLD signals (Aertsen et al., 1989; Buckner et al., 2013).
In a seminal publication, Pascal Fries proposed a mechanism
for controlling functional connectivity between brain structures
through the modulation of coherence of their neuronal oscillations
(Fries, 2005), a mechanism he termed “communication through
coherence” (CTC). Coherence of oscillations is a measure of
how stable the phase relation between two oscillations of
similar frequency is. Typically, coherence values change in a
task dependent manner. One of the best studied examples of
task related coherence increases occurs between the prefrontal
cortex and dorsal hippocampus during decision making in spatial
memory tasks (Benchenane et al., 2010; Gordon, 2011; Liu et al.,
2022). The concept of communication through coherence has
since received substantial support from experiments showing
that coherence changes do indeed correlate with changes in
the effectiveness of neuronal signal (i.e., spike) transmission
(e.g., McAfee et al., 2018) and that changes in coherence are
linked to specific behaviors, with memory and working memory
related behaviors amongst the most thoroughly studied (Fell
and Axmacher, 2011; Gordon, 2011; Brincat and Miller, 2015;
Liu et al., 2022).

The concept of CTC thus provides an intriguing neuronal
mechanism for modulating information flow and integration
through the modulation of functional connectivity. Coherence
and synchrony between cerebral cortical areas is known to
critically depend on the thalamus and thalamocortical connectivity
(Destexhe et al., 1999; Jones, 2001; Habas et al., 2009; Browning
et al., 2015; Ketz et al., 2015; Mitchell, 2015; Hallock et al.,
2016; Nakajima and Halassa, 2017). What is unknown, however,
is how changes in coherence are controlled. Besides its massive
interconnection with the cerebral cortex, the thalamus is also
the key relay station for interactions between the cerebellum and
the cerebral cortex (Allen and Tsukahara, 1974; Angaut et al.,
1985; Habas et al., 2019). New anatomical studies have revealed
that projections from the cerebellum to the thalamus are far
richer and more widespread than previously believed and include
numerous thalamic nuclei involved in cognitive functions (Habas
et al., 2019; Fujita et al., 2020; Pisano et al., 2021). Considering
the crucial role of the thalamus in modulating coherence and

synchrony between cerebral cortical areas (Destexhe et al., 1999;
Jones, 2001; Habas et al., 2009; Browning et al., 2015; Ketz et al.,
2015; Mitchell, 2015; Hallock et al., 2016; Nakajima and Halassa,
2017), cerebellothalamic projections provide a robust interface
for the cerebellum modulate thalamic activity and thus shape
thalamocortical interactions. Here we review (1) evidence for the
role of the thalamus in coordinating synchrony and functional
connectivity between cerebral cortical areas, (2) recent literature
that revealed rich projections from the cerebellum to nearly all
subnuclei of the thalamus and (3) the evidence of a cerebellar
involvement in coordinating coherence of oscillations in the
cerebral cortex. We will focus on cerebellothalamic pathways that
are likely to be involved in spatial working memory and will
review a proposed new function of the cerebellum in the task-
dependent coordination of functional connectivity between the
medial prefrontal cortex (mPFC) and the dorsal hippocampus.
The mediodorsal nucleus (MD) and nucleus reuniens (RE) of
the thalamus deserve particular attention in this context due to
their dense reciprocal connections to the prefrontal cortex and the
reported role of the RE in coordinating coherence between the
mPFC and hippocampus (Vertes et al., 2007; Browning et al., 2015;
Ito et al., 2015; Ketz et al., 2015; Mitchell, 2015).

Cerebellothalamic pathways to
support sensorimotor and cognitive
functions

The thalamus can be divided into two major regions–the
dorsal region, containing anterior, lateral, medial, and posterior
groups of nuclei, and the ventral region, made up of the
thalamic reticular nucleus (TRN). The dorsal region is made of
both glutaminergic projections and GABAergic interneurons, that
receive input broadly from the cortex, subcortical structures, areas
of the brainstem, and the cerebellum and project to localized
areas of the cortex and striatum. The TRN only receives collateral
projections from thalamocortical and corticothalamic neurons
involved in somatosensory, sensory, and motor processes and
provides exclusively GABAergic input to the dorsal thalamus
(Habas et al., 2019). Traditional views associated the cerebellum
solely with sensorimotor and vestibular functions and the pathways
from the cerebellum to the thalamus were thought to be limited
to projections from the cerebellar nuclei (CN) to the ventral or
motor thalamus–specifically to the ventrolateral (VL) and parts
of the ventral anterior (VA) nuclei. Recent comprehensive tracing
studies have revealed far more extensive connections between
the CN and the thalamus, including thalamic nuclei involved
in cognitive functions (Bohne et al., 2019; Fujita et al., 2020;
Pisano et al., 2021).

