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Detection of autism spectrum
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Introduction: Can we apply graph representation learning algorithms to identify

autism spectrum disorder (ASD) patients within a large brain imaging dataset? ASD

is mainly identified by brain functional connectivity patterns. Attempts to unveil the

common neural patterns emerged in ASD are the essence of ASD classification.

We claim that graph representation learning methods can appropriately extract

the connectivity patterns of the brain, in such a way that the method can be

generalized to every recording condition, and phenotypical information of subjects.

These methods can capture the whole structure of the brain, both local and global

properties.

Methods: The investigation is done for the worldwide brain imaging multi-site

database known as ABIDE I and II (Autism Brain Imaging Data Exchange). Among

different graph representation techniques, we used AWE, Node2vec, Struct2vec,

multi node2vec, and Graph2Img. The best approach was Graph2Img, in which after

extracting the feature vectors representative of the brain nodes, the PCA algorithm

is applied to the matrix of feature vectors. The classifier adapted to the features

embedded in graphs is an LeNet deep neural network.

Results and discussion: Although we could not outperform the previous accuracy

of 10-fold cross-validation in the identification of ASD versus control patients in

this dataset, for leave-one-site-out cross-validation, we could obtain better results

(our accuracy: 80%). The result is that graph embedding methods can prepare the

connectivity matrix more suitable for applying to a deep network.

KEYWORDS

autism spectrum disorder, connectivity, graph representation learning methods, AWE,
Graph2Img, deep neural network (DNN)

1. Introduction

Autism spectrum disorder (ASD) is a set of clinical presentations, emerging due
to neurodevelopmental disorder. ASD symptoms are related to social communication,
imagination, and behavior. Accurate and timely diagnoses of ASD significantly improve the
quality of life of individuals with ASD (Elder et al., 2017). Yet, there is no clear etiology to
diagnose ASD.

To date, ASD diagnosis is done based on the behavioral characteristics of children, observed
by parents and teachers at home or school (Nickel and Huang-Storms, 2017; Almuqhim and
Saeed, 2021). Since autism is related to abnormal development of the brain, assessing brain
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function (e.g., based on fMRI) is at the top of automatic diagnosis and
classification research. Resting-state functional MRI has a suitable
spatial resolution to show the interaction of brain regions during
a special behavior. In other words, a region’s function is tightly
dependent on its interactions. Various differential observations
consider the properties of the brain network in healthy and ASD
subjects. However, statistical analysis led the researchers to a disorder
whose mechanisms vary among patients. In other words, there is no
unique fact to announce it as a reliable biomarker of ASD (Frye et al.,
2019).

By considering brain regions and their connections as a
network, the detection of ASD alternatively could be a network
classification task, in which machine learning techniques could help.
To efficiently use information hidden in the resting-state fMRI, the
connectivity measures obtained from resting-state fMRI are useful to
understand the large-scale functional difference between healthy and
abnormal brains.

After that, a suitable classifier should be used. A vast number
of mental disorder diagnosis studies used traditional classifiers, such
as support vector machine (SVM), LASSO, and Bayesian classifier.
But deep learning methods showed a major preference in the case
of connectivity matrix because it is a high-dimensional feature of
brain activity. High-dimensional features increase the number of
hyperparameters of a machine learning algorithm. In such a way,
just deep neural networks can learn complex structures of high-
dimensional data. From this point of view, applying fully connected
deep neural networks and convolutional networks on fMRI volumes
and raw connectome data appears to be successful (Heinsfeld et al.,
2018; El Gazzar et al., 2019; Sherkatghanad et al., 2020).

In Heinsfeld et al. (2018), a deep learning algorithm using the
full connectivity matrix is applied to classify ASD and controls using
ABIDE data. They showed anterior–posterior underconnectivity in
the autistic brain and surpassed the state-of-the-art classification of
autism by achieving 70% accuracy. Similarly, a convolutional neural
network (CNN) was used to effectively diagnose Alzheimer’s disease
(AD) (Sarraf et al., 2016) and mild cognitive impairment (MCI)
(Meszlényi et al., 2017). In another study, CNN was used to extract
features from fMRI data, and SVM was used for classification (Nie
et al., 2016). A deep autoencoder was used to classify the fMRI
data of MCI (Suk et al., 2016). Furthermore, different hidden layers
between the encoder and the decoder (Patel et al., 2016) were added
to afford different tasks, like denoising (Heinsfeld et al., 2018), or
generating sparse features (Guo et al., 2017). Other networks such
as radial basis function network (RBFN) (Vigneshwaran et al., 2015),
restricted Boltzmann machine (RBM) (Huang et al., 2016), and deep
Boltzmann machine (DBM) can be used to extract features from
fMRI data because they can combine the information of different
voxels of the region of interest (Zafar et al., 2017). To take advantage
of the topological information implied in the connectivity graph,
a restricted path-based depth-first search (RP-DFS) algorithm was
applied to some remarkable autistic functional connections (Huang
et al., 2020). Finally, a three-layer deep belief network (DBN) model
with the automatic hyperparameter-tuning technique was applied
for classification. To date, this work achieved the most accurate
ASD/healthy classification result for ABIDE dataset (76.4% accuracy).

However, to get more reliable results, dynamic and/or
multimodal features were proposed. As an example, CNN with
the wavelet-based spectrogram as input (instead of the static
connectivity matrices), taking the dynamic of brain activities
into account, reached a specific improvement in the classification

accuracy (Al-Hiyali et al., 2021). However, just 144 subjects of
the ABIDE database were used in their evaluation. Furthermore,
a novel adversarial learning-based node–edge graph attention
network (AL-NEGAT) is used to combine fMRI and structural MRI
information (Chen et al., 2022) and obtained 74.7% accuracy. But
this method could not reach a good result in leave-one-site-out
validation (69.42%).

