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Adult neuroplasticity employs
developmental mechanisms

Todd M. Mowery1* and Preston E. Garraghty2

1Department of Otolaryngology, Robert Wood Johnson Medical School, Rutgers, The State

University of New Jersey, Piscataway, NJ, United States, 2Department of Psychological and Brain

Sciences, Indiana University Bloomington, Bloomington, IN, United States

Although neural plasticity is now widely studied, there was a time when

the idea of adult plasticity was antithetical to the mainstream. The essential

stumbling block arose from the seminal experiments of Hubel and Wiesel

who presented convincing evidence that there existed a critical period

for plasticity during development after which the brain lost its ability to

change in accordance to shifts in sensory input. Despite the zeitgeist that

mature brain is relatively immutable to change, there were a number of

examples of adult neural plasticity emerging in the scientific literature.

Interestingly, some of the earliest of these studies involved visual plasticity

in the adult cat. Even earlier, there were reports of what appeared to be

functional reorganization in adult rat somatosensory thalamus after dorsal

column lesions, a finding that was confirmed and extended with additional

experimentation. To demonstrate that these findings reflected more than a

response to central injury, and to gain greater control of the extent of the

sensory loss, peripheral nerve injuries were used that eliminated ascending

sensory information while leaving central pathways intact. Merzenich, Kaas,

and colleagues used peripheral nerve transections to reveal unambiguous

reorganization in primate somatosensory cortex. Moreover, these same

researchers showed that this plasticity proceeded in no less than two stages,

one immediate, and one more protracted. These findings were confirmed

and extended to more expansive cortical deprivations, and further extended

to the thalamus and brainstem. There then began a series of experiments

to reveal the physiological, morphological and neurochemical mechanisms

that permitted this plasticity. Ultimately, Mowery and colleagues conducted a

series of experiments that carefully tracked the levels of expression of several

subunits of glutamate (AMPA and NMDA) and GABA (GABAA and GABAB)

receptor complexes in primate somatosensory cortex at several time points

after peripheral nerve injury. These receptor subunit mapping experiments

revealed that membrane expression levels came to reflect those seen in early

phases of critical period development. This suggested that under conditions

of prolonged sensory deprivation the adult cells were returning to critical

period like plastic states, i.e., developmental recapitulation. Here we outline

the heuristics that drive this phenomenon.
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Introduction

Although neural plasticity is now one of the most widely

researched phenomena in the field, there was a time when

the idea of adult plasticity was antithetical to the mainstream.

The essential stumbling block was that the robust structural

and functional effects of early disruptions of normal visual

experience were not apparent in adult models. For example,

Wiesel and Hubel (1963a) reported marked atrophy of cells

in the deprived layers of the cat lateral geniculate nucleus

(LGN) when monocular visual deprivation began early in life.

Adult-onset monocular deprivation, on the other hand, had

no effect on LGN cell size. Similarly, early visual deprivation

resulted in a profound effect in striate cortex such that nearly

all of the recorded cells responded only to inputs conveyed

by the non-deprived eye but no such effect was found when

the deprivation began in adulthood (Wiesel and Hubel, 1963b).

Subsequently, Hubel and Wiesel (1970) extended these findings

and identified “the period of susceptibility.” These studies

provided convincing evidence that there existed a critical period

for plasticity during visual system development after which

the brain lost its ability to change in accordance to shifts in

sensory input.

Despite the prevailing wisdom that mature brain is relatively

immutable to change, there were a number of examples of

adult neural plasticity emerging in the scientific literature.

Interestingly, some of the earliest of these studies involved

visual plasticity in the adult cat. A brief paper by Fiorentini

and Maffei (1974) reported reduced binocularity in simple cells

in adult cat visual cortex after the surgical immobilization of

one eye, even with concurrent binocular deprivation (Maffei

and Fiorentini, 1976). Other researchers (Brown and Salinger,

1979) reported the loss of X-cells in the layers of the adult cat

LGN innervated by the immobilized eye following monocular

paralysis, showing that adult neural plasticity could also be

demonstrated in subcortical sites. A number of other examples

of experience-dependent changes in adult visual system followed

(e.g., Creutzfeldt and Heggelund, 1975; Hoffmann and Cynader,

1977; Salinger et al., 1977a,b, 1980a,b; Berlucchi et al.,

1978a,b,c, 1979; Hoffmann and Holländer, 1978; Garraghty

et al., 1982).

Even earlier, Wall and Egger (1971) reported functional

reorganization in adult rat somatosensory thalamus after dorsal

column lesions. Other experiments followed that showed

plasticity in the dorsal spinal cord (e.g., Bausbaum and Wall,

1976; Wall, 1977), brainstem (e.g., Dostrovsky et al., 1976),

and thalamus (e.g., Wall and Egger, 1971; Pollin and Albe-

Fessard, 1979) after dorsal rhizotomies or dorsal column

lesions. In these studies, cells in deafferented regions displayed

abnormal receptive field properties that included responses

to stimulation of intact peripheral pathways. Furthermore, it

became apparent that this phenomenon was more than a

transient response to deafferentation, as investigation of the

temporal nature of these effects suggested that these changes

could be both very acute (immediate) as well as chronic (e.g.,

Dostrovsky et al., 1976; Millar et al., 1976). Surprisingly (in

retrospect), resistance to the possibility of adult neural plasticity

remained strong.

