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A pipeline is proposed here to describe different features to study brain

microcircuits on a histological scale using multi-scale analyses, including

the uniform manifold approximation and projection (UMAP) dimensional

reduction technique and modularity algorithm to identify neuronal ensembles,

Runs tests to show significant ensembles activation, graph theory to show

trajectories between ensembles, and recurrence analyses to describe how

regular or chaotic ensembles dynamics are. The data set includes ex-vivo

NMDA-activated striatal tissue in control conditions as well as experimental

models of disease states: decorticated, dopamine depleted, and L-DOPA-

induced dyskinetic rodent samples. The goal was to separate neuronal

ensembles that have correlated activity patterns. The pipeline allows for

the demonstration of differences between disease states in a brain slice.

First, the ensembles were projected in distinctive locations in the UMAP

space. Second, graphs revealed functional connectivity between neurons

comprising neuronal ensembles. Third, the Runs test detected significant

peaks of coactivity within neuronal ensembles. Fourth, significant peaks of

coactivity were used to show activity transitions between ensembles, revealing

recurrent temporal sequences between them. Fifth, recurrence analysis

shows how deterministic, chaotic, or recurrent these circuits are. We found

that all revealed circuits had recurrent activity except for the decorticated

circuits, which tended to be divergent and chaotic. The Parkinsonian

circuits exhibit fewer transitions, becoming rigid and deterministic, exhibiting

a predominant temporal sequence that disrupts transitions found in the

controls, thus resembling the clinical signs of rigidity and paucity of

movements. Dyskinetic circuits display a higher recurrence rate between

neuronal ensembles transitions, paralleling clinical findings: enhancement

in involuntary movements. These findings confirm that looking at neuronal

circuits at the histological scale, recording dozens of neurons simultaneously,

can show clear differences between control and diseased striatal states:
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“fingerprints” of the disease states. Therefore, the present analysis is coherent

with previous ones of striatal disease states, showing that data obtained from

the tissue are robust. At the same time, it adds heuristic ways to interpret

circuitry activity in different states.

KEYWORDS

neuronal ensembles, striatum, Parkinson’s disease, L-DOPA induced dyskinesia,
UMAP, recurrence analysis, neural microcircuits, graph theory

1 Introduction

The basic mechanisms of brain functions like perception,
memory, attention, motor programs, emotions, and
decision-making are now being studied using a variety of
experimental techniques and theoretical frameworks (Rolls,
2016). Different pieces of knowledge are determined from
each experimental/theoretical configuration. Realizing what
objective data each one produces and putting them all together
into a coherent “big picture” are both difficult tasks. Recently
developed technologies for numerous simultaneous recordings
and the computing power to evaluate them have led to a
controversy over approaches that attempt to comprehend
multicellular recordings and neuronal populations without
sacrificing or omitting single cell resolution. The discovery
that brain neurons do not act alone but rather collaborate
to form groupings known as neuronal ensembles, which
exhibit spatiotemporal coactivation, is significant (Yuste, 2015;
Lara-González et al., 2022). When neurons in an ensemble are
engaged in spontaneous, stimulated, diseased, or task-related
activity, they fire in a coordinated manner (Ikegaya et al., 2004;
Harris et al., 2011; Pérez-Ortega et al., 2016; Hamm et al., 2017;
Sheng et al., 2019; Siniscalchi et al., 2019). The neural networks
with emergent populational features have connections made
between neuron groups rather than between individual neurons
(Figure 1; Hopfield, 1982; Buzsáki, 2010; Kampa et al., 2011;
Semedo et al., 2019; Rossi-Pool et al., 2021).

Hebb (1949) proposed the neuronal ensembles theory as cell
assemblies, and many research teams have recently refined it to
propose them as the fundamental nervous system processing
units (Figure 1; Buzsáki, 2010; Carrillo-Reid, 2021; Grillner,
2020, 2021; Lara-González et al., 2022). Although they may be
referred to by different names, they commonly share several
characteristics (Carrillo-Reid, 2021) and can be identified
depending on context, i.e., responding together to stimulus
(e.g., sensory inputs), causing an output (e.g., behavior),
or representing experimental conditions (e.g., pathological
states). It is considered that emergent properties of neural
networks are a consequence of the spatiotemporal dynamics of
coactive sets of neurons that alternate their activity following
recurrent sequences that resemble computational routines or

algorithmic processes that, together with a “modular” brain
theory and analytical techniques, may generate a large-scale
understanding of brain functions (Buzsáki, 2010). Here we
expose a pipeline that may serve to ask whether neuronal
samples of histological scale (dozens of neurons), commonly
used for medical diagnosis, are representative of underlying
ensembles of a larger scale by showing instructive and heuristic
changes under different experimental conditions.

One multicellular recording technique that makes it possible
to observe neuronal ensembles in culture, brain slices, or in vivo
brain preparations from different animal models (Carrillo-Reid
et al., 2008, 2009, 2016; Ahrens et al., 2013; Lock et al., 2015;
Pérez-Ortega et al., 2016, 2021; Serrano-Reyes et al., 2020) is
calcium imaging by using fluorescent indicators of neuronal
activity, including the expression of genetically engineered
calcium sensors in clusters of neurons via viral transfections or
from birth using transgenic animals (Lin and Schnitzer, 2016;
Wang et al., 2019). The purpose is to obtain videos of neuronal
activity with single cell resolution in different experimental
contexts (Yang and Yuste, 2017). The proposed pipeline uses the
information from a video acquired through a calcium imaging
experiment. However, it could be adapted to other multicellular
recording techniques. Figure 2 depicts several calcium imaging
setups as well as the method for locating regions of interest
(neurons) and computing the fluorescence signals indicative
of intracellular calcium levels. The final objective is to obtain
the spatiotemporal information of the neuronal activity present
in the field of view that can go from the histological to the
mesoscale level, including thousands of neurons (Stringer et al.,
2021). Instead of using “raw” calcium signals, which may
show misleading relationships when evaluated as simultaneous
recordings, spike timings estimated from calcium signals should
be employed (Carrillo-Reid et al., 2008; Pérez-Ortega et al.,
2016; Theis et al., 2016; Serrano-Reyes et al., 2020). Once this is
done, analytical methods for identifying and studying neuronal
ensembles are diverse, and a consensus has not yet been reached
(Wenzel and Hamm, 2021). Different methods have been used
in our laboratory with consistent and qualitatively similar
outcomes, including hierarchical clustering, dimensionality
reduction, similarity indices, and correlated activity (e.g.,
Carrillo-Reid et al., 2008, 2009, 2011; Jáidar et al., 2010;
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FIGURE 1

An illustration from Hebb that shows how recurrent transitions
between neuronal ensembles might be (represented as
“systems” in Hebb’s postulate). It proposes the possibility that
ensemble C can serve as a link between two ensemble chains,
thus participating in both, being the neuronal substrate for
associative learning (Hebb, 1949). In addition, a modular theory
can be inferred: each ensemble has inputs and outputs and
performs a task step. Alternating activity between them
performs the complete task or routine. Alternative pathways are
possible to link different procedures. Tools described in the
present article can show that this idea can be demonstrated
with identified neuronal ensembles (cf., Figure 5).

Pérez-Ortega et al., 2016; Serrano-Reyes et al., 2020; Duhne
et al., 2021), indicating that, despite the constraints of calcium
imaging, ensemble identification and activity sequences may
provide robust data. But dimensionality reduction techniques
are getting better all the time. Recent applications of the
uniform manifold approximation and projection (UMAP)
have been used in several contexts (e.g., Becht et al., 2019).
Combined with modularity algorithms (Newman, 2006), it may
become an optimal technique to identify communities in a
population, called neuronal ensembles in the present context.
Numerous techniques have identified the Parkinsonian circuit
as characterized by exhibiting neuronal hyperactivity in the
striatum as compared to the control, accompanied by a highly
recurrent ensemble that greatly monopolizes the microcircuit
at histological scale: the circuit gets stuck by this ensemble,
as a “metaphor” of what happens with patients that cannot
move or have difficulties doing it (Jáidar et al., 2010, 2019;
Plata et al., 2013; Pérez-Ortega et al., 2016; Lara-González et al.,
2019). Perhaps other disease states may also show a “fingerprint”
when observed at the ensemble level (Fornito et al., 2016). The
proposed pipeline allows us to describe disease by analyzing
neuronal populations in ex-vivo brain slices.