On the other hand, the benefit of DNN is mainly due to
a large number of training examples (Kuang et al., 2014; Kim
et al., 2016; Guo et al., 2017; Heinsfeld et al., 2018). Developing
deep learning approaches to work with functional connectivity
(FC) features using small or at best modest sample sizes of
neurological data (di Martino et al., 2014; Kuang et al., 2014; Kim
et al., 2016; Guo et al., 2017; Heinsfeld et al., 2018) is debatable
from the reproducibility and generalizability point of view. One
solution is the deep transfer learning neural network (DTL-NN)
approach that could achieve improved performance in classification
for neurological conditions (70.4% for ASD detection), especially
where there are no large neuroimaging datasets available (Li et al.,
2018). Other solutions are the Synthetic Minority Oversampling
Technique (SMOTE) to perform data augmentation to generate
artificial data and avoid overfitting (Eslami and Saeed, 2019) and
sparse autoencoder (SAENet) that was used for classifying patients
with ASD from typical control subjects using fMRI data (70.8%
accuracy and 79.1% specificity) for the whole dataset as compared
to other methods (Almuqhim and Saeed, 2021). Another approach
is to develop a machine learning approach with a robust training
methodology (Li et al., 2018). Machine learning algorithms able to
extract replicable, and robust neural patterns from brain imaging
data of patients with ASD, reach suitable classification results (Pereira
et al., 2009).

Another solution in studies with limited sample sizes is the
reduction of the size of features indicating useful connectivity
properties by network analysis methods. The ease of representing
brain connectivity information according to graph theory makes
them very valuable tools in this area. Machine learning on graphs
finds its importance here: finding a way to represent or encode graph
structure is the subject of this task. Nowadays, in order to model
information underlying the graph structure, there are new ways of
representing and analyzing graphs, which afford the complexity of
working with big graphs. Referring to these representation algorithms
as embedding, applying these approaches to brain networks is named
connectome embeddings (CEs). These embedding algorithms involve
converting graphs into vectors. Network embedding techniques can
be divided into three buckets: (1) based on engineered graph features,
(2) obtained by training on graph data, and (3) obtained by a layer of
a deep network. The main drawback of the former is that structural
homologies or higher-order relations of the connectivity matrix could
not be captured (Rosenthal et al., 2018). Furthermore, these features
are not flexible; i.e., they cannot adapt during the learning procedure.
In summary, many of these local and global features cannot capture
the topological shape of the graph, unless the morphology of the
cortex would be considered (He et al., 2022).

In the second bucket, referred to as shallow embedding, network
embedding vectors are learned by optimizing different types of
objective functions defined as a mapping to reflect geometric
information of graph data. This optimum embedded space is the
final feature vector. These algorithms involve learning approaches
that map nodes to an embedding space. Anonymous walk Embedding
(AWE), Node2vec, Struct2vec, DeepWalk, multi-node2vec, and
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Graph2Img (Grover and Leskovec, 2016; Ribeiro et al., 2017) are
some well-known algorithms of this bucket. These methods represent
higher-order features of the connections of a graph, helpful to
develop an input convenient for training a CNN. As an example, in
the Graph2Img method, the embedded space of the brain network
is transformed into an image. The advantage of this method is the
capability of dimensionality reduction of this image by an algorithm
like PCA and still has an image at hand (Meng and Xiang, 2018).
Multi-node2vec was applied on fMRI scans over a group of 74
healthy individuals. Multi-node2vec identifies nodal characteristics
that are closely associated with the functional organization of the
brain (Wilson et al., 2018).

In the third bucket, referred to as deep embedding, CE and deep
learning algorithms are combined to form a single deep network.
This combinatory network can exploit the connectome topology. In
this category, a Hypergraph U-Net (HUNet), Graph U-Net (GUNet)
(Gao and Ji, 2019), and hypergraph neural network (HGNN) (Feng
et al., 2019) are proposed in which low-dimensional embeddings of
data samples are learned from the high-dimensional connectivity
matrix. Indeed, these networks emerged as a subset of deep graph
neural networks (GNNs) (Wang et al., 2016; Kipf and Welling, 2017;
Gao and Ji, 2019) are able to model the deeply nonlinear relationship
node connectomic features (Ktena et al., 2017; Banka and Rekik,
2019; Bessadok et al., 2019).

In summary, the accuracy of ASD classifiers using different
algorithms ranges from 55 to 76.4% (Parisot et al., 2018; Xing et al.,
2019; Huang et al., 2020; Kazeminejad and Sotero, 2020; Sharif and
Khan, 2021; Chen et al., 2022). The main point is that the reported
good performances in ASD classification of ABIDE dataset were
about considering individual sites for most traditional and deep
machine learning algorithms (Huang et al., 2020; Sherkatghanad
et al., 2020). But our main concern is that after intermingling all the
sites, or leave-one-site-out cross-validation algorithm, accuracy (the
percent of correctly classified subjects), and the area under ROC is
diminished. In other words, there is no algorithm appropriate for
clinical usage. Thus, still, further experiments are required to be
conducted with patients with different phenotypical information to
ensure the clinical value of these methods (Li et al., 2018).

Our main goal in this paper is the demonstration of the role of
the second bucket (CE method) in representing the structure with
which brain regions are connected to each other and assessing its
effect on ASD classification. In fact, we claim that representation-
based features can solve the problem of high-dimensional input of the
deep network. Based on the ABIDE I and ABIDE II public datasets,
recorded at some different sites, we want to investigate whether CE
can surpass previous research studies or not. Accordingly, by using
CNN classifiers, we claim that there is great potential in combining
graph representation methods, with deep learning techniques for
fMRI-based classification, to increase the generalization of the
algorithm from one site to others.

The structure of the paper is as follows: after describing
the network embedding techniques in Section “2. Materials and
methods,” suitable embedding-based features are illustrated. In
Section “3. Implementation and results,” the classification technique
using the deep network is declared. Afterward, ABIDE database, its
preprocessing methods, and the embedded features extracted from
them are introduced. These features are applied to deep network to
detect ASD subjects. Some evaluation measures like the F-score and
the accuracy of this classifier are reported in the Results section and
are compared to other literature working on ABIDE dataset.

2. Materials and methods

2.1. Network embedding methods

The concept of network embedding can be described as follows:
suppose there is a graph G = (V, E, A) with V as the node set, E as
the undirected and weighted edge set, and A as the adjacency matrix.
We are going to find the optimum function z = f (v) ∈ Rd that
maps each node or subgraph to a d-dimensional vector disclosing
the structure of the graph. These vectors should be representative
of the graph and can be used as the feature vectors uncovering the
similarities of the graph for machine learning algorithms. At this
level, each node corresponds to a d-dimensional embedded vector
involving its connections with all other nodes (Hamilton William
et al., 2017).