Bohne et al. (2019) confirmed dense projections between the
fastigial, interposed, and dentate cerebellar nuclei and VL but
also found new projections in the laterodorsal thalamic nucleus.
Tracing experiments by Fujita et al. (2020) discovered broad
connections between the fastigial nucleus of the cerebellum
to several subnuclei throughout the thalamus, including the
MD, VL, VM, and centrolateral (CL), and parafascicular
nuclei. Pisano et al. (2021) performed a detailed study of
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cerebellothalamocortical pathways using trans-synaptic tracing
methods. Their results also show CN projections to multiple
thalamic nuclei outside of the ventral thalamus, including
the MD, TRN, lateral posterior nucleus, lateral and medial
geniculate nuclei, and zona incerta. Tracing experiments
primarily targeted the dentate, with some expression in the
interposed and fastigial nuclei. Retrograde tracing studies found
axons from both the dentate and interposed nuclei in the
TRN.

These findings that cerebellar projections from all three
cerebellar nuclei target the thalamic nuclei involved in cognitive
functions such as the MD, CL, and TRN align well with the now
substantial evidence of cerebellar cognitive and affective functions
(Schmahmann, 2004; Ito, 2008; Buckner, 2013; Liu et al., 2022).
Detailed physiological studies of the different cerebellothalamic
pathways furthermore revealed substantial pathway-specific
differences in cerebellar influence on thalamic target neurons.
While it was known that cerebellothalamic projections were
excitatory, it turns out that the impact cerebellar projections
have on postsynaptic thalamic neurons varies greatly between
thalamic target nuclei (Gornati et al., 2018). Gornati et al. (2018)
investigated projections from the interposed nucleus to the VL,
VM, and CL thalamic nuclei and found significant differences in
the sizes and density of synaptic terminals and the amplitude of
postsynaptic responses. For example, glutamatergic projection
terminals from the CN to the VL thalamus were significantly
higher in density, displayed more complex synaptic interactions,
and resulted in greater excitatory post-synaptic potentials than
CN projections to the CL. Different cerebellothalamic pathways
also differ in the way cerebellar-receiving thalamic neurons affect
neuronal activity in their respective cerebral cortical target areas.
VL thalamus has been associated with parvalbumin-positive
neurons, which are found more densely in sensorimotor cortices,
hippocampal, and retrohippocampal regions and are associated
with spatial navigation and sensorimotor skills (Miao et al., 2017;
Gornati et al., 2018; Bjerke et al., 2021). Cerebellar-receiving VL
nucleus cells can also be categorized as “driver” inputs to the
cortex, which further indicates a role in information processing
and ongoing activity adaptation. While cerebellar projections
to the VM and CL nuclei did not display significant synaptic
differences from each other, the thalamocortical projections
from the VM and CL nuclei are markedly different from those
of the ventrolateral thalamic nuclei both in projection patterns
and binding protein (Gornati et al., 2018). For example, VM
and CL thalamic nuclei contain higher densities of calbindin-
positive neurons and project to brain regions involved in
behavior and emotion, including the infralimbic cortex, ventral
tegmental area, anterior cingulate cortex, midbrain raphe
nuclei, and periaqueductal gray (Van der Werf et al., 2002;
Bjerke et al., 2021).

Taken together these findings show that
cerebellothalamocortical pathways seem to involve most if not all
of the thalamic nuclei, fitting with the rich repertoire of cerebellar
motor, cognitive and affective functions. Our understanding
of the physiological properties and differences between these
pathways is in its infancy and an in depth investigation is essential
to any attempt at understanding cerebellar contribution to
brain functions.