2 Materials and equipment

The current work utilizes the database created by earlier
laboratory work, which contains all information regarding

experimental protocols and experimental subjects (Pérez-
Ortega et al., 2016). A total of 37 ex-vivo brain slices from
different mice were utilized in n = 12 control, 11 decorticated,
7 parkinsonian, and 7 dyskinetic experiments. The movies were
captured at a rate of 4 frames per second. The derivative criteria
was applied to identify the periods of neuronal activity. The code
in the python language and instructions to follow the analysis
pipeline can be found at.1 Throughout this work, we use the
UMAP v.0.5 Python implementation (McInnes et al., 2018),2

Brain Connectivity Toolbox for Python v.0.5.2 (Rubinov and
Sporns, 2010),3 and the PyRQA tool to perform recurrence
analysis in a massively parallel manner using the OpenCL
framework (Rawald et al., 2017).

3 Methods

3.1 General considerations

Neuronal activity can be stored in a variety of ways; practical
data structures rely on the temporal resolution and recording
period (Paninski and Cunningham, 2018). The acquisition rates
in calcium imaging experiments that last several minutes enable
the construction of a brain activity monitoring matrix. There
is previous work comparing actual with inferred neuronal
activity from calcium imaging (Pérez-Ortega et al., 2016; Theis
et al., 2016; García-Vilchis et al., 2018; Serrano-Reyes et al.,
2020; Calderón et al., 2022). This matrix, usually called a
raster plot (R), is a binary matrix of [N × F], where the
y-axis denotes the number of neurons, N, whose individual
activities comprise the rows (row vectors along the x-axis),
and the x-axis represents the number of movie frames, F,
which shows neurons that activate simultaneously at any given
time (column vectors along the y-axis). Thus, R contains all
the information necessary to study the population behavior
through the simultaneous recordings of several neurons.
It serves as the basis for figuring out the sequences of
neuronal ensembles that alternate their activity during the
experiment.

3.2 Determining the representative
graph of neuronal activity using the
uniform manifold approximation and
projection

Uniform manifold approximation and projection is a
dimensionality reduction algorithm that assumes that data

1 https://github.com/MiguelSerranoReyes/neuronal-ensembles

2 https://github.com/lmcinnes/umap

3 https://github.com/aestrivex/bctpy
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FIGURE 2

Analysis of calcium imaging experiments. (A) Calcium imaging movies can be acquired from neuron cultures (top left), brain slices (bottom left)
or in vivo (right). With the aid of a molecule that fluoresces by binding calcium flowing into the activated neurons, the objective is to examine
neurons that are present in the field of view. (B) An illustration of a video frame taken in a region of the brain where the fluorescent protein
GCaMP6f is expressed in the cells. Regions of interest (ROI) are created from image sequences like this one to collect calcium signals. (C) Top:
An illustration of calcium signals extracted from ROIs. Graphed as a raster plot at the bottom, neuronal activity inferred from calcium signals
where each row represents the activity of a single neuron. Several techniques exist for creating raster plots from neural activity (Theis et al.,
2016). (D) Once a raster plot has been created, an analysis pipeline is proposed and further described in the present work.

samples are uniformly distributed in a topological high
dimensional space. It learns the data manifold and then projects
it into a lower dimensional space. UMAP accomplishes this
goal through two main processes. First, it builds a graph
connecting the nearest neighbors of each data point; this is
achieved by choosing the distances between the points across
the manifold, assuming they are uniformly distributed and
connected to at least one other point. The next step for UMAP
is to project or map the graph to a lower dimensional space.
In this space, it is sought that the distances in the manifold
do not vary with respect to the global coordinate system.
Once this is achieved, the algorithm can start looking for a
good low-dimensional representation by minimizing a cost
function (Cross-Entropy) whose goal is to find the optimal
weights of the connections. When this is finished, an array of
the coordinates of each point in the specified data sample is
depicted in a space of lower dimension, keeping the original
structure as similar as possible (McInnes et al., 2018). In the
raster plot R there are two vectors that may be prone to this
dimensionality reduction: those in rows [1 × F] that represent
the activity of individual neurons over time (VA) and those
in columns [N × 1] that represent the coactive population
at each instant of the experiment (VP). To identify and
visualize neuronal ensembles and their temporal sequences of
activation under different experimental conditions, we combine
the UMAP methodology and graph theory algorithms on both
the vectors of neuronal activity (VA, Figure 3) and the vectors

of coactivation (VP, subsequently Figures 4, 5). Vectors of
neuronal activity (VA) help to identify groups of neurons that
coactivate with similar spatiotemporal patterns (Pérez-Ortega
et al., 2016), that is, neurons that belong to the different neuronal
ensembles that can be identified in each experiment (Figure 3A;
Yuste, 2015).

The first step is to build a weighted graph, G, where each
edge represents the probability that two nodes are functionally
connected in our high-dimensional manifold (Fröhlich, 2016;
McInnes et al., 2018). To determine connectivity, each VA

is considered a sample from a continuous high-dimensional
subspace (topology of neural activity). UMAP extends radiuses
from each point to connect them by choosing the nth nearest
neighbor. The connection of each node with its neighbors
allows the local structure of the nodes to be maintained
when performing subsequent manipulations (McInnes et al.,
2018).

How “near” a particular point is to another is shown by the
strength of each connection in the weighted graph. Since each
point in this diagram represents a neuron’s vector of activity
(VA; Figure 3A), the fact that two points are “near” indicates that
their activity patterns are comparable. The result is the adjacency
matrix G of size [N × N] that represents the weighted graph of
the experiment. The next step is to determine a division of the
graph into communities that reveals the existence of neuronal
groups with similar activity patterns, that is, neuronal ensembles
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(Fröhlich, 2016; McInnes et al., 2018). The UMAP parameters
are briefly discussed below in order to do this.

3.3 Description of uniform manifold
approximation and projection
parameters

The UMAP algorithm parameters are used to control the
balance between local and global structure in the final projection
of the data. The first parameter described is the approximate
number of nearest neighbors (N_NEIGHBORS), which is used
to construct the initial high-dimensional graph. It restricts the
size of the local neighborhood that UMAP will look at when
trying to learn the manifold structure of the data. Low values of
this parameter will force UMAP to focus more on local structure
by restricting the number of neighboring points considered
when analyzing high-dimensional data. Small values should be
used to capture fine details in the structure of neuronal activity
(Becht et al., 2019) because it controls how UMAP balances the
global vs. local structure of the data, ensuring fine granularity
in building the ensembles. One concern is if this method
can “dissolve” the high recurring ensemble discovered during
parkinsonism by utilizing other clustering methods. If this
occurs, what are the dynamics of the individual components?
Do they follow specific types of temporal sequences? Another
parameter is the METRIC, which controls how distances in
multi-dimensional space are calculated from the input data.
UMAP supports a wide variety of metrics, including Euclidean,
normalized, angular, those used for binary data, and those
based on paired correlations. In agreement with the original
ideas of neuronal ensembles (Hebbian correlated activity),
we use the metric based on correlations. In this way, the
neurons that have functional connections represent those with
strongly correlated activity patterns. The next parameter is
the minimum distance between points in the low-dimensional
space (MIN_DIST), which controls how tight the points are in
an identified cluster. Larger values of MIN_DIST pack points
more loosely, while smaller values lead to tighter packs. For
finer clustering, the algorithm is favored by small values of
this parameter (Becht et al., 2019). Essentially, the minimum
spread of points can be controlled, thus avoiding scenarios
with many points located on top of each other in the lower
dimensional embedding. The default value MIN_DIST = 0.1,
recommended in the UMAP documentation (see text footnote
2), is used in this paper. The last parameter to consider is
N_COMPONENTS, which allows the user to determine the
dimensionality of the reduced space where the data will be
embedded to allow visualization. The most frequent numbers
are 2 or 3, which correspond to the traditional dimensions
that are simple to perceive. To generate the weighted graph,
N_NEIGHBORS and METRIC are the most critical parameters,
whereas MIN_DIST and N_COMPONENTS are crucial for