Indeed, these low-dimensional embedded vectors can summarize
either position of nodes in the graph, or the structure of their
neighborhood, and user-specified graph statistics (Hamilton William
et al., 2017). Most shallow embedding mapping techniques are
done based on a lookup table, just like what occurred in classic
matrix factorization for dimensionality reduction (Hamilton William
et al., 2017). For another part of shallow embedding techniques,
learning the embedded vector for each node is the process of training
an encoder–decoder system, defined as an optimization method.
The decoder maps the similarity of two nodes into a real-valued
similarity measure. Different techniques able to afford this job (like
DeepWalk, Node2vec, AWE, TSNE, GraRep, and others) are based
on a stream of randomly generated walks. The resultant vectors can
describe the similarities and subgraph membership with relatively few
dimensions. These learned embedded vectors can be used as features
of the graph.

The core of this relevant optimization problem is to find a
mapping such that nearby nodes in short random walks have
similar embedding vectors. The detail of random walk, DeepWalk,
and Node2vec embedding methods is explained in Supplementary
Appendix A.

2.1.1. Struc2vec
Node2vec and DeepWalk approaches lead to a unique embedding

vector for every individual node but have some drawbacks, including
working as a lookup table, its computational cost, failure to leverage
attribute information of nodes involving node’s position and role,
weakness in predicting information of unseen nodes. To alleviate the
abovementioned drawbacks, two alternatives have arisen: (1) some
embedding approaches that enable capturing the structural roles of
nodes have been proposed (Ribeiro et al., 2017; Donnat et al., 2018),
and (2) network embedding in a feature-based manner has been
proposed.

As an example of the first alternative, Ribeiro’s technique referred
to as Struc2Vec generates some new graphs G0, ..., GK , each to
capture one kind of k-hop neighborhood structural similarity, from
the original graph G. The algorithm is as follows (Ribeiro et al., 2017):

1. For each node vi, order the sequence of degrees of nodes exactly
with the distance of k-hops from it: Rk(vi).

2. Start from a weighted graph G0 whose edges have zero weights
w0

(
vi, vj

)
= 0.
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3. Build a sequence of weighted graphs whose edges vary adaptively
by the equation:

wk
(
vi, vj

)
= wk−1

(
vi, vj

)
+ d

(
Rk (vi) , Rk

(
vj

))
where d

(
Rk (vi) , Rk

(
vj

))
is the distance between sequence

Rk (vi) and Rk
(
vj

)
and could be defined with different measures.

4. Run random walk on new graphs G0, ..., GK to implement
Node2vec on them, and learn latent from them, using an
algorithm like SkipGram.

In the second alternative, namely, feature-based methods, two
algorithms referred to as Graph2Img and AWE are considered.

2.1.2. Graph2Img
The Graph2Img algorithm, at first, transfers the original network

into feature vectors and then uses clustering methods to group
nodes. In other words, after embedding the graph nodes into
a d-dimensional space, representations of nodes are gathered in
a matrix of dimension N × d, where N = |V|, i.e., the
number of nodes in the graph. Next, we can decide whether all
features are important or not and determine their priority. In
fact, the principal component analysis (PCA) method is used to
reduce the d-dimension vector to dPCA-dimension. Then, we can
use just the most important dimension, the second important,
third, and fourth dimensions. Taking into account just four first
components of LPCA, two matrices M12 and M34 are constructed (see
Supplementary Appendix C), which seems to be enough to analyze
the brain network.

As shown in Figure 1 (Meng and Xiang, 2018), these two
matrices, behaving like images, can be applied as different channels
of DCNN. The algorithm pseudo-code is shown in Supplementary
Algorithm A-3 (Meng and Xiang, 2018).

2.1.3. Anonymous walk embedding (AWE)
As another feature-based network embedding method, the

Anonymous walk Embedding (AWE) algorithm used distribution of
anonymous walks. Anonymous walks are the set of walks starting
from an initial node u, by length l passing from random nodes,
and termination at node v. There are a set of η such random walks
Au

l = (au
1, au

2, ..., au
η). Thus, the number of all possible random

walks with length l exponentially grows with l. These anonymous
walks capture structural information of nodes because labels of
the nodes constituent of a random walk are omitted for them. In
fact, corresponded to the random walk: w = (v1, v2, ..., vk), we
can define an anonymous walk involving a sequence of integers
a =

(
f (v1) , f (v2) , ..., f (vk)

)
where f (v) is the minimum place

of v in the w random walk (Ivanov and Burnaev, 2018). However,
due to the huge number of anonymous walks of a large graph,
an efficient sampling approach is required to approximate this
distribution (Ivanov and Burnaev, 2018). Defining the objective
function of similar nodes on local neighborhoods of anonymous
walks, improve the structural consideration of the embedding
method.

These four embedding algorithms, Node2Vec, DeepWalk, AWE,
and Graph2Img, extract the feature vectors of each node, describing
the characteristics and structure of the graph. Thus, the next step of
our research is the classification of these feature vectors obtained for
healthy and ASD subjects.

2.2. Classification

Graph classification is a task to predict whether a whole graph
belongs to any class of C predefined classes. In other words, the task
is to train a classifier based on N graphs {Gi} , i = 1 : N and their
corresponding labels {Li} , i = 1 : N, able to classify every new graph
G→ L. Graph classification problem can be done using two typical
approaches: (1) classification using extended CNNs to be appropriate
for the raw graphs (Niepert et al., 2016) and (2) graph kernel methods
(Shervashidze et al., 2011), in which graph embeddings f (G1) are used
in conjunction with kernel methods (K

(
f (G1) , f (G2)

)
) to perform

classification of new graphs, where K : (x, y) → Rn is a kernel
function, quantifying the distance of graphs.

As mentioned earlier, the aim of this paper is a kernelized
classification of healthy and autistic patients based on functional
connectivity matrices. The features extracted from these matrices
(f (G1)) are the embedded vectors obtained by using Node2vec,
Struct2vec, AWE, and Graph2Img algorithms. To do the
classification job, we used the DNN classifier. The reason
underlying this selection is the size of the resultant feature vectors,
whose classification requires many parameters to be trained.
As well, to validate the performance of our classification task,
cross-validation is applied.