Plasticity in adult primate
somatosensory cortex

In 1983, Merzenich et al. (1983a,b), reported on a series

of seminal investigations that provided conclusive evidence

that the topographic map of the body in adult primate

somatosensory cortex could undergo substantial changes when

parts of the map were deprived of their activating inputs via

peripheral nerve transection. These experiments had two major

advantages over the findings briefly discussed above. First, the

transection of a peripheral nerve (the median nerve in these

experiments) deprives a precise portion of the topographic

map, eliminating any possible ambiguity as to the extent of

the deafferentation. Second, these researchers used New World

primates, such as the squirrel monkey Saimiri Saimirinae or

owl monkey Aotus Aotidae as their subjects. These smaller

primates, which descended from old world monkeys and apes

about 40 million years ago, have brains that are relatively

lissencephalic, and primary somatosensory cortex is exposed

on the outer surface of the brain, rather than being buried

in the central sulcus as it is in Old World primates and

humans. Thus, the recording sites in the deprived portion of the

topographic map could be unambiguously sited on photographs

of the cortical surface as the primary somatosensory area

(see Figure 1; Merzenich et al., 1983b). This latter fact made

it possible to monitor the progression of the topographic

reorganization over time after the nerve transection within

individual subjects. These sequential mappings over time

demonstrated that the reorganization proceeded in no less

than two phases (see Churchill et al., 1998). Immediately

following nerve transection, “new” inputs were recorded in

restricted regions of the deprived patch of cortex. Over the

following days to weeks, the second phase of reorganization

proceeded, as the remaining areas of the deprived cortex

became responsive to skin surfaces on the hand with

intact innervation.

These ground-breaking discoveries engendered a number of

new lines of research. Included among these were experiments

that examined use-dependent alterations in cortical topography

(e.g., Jenkins et al., 1990; Recanzone et al., 1992), in experiments

that behaviorally controlled the tactile experience of the subjects.

Allard et al. (1991) used digit syndactyly to show that when

receptors adjacent digits were consistently coactivated because

the digits were surgically fused, the normally discrete digit

representation in primary somatosensory cortex became fused

as well. Garraghty and Muja (1995) showed similar fusions in
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FIGURE 1

Developmental recapitulation: a hidden phase of somatosensory reorganization. (A) Left: Cartoon showing the innervation by the median, ulnar,

and radial nerve inputs and corresponding receptive fields in area 3b cortex of the non-human primate hand region prior to injury. Right:

Cartoon showing how the radial nerve inputs are immediately unmasked prior to complete reorganization of non-human primate area 3b hand

representations after median and ulnar nerve transection. (B) Line diagram demonstrating how the shift in AMPA and GABA receptor subunit

expressions reveal a previously hidden phase of adult somatosensory reorganization associated with the recapitulation of developmental

receptor states.

a monkey with a paralytic condition in one hand such that

cortical neuronal receptive fields matched the aberrant pattern

of skin surface coactivations that the paralysis produced. By

labeling individual thalamocortical axonal arbors, the possible

anatomical substrates supporting the plasticity were explored

(e.g., Garraghty et al., 1989; Garraghty and Sur, 1990). These

experiments showed that individual axonal arbors were larger

than the grain of the topographic map, offering a means

by which receptive fields could move across the cortex, as

happens with nerve injury-induced reorganization. Potential

neurochemical mechanisms were examined. Garraghty et al.

(1991) used immunostaining for GABA to show reductions in

the region of cortex that had undergone reorganization after

nerve injury. Avendaño et al. (1995) showed that cholinergic

mechanism were involved in the brain’s response to sensory loss.

Additional studies evaluated other patterns or extents of sensory

loss (e.g., Wall et al., 1983; Merzenich et al., 1984; Garraghty

and Kaas, 1991a; Garraghty et al., 1994). Observations of nerve

injury-induced plasticity were also extended to subcortical levels

(e.g., Garraghty and Kaas, 1991b; Faggin et al., 1997; Churchill

et al., 2001).

The earlier work of Wall and colleagues (e.g., Merrill and

Wall, 1972; Wall, 1977) characterized the immediate phase

of plasticity as the “unmasking” of latent inputs. These were

defined as peripheral nerve receptive fields that were normally

suppressed by the dominant nerve inputs to these cortical areas

(e.g., radial nerve receptive fields in median nerve cortical

territory). When the dominant input was removed, these

subordinate receptive fields were expressed or “unmasked.”