Sensorimotor functions

Sensory feedback continuously informs motor planning, and
the cerebellar contribution mostly from the medial and interposed
nuclei to this ongoing process provides a concrete example of
its influence on motor cortical areas via the thalamus, which
can be evaluated through effective execution of movements.
Looking to the vibrissal system of rodents as a well-characterized
model system where sensory input and motor output can be
ascertained, the effect of sensory feedback on motor planning is
made apparent by changes in whisking behavior as an animal
encounters a tactile stimulus. Rodents tend to perform slow, low-
amplitude sweeps with their whiskers in familiar environments,
but then transition to rapid high-amplitude sweeps in a novel
environment or when a novel stimulus is encountered (Arkley
et al., 2014). For this behavioral adaptation to be effective
however, there must be a mechanism for streams of sensory
information to reach cortices responsible for motor planning and
execution.

There are three (non-mutually exclusive) mechanisms
established in functional and neuroanatomical descriptions
of the rodent vibrissal system that allow sensory information
to reach the motor cortex. First, a direct pathway between
whisker sensory cortex (vS1) and the facial nuclei for whisker
retraction allows for sensory input during whisker protraction
to directly initiate retraction behavior (Matyas et al., 2010). This
primes the system for more rapid protraction and active sensing
when there is an object in the vibrissal field to be explored.
Second, vS1 activates motor cortices for whisker retraction via
cortico-cortical projections (Matyas et al., 2010; Mao et al.,
2011), after vS1 itself is excited by tactile input. And third,
neurons of cerebellar crus I and II integrate sensory and motor
information streams via pontine and trigeminocerebellar mossy
fiber inputs, and convey this combined sensorimotor information
to whisker motor cortex (vM1) by way of the VL thalamic nuclei
(Proville et al., 2014).

Importantly, experiments have shown that both the second
and third mechanisms rely on cerebellar modulation of thalamic
activity for effective somatomotor integration. In the less-
obvious case of cortico-cortical communication between vS1 and
vM1, synchronous rhythms between structures that promote
this form of communication require an intact cerebellum
(Popa et al., 2013; Lindeman et al., 2021). Using various
methods to inhibit the cerebellar nuclei, it has been shown
that cerebellar inactivation reduces the firing rate in motor
thalamic neurons (Popa et al., 2013), decreases gamma-rhythmic
coherence between vS1 and vM1 (Popa et al., 2013; Lindeman
et al., 2021), and impairs the ability of animal to adapt
whisking strategies appropriately in a changing sensory context
(Proville et al., 2014).

Execution of head, limb, eye, or truncal movements may
rely on different or additional pathways for sensory feedback
in motor planning, but the available evidence suggests that
cerebellothalamocortical pathways are crucial for the planning
and execution of these movements as well. Each of these
somatic regions exhibit robust representation within the
cerebellum (Grodd et al., 2001; Manni and Petrosini, 2004;
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Grimaldi and Manto, 2012), with evidence of integrated
sensory and motor representations (Wiestler et al., 2011).
Somatic areas exhibit robust correlation with corresponding
regions of the motor cortex (Buckner et al., 2011; Saadon-
Grosman et al., 2022), which are connected via thalamic nuclei.
Therefore, the cerebellar contribution to motor planning in
other somatic domains is likely to be similar in principle to
the mechanisms outlined here, albeit more complex with the
execution of more complex movements in a more spatially
complex environment.

Cognitive functions

In the following two sections we will discuss the roles
of the MD thalamic nucleus and the nucleus reuniens (RE)
in shaping cerebral cortical activity and cognitive function.
The MD nucleus prominently projects to the mPFC, an area
of cerebral cortex widely associated with cognitive function
(Guldin et al., 1981) and these projections allow patterns of
prefrontal activity to persist when task-relevant information
needs to be held in mind. The RE has been shown to
play a key role in coordinating the coherence of neuronal
oscillations, and hence the functional connectivity, between the
medial prefrontal cortex and the hippocampus (Hallock et al.,
2016) which is critical for spatial working memory (SWM) and
navigation.