Three types of deep networks have been considered in this
study: LeNet, ResNet, and VGG16. However, finally, we have used
LeNet, because of its best performance for our problem. Thus, we
described it here.

2.2.1. LeNet
LeNet, one of the first published CNNs in computer vision tasks,

was introduced by (and named for) Yann LeCun. In LeCun et al.
(1998) published the first study in which he could train CNNs via
backpropagation. Then, this network was applied in AT&T Bell Labs,
for the purpose of recognizing handwritten digits in images (LeCun
et al., 1998). LeNet achieved outstanding results comparable with that
of support vector machines and thus became a dominant approach in
supervised learning.

LeNet (LeNet-5) consists of two parts (Wang and Gong, 2019): (i)
a convolutional encoder and (ii) a dense block. The former consists
of two convolutional blocks, and the latter consists of three fully
connected layers. The architecture is summarized in Figure 2.

Each convolutional block includes a convolutional layer, a
sigmoid activation function, and a subsequent average pooling
operation. In 1990, ReLUs and max pooling were discovered to
have suitable performance. However, in LeNet, each convolutional
layer maps any 5 × 5 part of the input to a scalar using a kernel
and a sigmoid activation function. There are 6 convolutional layers,
in such a way that the result is a 6@28∗28 tensor. In fact, by
these convolutional layers, spatial features of input are mapped to a
number of two-dimensional feature maps, namely, channels. Then,
a pooling layer samples the channels by a factor of 2 and leads to
a 6@14∗14 array. Then, there is another convolutional layer. Again,
this is a convolutional layer with a 5∗5-dimensional filter. The first
convolutional layer had 6 output channels, while the second layer has
16 outputs of size 10∗10. The output of the convolutional block must
be flattened before being passed to the dense block. This output is a
16@5∗5 vector, created by a pooling layer.

LeNet’s dense block has three fully connected layers, with 120,
84, and 10 outputs, respectively. Because we are still performing
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FIGURE 1

Block diagram of the Graph2Img feature-based embedding algorithm (Meng and Xiang, 2018).

classification, the 10-dimensional output layer corresponds to the
number of possible output classes. Implementing LeNet models with
modern deep learning frameworks is remarkably simple.

2.3. ABIDE dataset

The rs-fMRI data of ASD and healthy subjects are downloaded
from a large multisite data repository Autism Brain Imaging Data

Exchange (ABIDE)1. The Autism Brain Imaging Data Exchange I
(ABIDE I) is a multisite platform gathered from 17 international
laboratories, which shared some collected resting-state functional
magnetic resonance imaging (rs-fMRI), anatomical and phenotypic
datasets. This dataset includes 1112 patients, from 539 individuals
with ASD and 573 from typical controls (age 7–64 years, median

1 http://fcon_1000.projects.nitrc.org/indi/abide/
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FIGURE 2

Data flow in LeNet. The input is an image, and the output is a probability over different possible outcomes (Loey et al., 2016).

FIGURE 3

The steps of the proposed method, including the preprocessing, the 39 ROIs, the connectivity matrix, graph representation methods, and the deep
learning classification.

14.7 years across groups). Till now, these data are used in many
research studies. The publications have shown its utility for capturing
the whole brain and regional properties of the brain connectome in
ASD. All data have been anonymized.

Accordingly, ABIDE II was established to further promote
discovery science on the brain connectome in ASD. To date,
ABIDE II involves 19 sites, overall donating 1114 datasets from
521 individuals with ASD and 593 controls (age range: 5–
64 years). All datasets are anonymous, with no protected health
information included.

There is no ASD/healthy label for some individuals present in
ABIDE database. After removing these cases, 871 individuals of
ABIDE I and 910 individuals of ABIDE II would be remaining, for
investigation in this study (Yang et al., 2019).

3. Implementation and results

The proposed method includes preprocessing, extracting the
connectivity matrix, graph representation methods, and the deep
learning classification. These steps are schematically shown in
Figure 3.

3.1. Preprocessing and connectivity matrix

The rs-fMRI data are slice time corrected, motion corrected,
registered, and normalized, using FSL software. The steps of
preprocessing done for ABIDE I and ABIDE II databases are as
follows: (1) AC-PC realignment, (2) gray matter and white matter
tissue segmentation, (3) nonlinear registration to MNI152 space, (4)
normalization, (5) resampling, (6) modulation, and (7) smoothing
with FWMH = 4 mm. For the task of brain parcellation, the
ICA method is used (de Martino et al., 2007; Tohka et al., 2008;
Smith et al., 2009; Joel et al., 2011). In other words, instead of

obtaining the average of the time series (BOLD signal) of some
predefined regions, spatial maps output from ICA with the specific
functional and anatomical interpretation (the locations of brain tissue
acting synchronously and with the same activity pattern) is taken
into account. ICA is a data-driven model, which uses no a priori
information about the brain and has been a popular approach in
the analysis of fMRI data (Salimi-Khorshidi et al., 2014). In this
study, ICA decomposed the whole BOLD fMRI data into 39 regions
according to MNI ATLAS.

Afterward, the BOLD signal of these 39 ROIs is considered to
compute their connectivity measures, by statistical measures such
as Pearson correlation, partial correlation (Saad et al., 2009), and
tangent correlation (Dadi et al., 2019). The size of the connectivity
matrix is 39∗39, according to the number of ROIs. The Pearson
correlation coefficient ranges from 1 to −1, where 1 indicates that
two ROIs are highly correlated, and −1 indicates that two ROIs are
anticorrelated. This step is done using the Nilearn toolbox developed
by MIT University, as well as the BrainIAK toolbox (Kumar
et al., 2020). Nilearn is a python toolbox for statistical learning on
neuroimaging data. In this study, the connectivity matrix is obtained
via tangent correlation (Pedregosa et al., 2011). See Supplementary
Appendix A for more details. This method is less frequently used
but has solid mathematical foundations, and a variety of groups
have reported good decoding performances with this framework.
Connectivity matrices built with tangent space parametrization give
an improvement compared to full or partial correlations.