producing the projection onto the low-dimensional UMAP
space (McInnes et al., 2018). UMAP is one of the best
tools for displaying highly dimensional data, and its success
may be attributed to two very significant qualities: greater
global structure preservation and more intelligible parameters.
A crucial point to bear in mind is that anybody using the pipeline
presented here should adjust the parameters (if necessary) in
accordance with the characteristics of their data and their goals.

3.4 Identification of neural ensembles
by using modularity and graphs to
cluster neuronal activity

The relationships between the neurons (nodes) in the raster
plot are depicted in the weighted graph G (see Section 3.2).
The objective is to identify neuronal ensembles: groups of
neurons that coactivate with comparable patterns of activity.
Graph theory offers community extraction procedures to
locate areas of the graph where groups of neurons (nodes)
are highly coupled. The “modularity” algorithm (Newman,
2006) is one mechanism that maximizes the number of
connections between elements that are in the same group and
minimizes the number of connections between other groups.
Modularity positive values indicate the possible existence of
a community structure in the graph. Conversely, negative
values indicate that a graph cannot be efficiently divided into
communities.

The algorithm starts by calculating the modularity matrix B
of a graph. Which is defined as:

Bij = Aij −
kikj
2m

Where the values Aij are the elements of the adjacency matrix
G determined previously with the help of UMAP (Figure 3B),
ki and kj are the degrees of the nodes (i.e., their number
of connections) and m = 1

2
∑

i ki is the total number of
connections in the graph. Identifying the biggest eigenvalue
and determining its corresponding eigenvector comes after this
matrix B has been calculated. In accordance with the sign of
the eigenvector’s component elements, the graph is then split
in half. The process is repeated for each of the parts using
the formulation of the generalized modularity matrix B(g):

B(g)
ij = Bij − δij

∑
k∈g

Bik

Where δij is the Kronecker δ-symbol and B(g)
ij is an array[

ng x ng
]

with elements indexed by the labels i, j of vertices
within a group g. At each stage, the contribution to the total
modularity 4Q is calculated through the following equation:

4Q =
1
2

1
2

∑
i,j∈g

Bij
(
sisj + 1

)
−

∑
i,j∈g

Bij
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FIGURE 3

Identification of neuronal ensembles from calcium imaging experiments. (A) Raster plot. Each row corresponds to the activity of a neuron
during an experiment. Black periods indicate moments of inferred electrical neuronal activity (events) where neurons have a high probability of
firing action potentials. Dozens of neurons can be monitored simultaneously for several minutes, allowing the analysis of phenomena that can
only be recorded in neuronal populations. (B) Adjacency matrix of neuronal activity (VA) determined with UMAP, neurons that are close together
in the high-dimensional space display a functional connection (Fröhlich, 2016). (C) Adjacency matrix sorted after identifying neuronal
communities: neurons show a significant number of connections within the same ensemble and significantly fewer connections with neurons
from other ensembles. (D) Sorted raster plot after reordering the neurons according to their communities. These communities exhibit the
properties attributed to neuronal ensembles (Buzsáki, 2010). Notice clusters of neurons (colored) alternating their activity following temporal
sequences. (E) Low-dimension UMAP projection of active neuronal matrices identified in the experiment. Colors denote the same ensembles
present in panel (D). Neuronal ensembles occupy different positions in space after dimensional reduction. (F) Circular visualization of neuronal
ensembles and their functional connections is obtained from the adjacency matrix B and colored as in panel (D). Neurons present most of their
connections with neurons of their own ensemble, and links among ensembles may represent the connectivity that enables the alternating
activity during temporal sequences: how an ensemble is turned off when another is turned on. (G) Bidimensional projections in low dimension
UMAP space to better appreciate communities’ separation from different angles.

Where, for a particular division of the graph into two clusters
let si = 1 if vertex i belongs to group 1 and si = −1 if it
belongs to group 2. If at any stage of the algorithm, a proposed
division is found to make a null or negative contribution
to total modularity, the corresponding subgraph remains
undivided. Numerous clustering proposals are gathered
through this technique. To select a particular version, Bruno
et al. (2015) iterate over the various clusterings until the
same outcomes are found in most of them, producing
a “consensus algorithm.” The algorithm finishes when
it reaches this stage. There are a variety of iterations of
the original method depending on how the beginning
circumstances of the network division are put forth and
how the modularity function is maximized (Newman,
2006).

Going back to the pipeline, Figure 3B displays the adjacency
matrix G of the original raster (Figure 3A). The identical

adjacency matrix G is shown in Figure 3C, but the nodes have
been rearranged in accordance with the neuronal ensembles
that have been identified and the interconnection that exists
between them. Thus, Figure 3D displays a raster plot of the
same neural activity as Figure 3A, but neuronal ensembles are
shown from bottom to top according to the order in which
they first appeared. Each ensemble is then given a color, and
the sorted raster plot shows the temporal order. The color
scheme utilized in the raster plot is retained in Figure 3E, which
shows the projection of the activity vectors VA determined using
UMAP in a three-dimensional UMAP space. The ensembles
are separated from one another in the UMAP space, and the
ensembles’ neurons are close to one another. Another method
of visualizing the connections between neurons is to create
a functional connectivity graph in a circular representation
by arranging the colored-labeled neurons in the Figure 3D
in a circle. The neurons of the same ensemble are grouped
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together in Figure 3F, and the size of the nodes corresponds
to their number of connections. To see more clearly Figure 3E,
projections of the vectors VA in the various planes are displayed
in Figure 3G. The results show that UMAP identifies more
ensembles than previous clustering methods (see below).

3.5 Determination of neuronal
ensembles’ significant coactivity peaks
(VP)

Once neuronal ensembles have been identified, it is
necessary to show the transitions between them. As shown in
Figure 3D, ensembles initiate, reach a peak, and wane. It is
necessary to identify the precise instant at which they take part
in a temporal ensemble sequence. Figure 4A top, shows an
experimental raster plot obtained under control conditions in
the striatum (Pérez-Ortega et al., 2016). At the bottom, a plot
of neuronal coactivity is illustrated. It is a time series which
consists of the sum of active neurons over time. To capture
the occurrences in which a particular ensemble participates in
ensemble sequences, periods in which neurons in a raster plot
R exhibit significant peaks in coactivation should be identified.
Time instants are the frames of the video, 4t, each with a
picture of the tissue at a certain time tn, which corresponds to
the columns of the raster plot R (VP). It must be demonstrated
that the significant coactivation peaks observed experimentally
were not produced randomly. Here, we demonstrate how the
“Runs test” —a non-parametric hypothesis test based on the
binomial distribution— may be used to determine if a set of
data can be explained by a random process (Bradley, 1968).
The alternative hypothesis asserts that these values are not
the result of a random process, while the null hypothesis
claims that coactivity values randomly grow and decrease in
accordance with a binomial distribution (Bujang and Sapri,
2018). Considering the two categories of statistical error: type
1 error (rejecting the null hypothesis when it is true) and type 2
error (failing to recognize significance when it is present). The
significance level of the test, which is commonly set at α < 0.05,
denotes the likelihood of making a type 1 error (for a discussion
of this threshold, see Cowles and Davis, 1982; Glantz, 2012;
Martinez and Martinez, 2015).