Mediodorsal nucleus

As a general rule, thalamic activity directs the flow of
information to and throughout the neocortex. For lower sensory
cortical areas, the role of the thalamus is manifest as a sort
of sensory relay station, where thalamic impulses modulate
excitability at appropriate times and convey specific sensory
information to cortical neurons. For higher-order areas like the
PFC, the thalamus conveys no specific information, but instead
seems to modulate the tone of cortical neurons in a manner
that is topographically selective and precisely timed for the
gating and maintenance of task-relevant information (Mitchell,
2015; Schmitt et al., 2017; Honjoh et al., 2018). The mediodorsal
(MD) thalamic nucleus is interconnected with the prefrontal
cortex in mammals (Guldin et al., 1981; Ray and Price, 1993;
Kuramoto et al., 2017), and the timing of MD activity affects
the flow of information on two different timescales. First, on
the order of hundreds of milliseconds, increased MD activity
signals that sensory information is being presented which is
relevant to gain a future reward. On the timescale of milliseconds,
sustained MD activity drives fast interneuron rhythms while
disinhibiting principal neurons (Anastasiades et al., 2020),
promoting communication between principal neurons that signal
coherently with the inhibitory rhythm. The result, as demonstrated
by Schmitt et al. (2017) is thalamic activity that promotes precisely
timed communication between cortical neurons that are tuned
to common information, which is thought to help sustain the
neuronal representation of that information during a delay
period.

How the MD is activated on the broader timescale in an
appropriate manner for a given task has not yet been fully
explored. Some of this thalamic recruitment is thought to occur
as a top-down phenomenon, initiated by the PFC itself when
conscious effort is made to maintain information in mind for
decision-making. The cerebellum is well positioned to assist in
the task-relevant modulation of MD as well, and likely plays a
role that is mechanistically similar to how it promotes functional
connectivity within the sensorimotor system. In rodents, the
fastigial nuclei project to the lateral MD thalamic nuclei (Fujita
et al., 2020), which in turn project to the prelimbic prefrontal cortex
to modulate inter-neuronal communication (Divac et al., 1993;
Kuramoto et al., 2017). Functional circuit mapping techniques
in rodents have shown that projections to the cerebellum (via
the pons) from the prelimbic PFC predominantly terminate
within the lateral vermis (Watson et al., 2009), which in turn
project to the fastigial nuclei to close the circuit (Fujita et al.,
2020). Given the known anatomy, the cerebellum could have a
supportive role in recruiting the MD nuclei in response to PFC
activity. Additionally, the vermal cortex that provides input to the
fastigial nuclei may serve as a substrate for potential predictive
activation of MD in the appropriate sensory context, but further
information is needed as to what sources of input converge in the
vermis.

In humans, the prefrontal cortices and neocerebellum are
selectively expanded in comparison to rodents (Balsters et al.,
2010), and primates show more numerous and extensive pathways
connecting the cerebellum, thalamic nuclei, and prefrontal cortex.
In human imaging studies, MD shows a broader functional
relationship with the cerebellar hemispheres, which is notably
diminished in patients with schizophrenia (Anticevic et al., 2014).

Nucleus Reuniens

We focus on the mPFC and hippocampus because several
independent studies have shown that SWM requires the
coordinated activity of the mPFC and dorsal hippocampus
(Churchwell and Kesner, 2011; Gordon, 2011). Simultaneous
electrophysiological recordings in the mPFC and hippocampus
during performance of SWM tasks have shown that the decision
process is associated with an increase in the coherence of theta
oscillations between the mPFC and dorsal hippocampus (Jones and
Wilson, 2005; Hyman et al., 2010; Benchenane et al., 2011; Gordon,
2011; Liu et al., 2022). A comparison of correct and incorrect
decisions revealed that mPFC-hippocampal theta coherence
reached higher values during correct compared to incorrect
decisions, supporting a functional role of coherence in this task
(Jones and Wilson, 2005; Hyman et al., 2010; Liu et al., 2022).
Coherence of neuronal oscillations does not impact brain function
unless it affects changes in spike activity within the communicating
regions. It is important to note that in the context of SWM two
studies measured both spike activity and local field potential
(LFP) coherence and showed that an increase in coherence was
accompanied by an increase in entrainment of mPFC spike activity
to the phase of the coherent mPFC-hippocampal theta oscillations
(Jones and Wilson, 2005; Hyman et al., 2010). For additional
examples of experimental support an influence of coherence on
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spike activity see also (Jones and Wilson, 2005; Siegel et al., 2008;
Bosman et al., 2012; Brunet et al., 2014; Sigurdsson and Duvarci,
2016; Bonnefond et al., 2017; Palmigiano et al., 2017; McAfee
et al., 2018). Thus, changes in coherence between the mPFC and
hippocampus are strongly implicated in SWM. The thalamic
nuclei involved in controlling mPFC-hippocampal coherence
could thus serve as the interface for cerebellar contributions
to SWM decision making which involves cerebellar lobulus
simplex as recently reported in mice performing a SWM task
(Liu et al., 2022).