3.2. Classifying the graph embedding
vectors

According to the abovementioned embedding features, we used
three scenarios to check whether ASD detection can be improved by
graph embedding algorithms or not. In the first scenario, features
are embedded vectors of the connectivity matrix using each of
the Node2Vec, Struc2Vec, and AWE methods. Accordingly, a deep
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FIGURE 4

Three scenarios of applying embedding vectors to detect ASD via LeNet.

network with one channel input is used in this scenario. This channel
input is an d × N matrix including the d-dimensional embedded
vectors of all N = 39 nodes. The embedded vectors obtained by
these methods have a dimension of d = 25, 64, and 128, respectively.
But, in the second scenario, to take different properties of the
Node2vec algorithm, with different p and q values (p = 1, q = 1,
p = 1, q = 4, and p = 4, q = 1), into account, a three-channel
deep network is applied. In the third scenario, after applying PCA on
the result of the Node2Vec algorithm, two matrices of the Graph2Img
algorithm are considered as input of a two-channel CNN. These three
scenarios are schematically shown in Figure 4.

Indeed, at first, we tried to do the classification job through
traditional kernel-based classifiers, like support vector machine
(SVM), but satisfactory results could not be obtained. The classifier
could not show an accuracy better than chance. The advantage of
CNN is that it is composed of an automatic feature extractor that
again extracts features from the embedded vectors and, thus, is a
trainable classifier.

In all three scenarios, we customize the LeNet structure for our
problem: In the first scenario, there is one channel in the input
layer, and the size of the embedded vector in each of the Node2vec,
Struct2vec, and the AWE method determines the dimension of the
input. These sizes are, respectively, equal to 25, 64, and 128.

Thus, in the first scenario, the input layer of LeNet is a 39 ∗
d, d = 25, 64, 128 image. In the second scenario, the network has
three channels. Each channel of the deep network consists of 39 ∗ d
neurons. In the third scenario, there are two channels, each consisting

TABLE 1 The 5- and 10-fold cross-validation results using different
embedding methods and CNN classifier (LeNet).

Method ABIDE II
(5-fold)

ABIDE I
(5-fold)

ABIDE II
(10-
fold)

ABIDE I
(10-
fold)

Scenario 1 Struct2vec 54% 56% 56% 58%

Scenario 1 DeepWalk 55% 55% 56% 59%

Scenario 1 Node2vec
p = 1, q = 4

59% 57% 62% 62%

Scenario 1 AWE 56% 58% 63% 65%

Scenario 2 Node2vec 63% 64% 66% 64%

Scenario 3 Graph2Img 59% 61% 66% 64%

of 10∗10 neurons (r = 10). Finally, in all three scenarios, there are
two output neurons indicating a healthy and autism brain.

The default LeNet network was modified according to the
abovementioned dimensions of input/output. Furthermore, a
dropout layer is employed for regularization at every hidden layer
[33] with 0.8 keeping regularity. Another difference is the activation
functions we used in LeNet are ReLU functions, except for the
ultimate layer, which uses a softmax function in such a way that
a probability distribution over classes would be obtained. For the
convolution pooling block, we employ 64 filters at the first level,
and as the signal is halved through the (2,2) max pooling layer, the
number of filters in the subsequent convolutional layer is increased
to 96 to compensate for the loss in resolution (Tixier et al., 2019).
The number of trainable weights in this deep neural network doubles
or triples in the third and second scenarios.

The illustrated networks are used as the healthy/ASD classifier.
Classification results would be reported in Supplementary Appendix
to compare them with previous research in which a deep network is
used to classify the raw connectivity matrices.

3.3. Evaluation

To check the performance of our proposed ASD classifier
working based on graph embedding techniques and deep machine
learning methods, two kinds of cross-validation techniques are used.
Indeed, these two techniques depend on how we choose training and
test datasets. According to the properties of ABIDE database that
consists of different sites, we can do three different partitioning jobs:
(1) dividing data of each site into N folds, and reporting accuracy
of classification in individual sites, (2) leave-one-site-out validation
(distinctly for ABIDE I and II), and (3) dividing all data of ABIDE
I and II into N folds to report typical N-fold cross-validation. In
all three approaches, the classification performance is assessed by
accuracy, F-score, recall, and precision. To report the accuracy of
all data, statistically more reliable, the second approach, i.e., leave-
one-site-out validation, is the most appropriate one. However, in
this paper, the validation types (2) and (3) are considered in the
report of the results.

Considering ASD detection as the goal of the classifier, true
positive (TP) is defined as the percent of ASD subjects correctly
classified as ASD. As well, the percent of ASD subjects classified
as healthy is referred to as false negative (FN). Similarly, false
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TABLE 2 Leave-site-out cross-validation results using scenario 1 just by AWE and CNN classifier.

Sites # Subjects # ASD
subjects

Accuracy F-score Accuracy
(Heinsfeld
et al., 2018)

F-score
(Heinsfeld
et al., 2018)

Accuracy
(Sherkatghanad

et al., 2020)

F-score
(Sherkatghanad

et al., 2020)

Accuracy
(Huang et al.,

2020)