Runs test is important in determining whether a trial
outcome is random for subsequent analysis (Bujang and Sapri,
2018) using the sorted neuronal ensemble subrasters (set
of vectors VA belonging to neuronal ensembles) for further
analysis. The first step in the Runs test is to count the number
of runs in the data sequence. A “run” is defined as a series of
consecutive increasing or decreasing values with respect to the
mean, where the duration of the run is given by the number
of these values. In a random data set, the probability that the
(i+ 1)-th value is greater than or less than the i-th value follows

a binomial distribution. The statistic is:

Z =
T − T
sT

Where T is the observed number of runs, T is the expected
number of runs, and sT is the standard deviation of the number
of runs. The values of T and sT are calculated as:

T =
2n1n2

n1+ n2
+ 1

s2T =
2n1n2(2n1n2 − n1 − n2)

(n1 + n2)
2(n1 + n2 − 1)

Where n1 and n2 denote the number of positive and
negative values in the series. The resultant score is compared
to the normally distributed, two-tailed confidence interval. It
is determined that the alternative hypothesis is correct when
the value of the experimental series is higher than that attained
by a random series (Mendenhall and Reinmuth, 1982). To
apply this method to the data, a dichotomous time series
made up of the subrasters coactivity values (VA), where values
above the mean are positive and values below the mean are
negative, is build. In the case of the Runs test applied to the
coactivity of the experimental raster plot of Figure 4A (this
test is later applied to Figures 5, 6), a value of Z = 30.05
was determined, which corresponds to p < 0.0001, allowing
the null hypothesis to be rejected: the coactivity time series is
not a result of chance. Surrogate matrices (Figures 4B,C) must
be created while maintaining the same number of neurons,
time, acquisition rate, and active frames for each neuron to
demonstrate that neither type 1 nor type 2 errors exist. To
evaluate the type 1 error, these surrogate matrices are generated
by placing in a uniform distribution the instants of activation
of each of the neurons during the period of the experiment.
Knowing that the null hypothesis should not be rejected, the
outcome of test type 1 error should be noted as:

Ii =

{
1
0

Type I error is made
Type I error is not made

The procedure for determining Ii is repeated for M (1,000)
surrogates and the probability to make a type I error is calculated
as:

α̂ =
1
M

M∑
i=1

Ii

This value is an estimate of the significance level of the test
for a given critical value. Applied with an exemplary surrogate
matrix (e.g., Figure 4B), a value of α̂ < 0.05 is determined,
suggesting there is not a type 1 error.

To estimate type 2 error, surrogate matrices must not satisfy
the null hypothesis, which requires that the raster matrices not
be random (e.g., Figure 4C). Consequently, surrogate matrices
now conserve the parameters used in the type 1 error test
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FIGURE 4

Determining significant coactivity peaks. (A) Raster plot and histogram of coactivity. Neuronal activity exhibits a unique space-time structure.
(B) Plot of a representative surrogate neuronal raster obtained by maintaining the number of neurons, time, and number of firings of each one,
but randomly permuting their activity on the x-axis. The coactivity histogram (bottom) shows a different pattern with respect to that observed in
experimental data. However, note that the activity graph (at right) remains intact, revealing that the same level of neuronal activity is present.
This class of shuffled raster plots the probability of executing a type 1 error as evaluated with a corresponding Runs test. (C) Another class of
surrogate raster plot maintains neuronal activity with the same restrictions as in panel (B), but with the same distribution of intervals between
active moments after the random permutation. The pattern of coactivity determined through this process is like the one observed in the
experiment. This yields a surrogate raster that is hard to distinguish from the experimental one. This surrogate raster plot is used to evaluate type
2 error with a corresponding Runs test. (D) Once shown that the experimental coactivity signal is not a product of chance, the significant values
of coactivity are determined with a sliding window equal to “n” standard deviations (regularly n ≥ 2). A dynamic threshold is used to capture
significant coactivity peaks. Asterisks indicate the time periods when the coactivity exceeds the threshold value.

adding the interactivity intervals of each neuron (equivalent
to interspike intervals in electrophysiological recordings). With
these restrictions, a pseudo-population of neuronal activity
like the one observed is determined. The hypothesis test is
performed with this surrogate raster matrix, and the value Ii is
recorded. In the case of a type 2 error, this value is produced as:

Ii =

{
1
0

Type II error is made
Type II error is not made

The probability of making the type 2 error after M (1,000)
surrogates is:

β̂ =
1
M

M∑
i=1

Ii

In the case described a value of β̂ < 0.0001 is determined,
suggesting there is not a type 2 error. Be aware that while the

formulae are similar, the surrogate matrix type varies. Once it
is determined that our experimental coactivity time series is
not randomly generated, its upper extreme values are extracted:
the “peaks of coactivity” that can be interpreted as marks in
time when column vectors (VP) had significant coactivation of
neurons during the experiment.

A sliding window is constructed in the coactivity time series
and moved one by one to the right until it reaches the end of
our data set in order to achieve these values. This window is
built using a value that is expressed as a percentage of the data
from the time series’ beginning to end. Typical values include 5,
10, or 20%. For each window, the mean and standard deviation
are calculated to yield a local threshold. If it is greater than the
mean + two standard deviations, then point is considered to be
a significant peak of coactivity. Figure 4D shows the result of
applying sliding windows of size 20% to the coactivity plot of
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Figure 4A. An asterisk is placed at each time where the real value
of coactivity exceeds the variable threshold. With this procedure,
significant peaks of coactivation (VP) are determined from the
subrasters (set of VA vectors). Different thresholds can be used
with little change in the outcome.

3.6 Characterizing the activity of
neuronal ensembles via recurrence
analysis

Recurrence analysis was used to conduct a more quantitative
assessment of the ensemble neuronal transition dynamics. This
approach allows us to quantify the frequency and length of
the neuronal ensemble recurrences. Instead of the suggestions
that were previously employed (Carrillo-Reid et al., 2009;
Pérez-Ortega et al., 2016; Lara-González et al., 2019; Duhne
et al., 2021; Calderón et al., 2022), it presents a new potential
of interpretations. In light of this, it is possible to model
the behavior of neuronal ensembles as a dynamic system.
A dynamical system evolves over time within a state space
according to a given rule. This evolution is represented in “phase
space.” The state of a system in time t is specified by a point
in phase space, and the progression of the system generates an
orbit or trajectory through this space. Using recurrence plots,
it is possible to demonstrate how neuronal ensembles identified
using the methods previously described (see above) behave over
time in each diseased condition, leaving a “signature” (Argyris
et al., 2015). A recurrence plot is a non-linear data analysis
technique that allows visualizing those times in which a state of a
dynamic system is repeated, revealing all the moments in which
the trajectory of the phase space of a dynamic system visits the
same area in the phase space. To build a recurrence analysis, let
−→xi be the i-th point on the orbit describing a dynamical system
in d-dimensional space, for i = 1, N. The recurrence plot P is
a matrix of dots in a [N × N] square, where a dot is placed at(
i, j
)

whenever−→xj is sufficiently close to−→xi (Packard et al., 1980;
Eckmann et al., 1987).