When considering the influence of the cerebellar cortex on
mPFC-hippocampal coherence during SWM decision making,
the RE is a possible key thalamic nucleus involved in the
modulation of that coherence. Neurons in the RE receive excitatory
inputs from the prelimbic and infralimbic areas of mPFC and
in turn send dense excitatory projections to dorsal CA1 region
of the hippocampus (Vertes et al., 2007). While direct ventral
hippocampal projections to mPFC had already been established
(Ferino et al., 1987; Carr and Sesack, 1996) this tracing study
showed that hippocampal-prefrontal connectivity was in fact
reciprocal via the RE. Additional tracing studies have also identified
populations of RE cells that send collaterals to both mPFC and
hippocampus (Hoover and Vertes, 2007; Varela et al., 2014),
establishing bidirectional connectivity between mPFC and RE. The
functional implications of this pathway have since been further
explored in the context of working memory (Hallock et al., 2013;
Ito et al., 2015).

Dolleman-van et al. (2019) and Griffin (2021) wrote
comprehensive reviews about the role of RE in coordinating
hippocampal-prefrontal interactions during working memory.
One report central to both these reviews was a study from
Ito et al. (2015) which showed that neurons in the mPFC,
RE, and CA1 in rats exhibited trajectory-dependent firing
in a continuous alternation task using a modified T-maze.
Trajectory-dependent firing is a key component to spatial
navigation in that it contains predictive information about future
positions as well as instantaneous position, which is crucial to
establishing a “goal path.” Permanent inactivation of RE via
lesions significantly impaired trajectory-dependent firing in CA1.
Transient optogenetic inactivation of RE neurons also led to a
significant decrease of trajectory-dependent firing in CA1. This
study shows that projections from mPFC to CA1 via RE are crucial
for trajectory-dependent firing in CA1 and provides additional
evidence for the role of thalamic nuclei in coordinating long-range
communication between cortical regions (Ito et al., 2015).

In addition to RE’s role in facilitating trajectory-dependent
firing, new work has shown that RE contributes to the coordination
and stabilization of neuronal assemblies within mPFC and
hippocampus (Angulo-Garcia et al., 2020). In experiments using
anesthetized rats and in vivo electrophysiology, it was shown
that assemblies of RE neurons activate sequentially during “up
states” of slow LFP oscillations, which preceded activation of
mPFC assemblies. “Up states” are defined as the periods from
the peak to the trough of the filtered slow oscillation LFP signal.
Chemogenetic inactivation of RE disrupted mPFC assembly onset
during up states as well as hippocampal assemblies present during
sharp wave ripples. The authors suggest that RE may be necessary
to stabilize mPFC and hippocampal cell assemblies. This report

provides further evidence that RE is a functional hub for prefrontal-
hippocampal interactions (Angulo-Garcia et al., 2020).

We currently know little about cerebellar projections to RE.
The most detailed recent tracing studies suggest that projections
exist but might be sparse (Fujita et al., 2020; Pisano et al., 2021).
More focused studies are required to determine the extent and
physiological effectiveness of cerebellar influence on the RE.

Summary

Understanding the broad involvement of the cerebellum in
motor, affective and cognitive brain function it is essential to
gain a detailed understanding of the pathways that connect the
cerebellum with the cerebral cortex via the thalamus. We have
reviewed rich new evidence showing that cerebellar projections
from all three cerebellar nuclei seem to reach most, if not all
nuclei of the thalamus and that each of these pathways may have
unique physiological properties in terms of cerebellar influence
on thalamic neurons and in terms of the influence of cerebellar
receiving thalamic neurons on the cerebral cortex. Clearly, in order
to understand the role of the cerebellum in its various functions that
require cerebrocerebellar interactions, the cerebellothalamocortical
pathways must be a major focus of future investigations.
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