ABIDE I UCLA-2 21 11 0.90 0.86 0.66 0.65 0.61 0.62 0.78

TRINITY 49 25 0.89 0.88 0.65 0.64 0.61 0.62 0.76

UM-2 35 13 0.79 0.73 0.64 0.66 0.66 0.56 0.77

KKI 33 12 0.92 0.91 0.67 0.66 0.72 0.69 0.79

YALE 41 22 0.71 0.61 0.64 0.63 0.69 0.65 0.81

PITT 50 24 0.76 0.73 0.66 0.65 0.69 0.73 0.78

OLIN 28 14 0.77 0.73 0.64 0.63 0.58 0.56 0.76

LEUVEN-2 28 12 0.79 0.76 0.65 0.64 0.65 0.73 0.81

STANFORD 25 12 0.69 0.62 0.66 0.65 0.48 0.09 0.79

NYU 172 74 0.76 0.73 0.66 0.65 0.65 0.73 0.74

UM-1 86 14 0.71 0.67 0.64 0.63 0.66 0.56 0.77

UCLA-1 64 37 0.74 0.72 0.66 0.65 0.69 0.65 0.78

OHSU 25 12 0.82 0.77 0.64 0.64 0.57 0.56 0.73

MAX-MUN 46 19 0.79 0.78 0.68 0.67 0.46 0.48 0.67

LEUVEN-1 28 14 0.65 0.61 0.65 0.64 0.65 0.71 0.81

USM 67 43 0.71 0.68 0.64 0.63 0.77 0.69 0.85

SBL 26 12 0.72 0.67 0.66 0.65 0.56 0.62 0.66

SDSU 36 14 0.86 0.81 0.63 0.63 0.75 0.80 0.80

Mean 0.77 0.73 0.65 0.64 0.63 0.61 0.78

ABIDE II BNI 56 29 0.79 0.77

EMC 54 25 0.83 0.82

ETH 37 13 0.82 0.65

GU 106 51 0.72 0.71

IP 54 21 0.81 0.80

IU 40 20 0.91 0.88

KKI 211 56 0.85 0.84

NYU 77 48 0.65 0.61

OHSU 93 37 0.72 0.69

ONRC 59 24 0.79 0.79

SDSU 58 33 0.79 0.73

SU 37 21 0.78 0.75

TCD 42 21 0.71 0.69

UCD 31 18 0.74 0.68

UCLA 32 16 0.85 0.82

USM 33 17 0.82 0.79

Mean 0.78 0.75

positive (FP) is the percentage of healthy subjects decided to be ASD.
Accordingly, the F-score measure is defined as follows:

F − score =
TP

TP + 1
2 (FP + FN)

It is important for the classifier to detect all ASD subjects, so
TP

#ASD subjects is referred to as recall. Also, it is expected for a classifier
to have trusted positive detection, or in other words to be precise.

Thus, precision is defined as TP
TP+FP . Because the size of subjects of

two classes is not necessarily balanced, precision is a better measure
of performance. Accordingly, another definition of F-score is based
on recall and precision:

F − score =
2 × recall × precision

recall+ precision
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TABLE 3 Leave-site-out cross-validation results using scenario 2 (Node2vec) and CNN classifier.

Sites # Subjects # ASD
subjects

Accuracy F-score Accuracy
(Heinsfeld
et al., 2018)

F-score
(Heinsfeld
et al., 2018)

Accuracy
(Sherkatghanad

et al., 2020)

F-score
(Sherkatghanad

et al., 2020)

Accuracy
(Huang et al.,

2020)

ABIDE I UCLA-2 21 11 0.76 0.68 0.66 0.65 0.61 0.62 0.78

TRINITY 44 25 0.72 0.64 0.65 0.64 0.61 0.62 0.76

UM-2 34 13 0.71 0.63 0.64 0.66 0.66 0.56 0.77

KKI 33 12 0.66 0.64 0.67 0.66 0.72 0.69 0.79

YALE 41 22 0.81 0.76 0.64 0.63 0.69 0.65 0.81

PITT 50 24 0.76 0.74 0.66 0.65 0.69 0.73 0.78

OLIN 28 14 0.87 0.83 0.64 0.63 0.58 0.56 0.76

LEUVEN-2 28 12 0.78 0.70 0.65 0.64 0.65 0.73 0.81

STANFORD 25 12 0.82 0.82 0.66 0.65 0.48 0.09 0.79

NYU 172 74 0.63 0.58 0.66 0.65 0.65 0.73 0.74

UM-1 86 14 0.67 0.63 0.64 0.63 0.66 0.56 0.77

UCLA-1 64 37 0.65 0.54 0.66 0.65 0.69 0.65 0.78

OHSU 25 12 0.77 0.72 0.64 0.64 0.57 0.56 0.73

MAX-MUN 46 19 0.60 0.53 0.68 0.67 0.46 0.48 0.67

LEUVEN-1 28 14 0.85 0.82 0.65 0.64 0.65 0.71 0.81

USM 67 43 0.76 0.69 0.64 0.63 0.77 0.69 0.85

SBL 26 12 0.76 0.70 0.66 0.65 0.56 0.62 0.66

SDSU 27 14 0.73 0.65 0.63 0.63 0.75 0.80 0.80

Mean 0.73 0.68 0.65 0.64 0.63 0.61 0.78

ABIDE II BNI 56 29 0.66 0.60

EMC 54 25 0.80 0.77

ETH 34 13 0.74 0.65

GU 106 51 0.64 0.59

IP 54 21 0.74 0.69

IU 34 20 0.75 0.67

KKI 34 56 0.79 0.70

NYU 77 48 0.68 0.61

OHSU 93 37 0.63 0.56

ONRC 49 24 0.80 0.75

SDSU 58 33 0.67 0.58

SU 54 21 0.70 0.64

TCD 39 21 0.76 0.74

UCD 31 18 0.77 0.72

UCLA 32 16 0.80 0.76

USM 33 17 0.70 0.64

Mean 0.72 0.66

At last, to check how many subjects are correctly labeled, accuracy
is a well-known measure.

Accuracy =
TP + TN

all subjects

On the other hand, the time cost of training the classifier is
another measure of the method under evaluation.

4. Results

Results of three scenarios for ABIDE I and ABIDE II database
are presented in Table 1, using the LeNet classifier. In the results of
Table 1, validation of type 3 is considered: all subjects of each database
are taken into account, and then 5-fold and 10-fold cross-validations
are applied. The average accuracy of these folds is reported for each
scenario. Scenario 2 achieved the best performance in which a mean
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TABLE 4 Leave-site-out cross-validation results using scenario 3 (Graph2Img) and CNN classifier.