Pi,j =

{
1 :
0 :

−→xi ≈
−→xi 6≈

−→xj
−→xj

i, j = 1, . . . ,N

In this case, −→xi −→xj indicates the similarity of a pair
of vectors. The matrix P captures a total of N2 binary
similarity values. A distance measure is needed to determine the
similarity between pairs of vectors. There are several alternatives
(Manhattan, Euclidean, maximum distance; Webber and Zbilut,
1994). Here, the Euclidean distance is utilized for simplicity.
A neighborhood condition is applied to transform the pairwise
similarities into binary values. In the fixed radius condition, the
binary values are determined by a threshold∈. All vectors that lie
within the ∈-neighborhood of a query vector −→xq are considered
like −→xq (Poincaré, 1890). A strategy is to choose an ∈ threshold

based on the density of the recurrence plot (Zbilut et al., 2002).
A fixed radius value of ∈= 1.5 was applied to the data for
the current proposal. All the parameters described below were
determined from objects in the RQAComputation class of the
PyRQA tool (library mentioned in Section 2). The values of
the fixed radius (neighborhood requirement) and the metric to
measure the similarity between the vectors must be supplied
in order to generate such an object (for the implementation
see the script titled Figure 6 at see text footnote 1). Statistical
comparisons used Mann–Whitney tests with Holm–Sidak post-
hoc adjustment.

The parameters that recurrence quantification analysis
extracts from recurrence matrices P are: (1) The recurrence
point density, or recurrence rate (RR), that is defined as:

RR =
1
N2

N∑
i,j=1

Pi,j

Where Pi,j are the entries of the recurrence matrix P. This
parameter quantifies the proportion of recurrence points that
are determined with a specified radius. When N →, ∞ RR is
the probability that a state recurs to its ∈-neighborhood in phase
space. (2) Another measure is based on diagonal lines; it is called
determinism (DET). It refers to the portion of recurrence points
that form diagonal lines. Only diagonal lines with a length of
l ≥ 2 are considered regarding the quantitative analysis:

DET =
∑N

l=2 lPD
(
l
)∑N

i,j=1 pi,j

Where lPD
(
l
)

is the number of points of the recurrence
matrix that form diagonal lines of size l. Chaotic signals
(aperiodic and presenting sensitivity to initial conditions) yield
short diagonal lines, periodic or deterministic signals yield long
diagonal lines, and stochastic signals do not show diagonal lines
(Webber and Zbilut, 1994). DET parameter is a measure of the
order, predictability, or rigidity of the system. (3) Divergence
(DIV) is the inverse of the length of the longest diagonal line
found in the recurrence plot:

DIV =
1

max
({

li
}Nl
i=1

)
Where Nl is the total number of diagonal lines. This

parameter is conjectured to be related to the Lyapunov
exponent, which estimates the rate at which signal paths
diverge. Thus, for larger DIV values, a time series is more
chaotic (Eckmann et al., 1987), (4) Laminarity (LAM) captures
the number of recurring points that form vertical lines. The
equation to determine this parameter is identical to the
equation to determine DET, with the exception that, in this
instance, the length of the vertical lines is measured rather
than the length of the diagonal lines. LAM will decrease
if the recurrence plot consists of more single recurrence
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points than vertical structures. This parameter allows us to
investigate how a signal evolves over time through the concept
of intermittency. A signal is called intermittent if its temporal
evolution appears to be regular for long periods of time and
is interrupted from time to time by brief irregular intervals
with amplitudes of greater intensity. Intermittency, in this
regard, indicates a seamless change from regular periodic
behavior to chaotic behavior (Marwan et al., 2007; Argyris
et al., 2015). (5) The length of continuous vertical lines formed
by values with Pi,j = 0 (average “white” vertical line length
W). The length of these lines is equal to the time needed
by the system to recur to a previously visited state in such
a way that it serves as an estimator for recurrence times
(Ngamga et al., 2007).

4 Results

4.1 Vectors of neural activity (VA) are
used to determine neuronal ensembles

Hebbian theory (Figure 1; as used by previous authors:
Eichenbaum and Davies, 1998) served as the foundation for
the proposed pipeline (Figure 2) for determining neuronal
ensembles. The analysis of raster plots showing inferred
neuronal activity from calcium imaging experiments performed
on brain slices was done using the differentiation method
(Pérez-Ortega et al., 2016).

The first stage in the process (Figure 2D) is to use
UMAP to recognize the neuronal ensembles from a raster
plot (Figure 3A). This enables the creation of a representative
experiment adjacency matrix (Figure 3B). The ideal split of
the matrix into communities that theoretically correspond to
the neural ensembles is then determined using the addition
of the modularity method (Figure 3C). The detected neural
ensembles are then displayed in the original raster plot after
it has been sorted (Figure 3D; colored). Every ensemble or
collection of neurons creates a time series with recurrence.
The same colors used in the sorted raster display are used
in Figure 3E to project these neuron groups into a low-
dimensional environment. The neurons are then arranged in
a circle-shaped representation, with each neuron acting as a
node and each edge representing a connection between neurons
(Figure 3F). Two-dimensional projections are also provided
as a different way to visualize the division of neuron groups
(Figure 3G).

Each neuronal ensemble is put through the Runs tests
after being divided into its own time series to prove
that its activation patterns are not the result of chance
(Figure 4; see the Section 3.5). Then, using this data,
two analytical procedures are carried out: (1) to examine
the significant activation patterns of the sequences of
each neuronal ensemble (see below), and (2) to find out

whether the activity rates of each neuronal ensemble recur
(see below).

4.2 The activation pattern of the
significant coactivity peaks (VP)
characterizes the pathological
conditions in the striatum

In order to highlight potential research directions that
address concerns regarding neuronal population dynamics,
Figure 5’s left side presents four raster plots (Figures 5A,E,I,M)
that were obtained in the striatum under different experimental
conditions (Pérez-Ortega et al., 2016). The neuronal ensembles
in these striatal microcircuits were determined using previously
described methods and are rendered in different colors.
A more pronounced hue is used to highlight the significant
VP vectors of each neuronal ensemble that were identified via
the Runs tests (̂α < 0.05; β̂ < 0.0001; in all analyzed raster
plots; see the Section 3.5 and Figure 4). Note that not all
activity within an ensemble belongs to significant peaks of
coactivity, but only precise moments with a low probability
of appearing at random are considered. The transitions
between the significant coactivity peaks, which occur when
one ensemble stops being active and another one starts,
define the temporal sequences between neuronal ensembles.
The coactivity histogram at the bottom of the raster plots
displays colored vertical bars that indicate the intervals in
which each neuronal ensemble has a significant VP vector.
Each colored vertical vector appears recurrently throughout
the course of time, and sequences between different vectors
can also be viewed repeatedly (e.g., blue-orange-green-red
in Figure 5A). The middle column of Figure 5 shows the
projection of these significant coactivation vectors in the
low-dimensional UMAP space (R3; Figures 5B,F,J,N; and for
a better visualization in different planes: Figures 5D,H,L,P).
These projections represent the states of the system and
behave as attractors of neuronal activity because, by definition,
transitions between them produce trajectories that recur
once and again. The right column illustrates graphs showing
these state transitions (arrows) and trajectories (cf. Figure 1
showing alternative trajectories), where each node represents
a neuronal ensemble (not a neuron as in previous work:
Pérez-Ortega et al., 2016; Duhne et al., 2021; Calderón et al.,
2022; Figures 5C,G,K,O). Each directed arrow increases its
thickness in agreement with the number of times a transition
occurs between a given pair of ensembles involved. For better
rendering and tracking, the edge color is the same as the
origin node, and the destination node is indicated by the
arrowhead. Accordingly, directionality indicates the presence
of temporal transitions between neuronal ensembles and
forms a way of representing the flexibility of a system to
codify computations, given that these state transitions with
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FIGURE 5

Dynamics of neuronal ensembles in different experimental conditions. (A) Significant activity of neuronal ensembles was identified in a raster
plot obtained in the striatum under the control condition in the presence of N-methyl-D-aspartate (NMDA) to pharmacologically evoke the
activation of network components; this brain nucleus is commonly very silent when there is no stimulus (spontaneous firing: Lara-González
et al., 2019). The coactivation peaks are shown by darker colors, while the coactivation peaks that are not significant are indicated by paler
colors for the same ensembles of neurons. (B) A low-dimensional UMAP projection of the significant peaks of coactivity (VP) that identify the
significant coactive matrices from the raster plot. The colors denote identified neuronal ensembles, each in a specific niche in the UMAP space,