Sites # Subjects # ASD
subjects

Accuracy F-score Accuracy
(Heinsfeld
et al., 2018)

F-score
(Heinsfeld
et al., 2018)

Accuracy
(Sherkatghanad

et al., 2020)

F-score
(Sherkatghanad

et al., 2020)

Accuracy
(Huang et al.,

2020)

ABIDE I UCLA-2 21 11 0.86 0.82 0.66 0.65 0.61 0.62 0.78

TRINITY 44 25 0.79 0.75 0.65 0.64 0.61 0.62 0.76

UM-2 34 13 0.78 0.72 0.64 0.66 0.66 0.56 0.77

KKI 33 12 0.85 0.81 0.67 0.66 0.72 0.69 0.79

YALE 41 22 0.82 0.81 0.64 0.63 0.69 0.65 0.81

PITT 50 24 0.76 0.72 0.66 0.65 0.69 0.73 0.78

OLIN 28 14 0.85 0.81 0.64 0.63 0.58 0.56 0.76

LEUVEN-2 28 12 0.78 0.72 0.65 0.64 0.65 0.73 0.81

STANFORD 25 12 0.94 0.92 0.66 0.65 0.48 0.09 0.79

NYU 172 74 0.61 0.58 0.66 0.65 0.65 0.73 0.74

UM-1 86 14 0.76 0.71 0.64 0.63 0.66 0.56 0.77

UCLA-1 64 37 0.76 0.72 0.66 0.65 0.69 0.65 0.78

OHSU 25 12 0.92 0.90 0.64 0.64 0.57 0.56 0.73

MAX-MUN 46 19 0.77 0.71 0.68 0.67 0.46 0.48 0.67

LEUVEN-1 28 14 0.82 0.78 0.65 0.64 0.65 0.71 0.81

USM 67 43 0.78 0.73 0.64 0.63 0.77 0.69 0.85

SBL 26 12 0.76 0.71 0.66 0.65 0.56 0.62 0.66

SDSU 27 14 0.86 0.76 0.63 0.63 0.75 0.80 0.80

Mean 0.80 0.76 0.65 0.64 0.63 0.61 0.78

EMCABIDE II BNI 56 29 0.66 0.60

EMC 54 25 0.80 0.77

ETH 34 13 0.74 0.65

GU 106 51 0.64 0.59

IP 54 21 0.74 0.69

IU 34 20 0.75 0.67

KKI 34 56 0.79 0.70

NYU 77 48 0.66 0.61

OHSU 93 37 0.63 0.56

ONRC 49 24 0.80 0.75

SDSU 58 33 0.67 0.58

SU 54 21 0.70 0.64

TCD 39 21 0.76 0.74

UCD 31 18 0.77 0.72

UCLA 32 16 0.80 0.76

USM 33 17 0.70 0.64

Mean 0.72 0.66

classification accuracy of 64% (recall 0.77%, precision 0.73%) and
66% (recall 80%, precision 80%) is obtained for ABIDE I and ABIDE
II, respectively (in 10-fold cross-validation). The range of accuracy
values was between 52 and 69% in individual folds. Based on the
literature, this is not better than Heinsfeld et al. (2018), Huang et al.
(2020), and Sherkatghanad et al. (2020) in which 70.22, 70, and 76.4%
accuracies are reported.

The results of Table 1 show that the type of embedded features
is effective in classification. But, as mentioned before, not given here,
the results of SVM using embedded features are not better than those

of Sherkatghanad et al. (2020), in which raw connectivity matrix has
been used in classification via SVM. In other words, it seems that it is
the art of deep network classifier in reaching (if any) good separation
between ASD and healthy subjects, not the embedding features. So,
the question is whether the feature embedding method was effective
in ASD/healthy discrimination or not.

To answer this question, the results of the leave-one-site-out
cross-validation are reported in Tables 2–5, respectively, for scenario
1 using AWE, scenario 2 using Node2vec, and scenario 3 using
Graph2Img. In this validation type, just AWE of scenario 1 is applied,
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due to its better performance in the k-fold cross-validation procedure,
against other embedding techniques. For each site, the LeNet CNN
classifier is trained by data of other sites in each database and has
been tested on data of that site. Results of the ABIDE I and ABIDE II
are distinctly presented. The number of subjects at each site, number
of ASD subjects, accuracy, and F-score of the proposed techniques,
as well as those of Heinsfeld et al. (2018), Huang et al. (2020), and
Sherkatghanad et al. (2020) (just for ABIDE I), are reported in the
tables.

As shown in Figure 5, compared to Heinsfeld et al. (2018), Huang
et al. (2020), and Sherkatghanad et al. (2020), which achieved the best
results in the literature so far, the results depict that the Graph2Img-
based CNN can outperform the other supervised methods. From this
point of view, these results are in favor of embedding features, not
just the deep network.

Therefore, some points worth considering in the results of these
two validation methods:

1. Embedding features could not improve the results of the k-fold
cross-validation but is able to improve the results of leave-one-
site-out one.

2. The accuracy of CNN in classifying ASD subjects of each
site is different when using graph embedding methods. On
average, all embedding scenarios could improve the results,
in comparison to using the raw connectivity matrices, in
the leave-site-out validation manner (Heinsfeld et al., 2018;
Sherkatghanad et al., 2020). The best embedding technique
seems to be Graph2Img that increases the 65% (Heinsfeld et al.,
2018) and 63% (Sherkatghanad et al., 2020) results to 80%. In
our studies, the belief network of Huang et al. (2020) with 78.2%
mean accuracy is the main rival of Graph2Img from the leave-
one-site-out validation point of view that it also works based on
embedding features, as well as a graph-based feature selection
method.

3. Each graph embedding scenario has significantly improved the
results of some sites, but not all of the sites.
• The AWE technique is not successful in the fMRI data of

the University of Utah School of Medicine (USM), for which
Huang et al. (2020) and Sherkatghanad et al. (2020) act well. For
YALE University (YALE), the University of Leuven (LEUVEN),
Stanford University (STANFORD), the University of Michigan
(UM-1), and the University of California, Los Angeles (UCLA-
1), Huang et al. (2020) reached better results than AWE.
• As well, Heinsfeld et al. (2018) and/or Sherkatghanad et al.

(2020) outperform the embedding scenario 2 (three-channel
node2vec with three values of p and q) in Kennedy Krieger
Institute, Baltimore (KKI) data, New York University Langone
Medical Center (NYU), Ludwig Maximilian University Munich
(MAX-MUN), USM, and San Diego State University (SDSU)
data. Almost at all sites of ABIDE I, scenario 2 reached less
accuracy, in comparison to Huang et al. (2020), except Olin,
Institute of Living, Hartford Hospital (OLIN), STANFORD,
Oregon Health and Science University (OHSU), LEUVEN, and
Social Brain Lab BCN NIC UMC Groningen and Netherlands
Institute for Neurosciences (SBL).
• Even, for the embedding scenario 3 (i.e., Graph2Img), there is a

site for which the accuracy of ASD classification is lower than
Sherkatghanad et al. (2020). The case is worse for the Huang
method, which works better than Graph2Img for the University

TABLE 5 Summary of best performance values and computational time for
ABIDE I, in comparison to literature.

Mean accuracy
(10-fold

cross-validation)

Mean accuracy
(leave-one-

site-out)

Computation
time

Heinsfeld et al.
(2018)

70% 65% Over 32 h

Sherkatghanad
et al. (2020)

70.22% 63% 12 h 30 min

Huang et al.
(2020)

76.4% 78.2% 96 s

Chen et al.
(2022)

74.7% 69.42% −

Proposed
method

66% 80% 2 h 47 min 20 s

of Pittsburgh School of Medicine (PITT), LEUVEN, NYU, UM-
1, UCLA-1, and USM. However, the average accuracy of the
leave-one-site-out validation of Graph2Img (80%) is more than
that of Huang et al. (2020) with 78%.
• It seems scenarios 1 and 3 are consistent with each

other, but scenario 2 is different. In the sites for which
scenarios 1 and 3 obtain good results, scenario 2 does
not succeed. Maybe, these methods represent different
features of the graph. It is predicted that their combination
would reach a good classification performance. Also,
Graph2Img can be combined to use their seemingly
complemental advantages.

4. For the ABIDE II database, scenario 1 (AWE method) reached
the best mean accuracy. The best individual site result also is
dedicated to the AWE method for the KKI database.

However, the most dominant advantage of the proposed
algorithm is its training time. Using a system with two Intel Xeon
E5-2620 processors with 24 cores running at 2 GHz and 48 GB of
RAM. As well, 1 Tesla K40 GPU with 2880 CUDA cores and 12 GB
of RAM was used to accelerate training. In such a way, the entire
training time took about 200 min. In Table 5, the training time of
Heinsfeld et al. (2018), Sherkatghanad et al. (2020), and our proposed
method is compared. This achievement is due to the dimension
reduction property of the graph embedding methods, decreasing the
dimensionality of the CNN input.

The results show that the proposed algorithm, using embedded
vectors of connectivity graph, and the CNN classifier, outperforms
the previous studies in the identification of autism spectrum disorder,
from both speed and accuracy points of view.

Since the functioning of the brain is accompanied by interactions
and connections between different functional areas, discrimination
of healthy and autism behaviors could be done by assessment of
the brain network dynamics (Kim et al., 2017). Indeed, cognitive
disorders emerge because of the alteration of dynamic relationships
between pairs of specific brain regions. However, we claim that a
powerful learning method considering the coupling, similarity, or
causality and synchronizing intensity between specific brain regions
could be able to detect cognitive impairment.

For a complete comparison, we considered the literature where
a functional connectivity matrix is used to discriminant between
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FIGURE 5

Box plot of leave-out-site accuracy to compare different embedding scenarios and Heinsfeld et al. (2018); Huang et al. (2020); Sherkatghanad et al.
(2020) vs. sites, for ABIDE I dataset.

FIGURE 6

Box plot of leave-out-site accuracy to compare different embedding scenarios vs. sites, for ABIDE II dataset.

healthy and autistic subjects, based on ABIDE database, either
using conventional classifiers, deep networks, or even statistical tests.
The result of these comparisons is shown in Figure 5, illustrating
that embedded features achieved better results than other feature
extraction methods, and as well, deep neural networks hold much
greater promises than conventional classifiers. In other words, since
AWE (scenario 1), Graph2Img (scenario 3), and multi-parameter
Node2Vec (scenario 2) algorithms gain better classification results
with CNN classifier (in leave-one-site-out validation), we claim
that embedded features involving the structure of the functional
connectivity of brain could be more convenient in ASD detection.
The classification results (in k-fold cross-validation), although not
high (66 and 64% for ABIDE I and II) enough to be appropriate
for clinical usage, show that there are strong alterations in brain
connections during autism disorder.

Our 10-fold cross-validation best average result is 66% compared
to Heinsfeld et al. (2018) which is about 70%. Instead, as
shown in Tables 2–4, and Figures 5, 6, for leave-one-site-out,
both the mean accuracy over sites, and the most of individual
accuracy of sites, our proposed method is clearly much better
than Heinsfeld et al. (2018) and Sherkatghanad et al. (2020) and a
little better than Huang et al. (2020). These results show that, as
the sample size decreases (5-fold, 10-fold cross-validation results,
and leave-one-site-out), the gap between the performance of the
embedding vectors and the raw connectivity matrix increases. This
implies that using embedding vectors is an effective idea, but
still needs more investigation to find the more suitable graph
representation method. The reason is clearly the intrinsic complexity
of brain function.

5. Conclusion and future work

There are two messages in the obtained results: First, the intrinsic
phenotypical properties of subjects within each site lead to a specific
structure in their connectivity graph, in addition to the distinct
indicator of ASD/healthy. Different embedding techniques acquire
some of these properties. Second, a suitable combination of graph
embedding techniques is the alternative approach to take all graph
similarities in the ASD group regardless of the phenotypes.

The better mean accuracy of the leave-one-site-out validation
technique compared to that of k-fold cross-validation again tells
us about the variance of the graph structures between sites due
to the within-site phenotypes. In such a way, in a random group,
finding the common structures just relevant to ASD would be too
difficult for an embedding technique. It is the main reason that
prevents the embedding techniques capture a better result than the
raw connectivity matrices.

Another interesting result is the difference in various techniques
in the sites in which they can successfully detect ASD/normal
situations. This point ensures us about a combinational technique,
gathering all characteristics of them, to get a biomarker of ASD.

In this article, we showed that by using structural graph
representation algorithms, it is possible to classify subject groups
based on the connectivity fingerprints of brain regions. Therefore,
our idea to use the information of node structures as a new and
low-dimensional source might increase classification performance.
However, such dimension reduction may lead to more ambiguity
about the place of alteration in the connectivity matrix. In other
words, we did not analyze the results to obtain knowledge about
these alterations were of what kind, and where they occur. This is the
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drawback of our proposed algorithm we could not identify ROIs that
alter connectivity strength values. In fact, the main point of a suitable
embedding algorithm for brain network is that the representations
that emerge would be neurobiologically plausible and meaningful.
From this point of view, we can predict the mechanism and cause
underlying an impaired brain network during mental disorders. This
is our future concern.
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