(Continued)

Frontiers in Systems Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnsys.2022.975989
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-975989 November 25, 2022 Time: 16:17 # 12

Serrano-Reyes et al. 10.3389/fnsys.2022.975989

FIGURE 5 (Continued)

confirming differences in the activation patterns of these neuronal groups (separation with the same color denotes the same neurons with
different activation patterns). (C) Directed graph of neuronal ensemble temporal transitions; each node represents an ensemble. Arrows Edges
are functional connections between them: color indicates the origin and arrowheads the destiny; the thickness of the edges represents the
number of times a transition was carried out in the observed data. Some transitions can be identified in the raster plot even if the sorting
procedure (see the Section 3.4) did not show them together. (D) Projections on the combinations of UMAP planes of the column vectors shown
in section B. (E–H) Ensemble coactivation patterns in the decorticated striatum. Background neuronal activity is considerably lower than in
control conditions and compared with the pathological states below (cf. histograms of % cell activity at right). Although numerous groups can
be separated in section F, scarce temporal sequences (arrows in G) form a ring structure with many unidirectional connections. (I–L)
Coactivation patterns of neuronal ensembles identified in striatal tissue depleted of dopamine (6-OHDA Parkinsonian model). There are fewer
connections (K) between ensembles that are activated at regular times (I). A more frequent transition appears (K; blue to orange). (M–O)
Patterns of significant coactivation of neuronal ensembles identified in the striatum under the model of L-DOPA induced dyskinesia (LID):
ensembles are projected in the low-dimensional space (N), as well as transitions (M,P), with several recurrences and high background activity (%
activity histogram at right; note scale change).

several alternative trajectories (Figure 1) have historically been
associated with underlying mechanisms of brain functions
(Hebb, 1949; Buzsáki, 2010; Carrillo-Reid, 2021; Lara-
González et al., 2022). Next, each experimental condition is
described.

The control conditions’ raster plot (with NMDA in
the bath since the striatum has low spontaneous activity;
Carrillo-Reid et al., 2008; Lara-González et al., 2019) displays
seven distinct ensembles (Figure 5A), which are nearly
fully segregated from one another in low-dimensional space
(Figure 5B) and exhibit alternating activity (denoted by arrows
in the state transition graph) that forms temporal sequences and
several state transitions throughout time (Figure 5C). Analyzing
different control networks in different slices (n = 12), number
of ensembles was (mean ± SEM): 7.33± 0.51 and the number
of transitions: 28.17± 2.25. Note that hierarchical clustering
showed only three ensembles using the same data (Pérez-
Ortega et al., 2016), suggesting that ensembles determined with
previous clustering methods can be further subdivided with
UMAP and modularity clustering. Background activity around
the significant peaks of coactivity is seen as more opaque color,
and the whole activity density may be approximated by the
histogram of % cellular activity at right. Figure 5B shows the
projection of the significant peaks of coactivity (VP) in R3 and
Figure 5D shows the different combinations of R2 planes that
can be formed. Each ensemble takes up a specific area in space;
the more similar the vectors are, the closer their projections
are to one another. Therefore, it may be inferred that some
neuronal ensembles are carrying out computations for a specific
purpose when their projections are brought closer together in
space. On the other hand, it may be assumed that a neuronal
ensemble is performing different actions if projections for a
given set are seen in several locations (note that this is always
inside a manifold). It appears that information processing is
stable under the control situation since neuronal ensembles are
seen in highly differentiated locations. In the control condition,
many temporal sequences can be found, present among the
ensembles with some predominant ones, some of which can
be observed directly in the raster plot (e.g., blue-orange). The
proportion of the number of transitions is balanced. Although

some transitions are more recurrent, there is not a predominant
sequence in the microcircuit.

Next, in the decorticated striatum (Figure 5E; in the
presence of NMDA), which is an experimental condition where
the striatum has been deprived of the cortical inputs that
survive after the slicing procedure (Arias-García et al., 2018;
Aparicio-Juárez et al., 2019). Note that, again, several groups are
projected in the low-dimensional space (Figure 5F). Analyzing
different decorticated networks in different slices (n = 11),
ensembles were 9.18± 0.84, and the number of transitions
was 33.91± 3.63, not significantly different from the controls.
Interestingly, some neuronal ensembles have different states
denoted by the same color and separated in low-dimensional
space. The phase transition graph (Figure 5G) shows a “ring”
structure with many transitions in the same direction, a
signature of regular networks (Watts and Strogatz, 1998).
This behavior may be characteristic of the striatum in the
absence of inputs “commanding” the circuit into its “standard”
mode, as proposed in other brain regions (Raichle and Snyder,
2007). For example, background activity is clearly diminished
(cf. histogram of % cellular activity at right; notice different
scales), suggesting that a cortical driving force is needed for
striatal background activity (Garcia-Munoz et al., 2015) and the
generation of ensemble temporal sequences (Carrillo-Reid et al.,
2008; Lara-González et al., 2019).

Figure 5I shows the raster plot and coactivity histogram
for the Parkinsonian condition. For dopamine depletion, the
6-OHDA model of hemiparkinsonism was used (Jáidar et al.,
2010). Spontaneous activity in the dopamine depleted striatum
has been quantified and demonstrated to be augmented with
respect to the control condition without NMDA (Lara-González
et al., 2019). Therefore, NMDA was not added in this condition.
Projections of neuronal ensembles in low-dimensional space
(Figure 5J) are shown. One query is if the highly recurrent
ensemble that manifests in this pathological model (Jáidar
et al., 2010) can be “dissolved” by UMAP and modularity
clustering, and if so, whether detected sub-ensembles alternate
their activity or, conversely, display recurrent behavior impeding
a balanced alternation. The results show that indeed, significant
peaks of coactivity projected in the low-dimensional space
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show several neuronal ensembles separated by their similar
firing patterns (Figure 5J). Analyzing different parkinsonian
networks in different slices (n = 7), the ensemble number
was 5.71± 0.52 significantly different from the decorticated
and dyskinetic conditions (p = 0.03 and p = 0.05, respectively;
Mann–Whitney with Holm–Sidak post-hoc tests), and the
number of transitions was also significantly reduced: 14.71±
2.34 (p = 0.01 vs. all other conditions; Mann–Whitney with
Holm–Sidak post-hoc tests). Therefore, the temporal structure
of the raster plot is different to the control: first, there are
fewer transitions between ensembles (Figure 5K), second,
a dominant recurrent sequence appears on the network
(Figure 5K blue-orange), third, although arrows denoting auto-
recurrence on the same ensemble are not depicted, some
ensembles in the raster plot (Figure 5I) can be observed
to have regular times of appearance (e.g., orange, green,
and red). In contrast, the raster plot’s activity density is
higher than the decorticated striatum and similar to the
control (see the histograms of cellular activity to the right).
Therefore, despite revealing more neuronal ensembles, the
ensemble identification algorithm confirms previous results
formerly quantified with other metrics (Lara-González et al.,
2019): the dopamine depleted striatum acquires a highly
repetitive structure.

Finally, what is revealed by this neuronal ensemble detection
algorithm from L-DOPA induced dyskinetic striatal tissue (n =
7; Figure 5M; Winkler et al., 2002) is described. The projection
of significant peaks of coactivity on the low-dimensional space
shows various neuronal ensembles: 8.71± 0.81 (Figure 5N)
and transitions between them: 38.43± 4.36 (Figure 5O) with
less silent periods (vertical colored lines on the coactivity
histogram in Figure 5M), perhaps underlying the hyperkinesia
and involuntary movements present in this condition. All of this
is accompanied by an increased firing density as a background
activity (cf. histograms at right showing % of cellular activity;
note different scales).

In summary, a simpler and statistically consistent detection
of significant peaks of coactivity is coherent with previous
methods using shuffled data and MonteCarlo simulations: both
alternating activation and temporal sequences of neuronal
ensembles are detected, with multiple alternative pathways
as previously proposed (Figure 1). However, UMAP and
modularity analysis find more neuronal ensembles by dissolving
the highly recurrent ensemble previously found in the striatal
pathological states using the same database (Jáidar et al., 2010;
Pérez-Ortega et al., 2016; Calderón et al., 2022), but leaving
important functional connections between ensembles as seen
with phase transition graphs. Whether these findings confirm or
alter the prior understanding of striatal diseased states provided
by other dimension reduction and clustering approaches is the
key question. We next go on to the recurrence analysis to wrap
off our investigation of this subject.

4.3 Recurrence analysis of neuronal
ensembles in control and pathological
states

Recurrence analysis uses activity rates over time to build
recurrence plots (Figure 6). For each experimental condition,
activity rates with a 1-s sliding window of representative
neuronal ensembles were taken from the same database. The
first row of Figure 6 shows the recurrence plots with the
time series insets corresponding to the firing rates used to
calculate them. The middle row has the quantifications of
the recurrence analysis parameters for each recurrence plot of
the representative ensembles shown in the top row. The last
row of Figure 6 shows the comparisons of these parameters
in the neuronal ensembles determined from the complete
dataset. Except panel 6B, all other panels in the upper row
of Figure 6 have a lattice structure, the difference being the
level of granularity. The Parkinsonian state (hypokinesia) has
the largest empty spaces (Figure 6C), while the dyskinetic
state has the smallest (hyperkinesia; Figure 6D), with control
conditions in between (Figure 6A). The DIV parameter shows
that the more chaotic structure is the decorticated striatum
(Figure 6G for cases in the top row and Figure 6L for the entire
sample), showing that even in a brain slice maintained in vitro,
surviving corticostriatal afferents contribute to neural ensemble
dynamics (Arbuthnott and Garcia-Munoz, 2017; Arias-García
et al., 2018; Aparicio-Juárez et al., 2019). This validates both
cortical stimulations to intervene in striatal dynamics during
disease (Beuter et al., 2014) and in vitro techniques to evaluate
these therapeutic procedures (Aparicio-Juárez et al., 2019).
Recurrence analyses also show that the Parkinsonian state is
dissimilar to the decorticated state, a fact that remained obscure
with previous observations and analyses, namely, that the cortex
helps in maintaining the Parkinsonian state.

The number of elements in each sample was ncontrol = 88,
ndecorticated = 101, nparkinsonian = 40 and ndyskinetic = 61
neuronal ensembles obtained from n = 12 control, 11
decorticated, 7 parkinsonian, and 7 dyskinetic experiments
from 37 ex-vivo slices of different mice. Neuronal ensembles
were identified as explained in see the Section 3.4. The observed
values are expressed as mean ± 2 standard errors of the mean
(SEM) and are dimensionless. The results are the following:

The most recurrent state is that from dyskinetic tissue
(Figures 6E,J) with a value of RRdyskinetic = 0.056± 0.006
(p < 0.001 compared to all conditions), reflecting that this
microcircuit maintains both types of recurrence: alternating
activity between ensembles (VP vectors) and recurrent activity
between the same ensembles (VA vectors; Figure 5D). The
temporal sequences between ensembles are also more intricate.
It is followed by the control condition value of RRcontrol =

0.027± 0.004 (Figures 5A, 6J), which, in addition to the
significant difference with the dyskinetic state described above,
shows a higher value than the decorticated condition (p <
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FIGURE 6

Recurrence quantification analysis of the firing rate of representative neuronal ensembles. (A–D) Top: recurrence plots of the firing rate of
neuronal ensembles of the striatum in the different conditions. At the left and upper ends of the matrices, the traces being analyzed are
observed, and for better appreciation, they are also shown at the bottom. Note that, except for matrix B, all conditions exhibit lattice structures,
differing in their spacing. (E) The recurrence is higher for the dyskinetic state. (F) The determinism is higher for the parkinsonian condition,
suggesting predictability. (G) The divergence is higher for the decorticated condition, suggesting a more chaotic state. (H) The laminarity score
is for the parkinsonian circuits, the most regular. (I) The average white vertical line length is higher for the decorticated state, where recurrent
times are the longest–almost isolated ensembles. The last row (J–N) shows the comparisons between the samples determined in the complete
dataset and essentially confirms what was observed in the representative example quantifications shown in the upper row (E–I). The actual
values can be read in the main text.

0.001). The neuronal ensembles of the Parkinsonian state have
a recurrence value like the control condition (RRparkinsonian =

0.026± 0.008). But they lack the variety of transitions between
the neuronal ensembles that the control condition exhibited
(Figures 5C, 6J). Instead, the Parkinsonian microcircuits
present a dominant recurrent transition with respect to the
others. Control and Parkinsonian circuits show a higher
significant value of recurrence with respect to the decorticated
condition (p = 0.001). Finally, decorticated tissue exhibits a
substantial difference: almost no recurrence (RRdecorticated =

0.016± 0.004, Figure 6J), its ensembles being almost isolated,
showing another discrepancy with Parkinsonian circuits (Jáidar
et al., 2010, 2019; Plata et al., 2013; Pérez-Ortega et al., 2016;

Lara-González et al., 2019). Most of the values determined in the
dataset are less than 0.1, confirming that the recurrence matrices
are sparse as in other observed dynamical systems (Marwan
et al., 2007).

The Parkinsonian state is the most deterministic, rigid,
or predictable (DETparkinsonian = 0.818± 0.025; p < 0.001
compared against the control and decorticated conditions;
p = 0.01 compared against the dyskinetic condition;
Figures 6F,K). Dyskinetic (DETdyskinetic = 0.764± 0.006),
decorticated (DETdecorticated = 0.757± 0.007), and control
conditions (DETcontrol = 0.754± 0.007) have lower values in
that order. The only significant difference is observed between
the control and dyskinetic conditions (p = 0.02; Figure 6K).
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This result goes along with the paucity of transitions of the
Parkinsonian state (Figure 5C) as compared to the others,
as well as with the high recurrence of the same ensembles
observed before (Jáidar et al., 2010). The circuit’s characteristics
and its original metaphor—a highly recurrent and predictable
circuit—were thus unaffected by the disappearance of the
highly recurring diseased condition that was seen using
other approaches. The distinction with the decorticated
state is obvious. The control circuit does not fall between
the Parkinsonian and dyskinetic circuits, according to this
measure, which is interesting because it has a lower score than
both. Perhaps this result is the consequence of the underlying
Parkinsonian state during L-DOPA induced dyskinesia; a
comparison with other choreic states (e.g., Huntingtonian
circuit) is therefore necessary.

The decorticated state presents the highest divergence value
(DIVdecorticated = 0.818± 0.025; p < 0.001 compared to other
conditions; Figure 6L), indicating a greater tendency of this
type of system to present irregular or chaotic behavior, i.e., the
need for cortical inputs to generate direction in striatal actions
(DIVcontrol = 0.037± 0.002; DIVparkinsonian = 0.033± 0.006;
DIVdyskinetic = 0.034± 0.002). On the other hand, laminarity
is analogous to determinism (stretch of vertical lines instead of
diagonal lines) in such a way that a low value of it represents a
system with many fluctuations. In this sense, the Parkinsonian
circuit again shows the highest score compared to the other
conditions. (LAMparkinsonian = 0.888± 0.017; p < 0.01 in each
comparison; Figures 6H,M). When a system presents high
values of DET and LAM, it is highly likely that it has structures
that are repeating themselves rigidly over time, in this case,
the activity of their neuronal ensembles. However, there is a
significant difference between both measures. Whereas LAM
represents the probability that a specific value will not change
over time, DET measures the probability that similar changes
in the activity rate recur. The similarity between control
and dyskinetic states using this metric emphasizes the lattice
nature of both recurrence plots (LAMcontrol = 0.865± 0.005;
LAMdyskinetic = 0.863± 0.005). The decorticated circuit
showed a significantly lower value of laminarity with
respect to the other conditions (LAMdecorticated =

0.846± 0.009; p vs. control = 0.005;p vs. dyskinetic = 0.017).
Finally, the decorticated circuit has the longest average

white vertical line length or recurrence times, which measures
how long it takes for the system to return to a state that
has already been visited (Wdecorticated = 486.964± 96.460;
Figure 6I). It is significantly larger than the control and
dyskinetic conditions (p < 0.001 in both comparisons), but
no differences were found with respect to the Parkinsonian
state, emphasizing that ensembles found in this decorticated
state are isolated (Pérez-Ortega et al., 2016). The Parkinsonian
circuit (Wparkinsonian = 284.925± 71.624), explained by
the paucity of transitions (Figures 5C, 6C,I), was the next
highest ( p vs. control = 0.004; p vs. dyskinetic < 0.001). With

this metric, the control circuit stays between the dyskinetic
and Parkinsonian circuits (Wcontrol = 159.342± 41.827;
Wdyskinetic = 57.001± 9.339; p vs. parkinsonian = 0.004;
p vs. dyskinetic < 0.001). The above-described pipeline has
the potential to differentiate experimental conditions.

5 Discussion

The present reinterpretation of striatal circuitry diseased
states at histological scale (dozens of neurons) following
the methodology for determining neuronal ensembles based
on dimension reduction and graph theory plus recurrence
analysis shows a novel viewpoint on how to represent these
sophisticated systems. It is demonstrated that a larger number of
neuronal ensembles are revealed compared to earlier clustering
techniques (Carrillo-Reid et al., 2008; Pérez-Ortega et al., 2016).
Once the UMAP settings have been configured to produce
a representative graph from a raster display, the modularity
technique does not require any parameters to identify the
neuronal ensembles. As a result, greater transitions between
them occur in the control and dyskinetic states as opposed to
the decorticate or parkinsonian conditions. Transitions between
ensembles are more evenly distributed in the control condition
(in NMDA because in the control, “resting” or inactivated
striatum, the neuronal activity is relatively scarce; Lara-González
et al., 2019). Interestingly, recurrence is similar in the control
and the Parkinsonian states. Therefore, a bulk measure of
activity between the control activated striatum and the DA-
depleted one may show no differences if measured with multi-
recording techniques. The difference must be found in how this
activity is structured. In fact, the measure of how long it takes
for the system to return to a state that has already been visited
(average white vertical lines) shows that the lattice structure of
the control condition resides in between the Parkinsonian and
the dyskinetic states.

5.1 Cortical afferents and diseased
states

After the slicing technique, cortical afferents that remain
in the parasagittal slices are crucial for sustaining control,
parkinsonian, and dyskinetic states (Arias-García et al., 2018).
In the decorticated condition, in addition to less background
activity, it also presents almost isolated neuronal ensembles
(Pérez-Ortega et al., 2016) with unidirectional transitions, the
higher divergence (suggesting entrance into a chaotic state), the
lowest recurrence rate, and the higher average white vertical
line, denoting longer periods of time in which the system
tends to recur. Likewise, the greater dispersion observed in
this last parameter reflects its chaotic behavior. Together, these
data support the evidence that minimal corticostriatal inputs
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are necessary to structure the striatal parkinsonian circuitry
(Arbuthnott and Garcia-Munoz, 2017) and validate cortical
stimulation to intervene in striatal diseased states (Beuter et al.,
2014; Aparicio-Juárez et al., 2019). In conclusion, the striatal
circuitry is not like a decorticated circuitry; it needs the cortex
to be maintained, perhaps denoted by the role of the dominant
β rhythm oscillation found in motor cortices in parkinsonian
conditions (Little and Brown, 2014).

5.2 The parkinsonian state

While the background activity and the recurrence between
the control and Parkinsonian circuits are similar, their low-
dimensional structure is quite different. Parkinsonian circuits
show a lower number of neuronal ensembles, fewer transitions
between them, and predominant recurrent sequences. Graph
theory methodology found more ensembles than with previous
algorithms; however, they have more regular activation times.
Recurrence analysis shows that the Parkinsonian state becomes
more deterministic, rigid, or predictable and usually remains
in laminar periods (less turbulent) in greater proportion than
the other conditions. Therefore, even though the method of
determining neuronal ensembles presented here “dissolves” the
highly recurrent state found with alternative algorithms (Jáidar
et al., 2010; Plata et al., 2013) into several sub-states, the network
acquires highly recurrent sequences that interrupt alternation
anyway. Consequently, a stringent clustering algorithm was
put to test, but it did not contradict the basic “metaphor” of
the histological level of analysis found with other algorithms:
a deterministic network with highly recurrent sequences still
mirrors what is observed in Parkinsonian patients: rigidity and a
lack of ability for goal directed and postural control movements,
or hypokinesia-akinesia. Finding similar conclusions with
different algorithms shows that what is observed in the tissue
in each condition are robust findings of data on neuronal
populations. Therefore, analyses become complementary but, in
this case, with greater statistical robustness.

5.3 The dyskinetic state

For the ex-vivo tissue in L-DOPA induced hyperkinetic
conditions, the analysis confirmed previous reports with other
methods (Pérez-Ortega et al., 2016; Calderón et al., 2022):
neuronal ensembles are multiplied as well as transitions between
them. Further supporting the “metaphor” of patients exhibiting
an enhancement of stereotyped hyperkinetic involuntary
movements along with the underlying Parkinsonian state,
these findings show that more transitions between ensemble
sequences are accompanied by recurrent sequences, with this
network having the highest recurrence. This network needs
to be compared to other choreic states. This condition also
has the highest density of background activity, and it is the

circuit with the shortest average white vertical line, reflecting
the tight lattice structure of the recurrence matrix, suggesting
that cortical inputs are facilitated (Guerra et al., 2019). In
fact, certain parameters of cortical stimulation may aid in
the treatment of L-DOPA-induced dyskinesia (Martini et al.,
2019).

6 Concluding remarks

The method of extracting neuronal ensembles from calcium
imaging experiments presented here proved to be capable of
serving as a starting framework for computational analyses
of neuronal populations. The results could be statistically
substantiated. The pipeline presented may be implemented in
other studies with relative ease. A powerful feature of the
method is the possibility to reconstruct, in pieces (neuronal
ensembles), the whole activity observed in a portion of brain
tissue, allowing the study of neural states. Here, we demonstrate
how recurrence analysis might be used to examine a dataset
of recordings made from a particular brain area under several
experimental setups. It was possible to differentiate between the
diseased states and the controls and to reinterpret the data,
showing new aspects of the cortico-striatal relations and the
Parkinsonian and dyskinetic states. Note that cortical inputs’
absence is not an absence of inputs since some inputs coming
from the thalamus (e.g., Arias-García et al., 2018) and from
the external globus pallidus (e.g., Mallet et al., 2012) remain. In
addition, the pipeline may be used to design neuronal ensembles
based pre-clinical bioassays to evaluate potentially useful drugs
to treat neurological ailments, trying to avoid entering the
multiple biochemical signaling and biophysical details that
single neuron recordings or whole tissue measurements imply
(Plata et al., 2013; Lara-González et al., 2019; Barack and
Krakauer, 2021; Calderón et al., 2022). The clinical stage may be
the use of biopsies from surgery patients if the general picture
or population analysis becomes a fingerprint of the disease.
Therefore, the proposed pipeline of analysis becomes crucial for
this line of research.
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