Several lines of research subsequently offered confirmation for

Frontiers in SystemsNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnsys.2022.1086680
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Mowery and Garraghty 10.3389/fnsys.2022.1086680

this idea. First, there were several reports of increases in the

receptive field sizes of cortical neurons when inhibition within

the cortex was blocked with bicuculline (e.g., Hicks and Dykes,

1983; Dykes et al., 1984; Alloway et al., 1989), indicating that

“latent” inputs were available to cortical neurons. Second, using

suprathreshold whole nerve stimulation, Schroeder et al. (1995)

showed that latent inputs could be revealed in somatosensory

cortex. In these experiments, latent radial, but not ulnar, nerve

inputs were recorded in “median nerve cortex,” a finding

that was consistent with the fact that the expansion of radial

nerve-innervated skin surfaces accounted for most of the

reorganization found in monkey cortex after median nerve

transection (Merzenich et al., 1983a; Schroeder et al., 1997b;

Myers et al., 2000). Finally, receptor autoradiographic (Wellman

et al., 2002; Garraghty et al., 2006) and immunohistochemical

experiments (Mowery et al., 2011) showed changes in GABA

receptors that are consistent with a reduction in intracortical

inhibition. Thus, the immediate topographic changes in the

cortex after peripheral nerve injury appear to depend on

the revelation of latent inputs that are normally under tonic

inhibitory suppression.

The search for the mechanism(s) responsible for the

protracted phase of reorganization was more challenging. At

the simplest level, this stage of reorganization had to be due to

either the sprouting of new connections, the strengthening of

existing connections, or both. Anatomical studies examining the

sizes of thalamocortical axonal arbors showed that the existing

infrastructure was sufficient to permit the plasticity (Garraghty

et al., 1989; Garraghty and Sur, 1990), suggesting that previously

ineffective synapses were being strengthened. Motivated by the

extensive literature involving glutamatergic NMDA receptor-

dependent plasticity, experiments were conducted to investigate

the possible contributions of these receptors to the topographic

plasticity following peripheral nerve injury in adult monkeys.

Not surprisingly, the immediate phase of reorganization

proceeded whether NMDA receptors were blocked or not

(Myers et al., 2000). The second stage of reorganization, on the

other hand, was prevented if NMDA receptors were blocked

(Garraghty and Muja, 1996). Thus, NMDA receptors were

shown to be necessary for the “expression” of the second

phase of cortical reorganization but not for its “maintenance.”

Moreover, receptor autoradiography showed increases in AMPA

glutamatergic receptors that correlated with the second stage

of reorganization (Garraghty et al., 2006). Classic long-term

potentiation (LTP) in the hippocampus had been shown

previously to be NMDA receptor-dependent for its induction

but not for its maintenance (e.g., Collingridge and Bliss,

1987). Furthermore, the maintenance of the LTP has been

shown to involve the postsynaptic accumulation of AMPA

receptors (e.g., Tocco et al., 1992; Maren et al., 1993; for

a recent review, see Díaz-Alonzo and Nicoll, 2021). These

obvious parallels between hippocampal LTP and nerve injury-

induced topographic reorganization in primate somatosensory

cortex have been previously addressed (Garraghty et al., 1998,

2006).

Evidence for the recapitulation of
developmental plasticity in adult
somatosensory cortex after
peripheral nerve injury

Despite their similarities, fundamental differences remained

between hippocampal LTP and somatosensory plasticity in

their routes of induction, longevity, and temporal progression.

Most importantly was the transient nature of hippocampal

LTP vs. the presumed permanence of the nerve injury-induced

changes in the somatosensory cortex. These differences led

to the consideration of other possibilities. Dykes and Lamour

(1988) reported the intriguing finding that the majority of

neurons in primary somatosensory cortex (in cats) had no

receptive fields. That is, they could not be activated by peripheral

stimulation. Subsequently, Warren and Dykes (1992) showed

that a subset of these unresponsive neurons became responsive

when glutamate was applied to the cortex iontophoretically, but

nearly half of the recorded neurons remained unresponsive to

peripheral stimulation. These findings raised the possibility that

the large subset of neurons with no demonstrable peripheral

receptive field became responsive during the second stage

of reorganization in monkey cortex. Some support for this

possibility was reported by Schroeder et al. (1997a) who showed

that the blockade of GABA in the cortex (here, visual cortex)

resulted in a marked increase in cortical excitability that could

be reversed with the blockade of NMDA receptors. Intracortical

measures of GABAA and GABAB receptors are found to be low

as the second stage of reorganization proceeds (Garraghty et al.,

2006). Moreover, this plasticity is prevented by NMDA receptor

blockade (Garraghty and Muja, 1996). Thus, it seemed possible

that increased excitability in the cortex mediated by NMDA

receptors was a critical contributor in this plasticity.

When network activity drops drastically, as happens with

a stroke, amputation, or nerve injury, synaptic excitatory and

inhibitory receptor trafficking is dramatically altered in an

experience dependent way (Arancibia-Cárcamo et al., 2009;

Lussier et al., 2011). Under normal conditions, excitatory

synapse maintenance is carried out through postsynaptic

receptor trafficking of AMPA receptors containing largely

Glur2/3 subunits (Tanaka et al., 2000). In vitro, when presynaptic

glutamate release falls drastically (e.g., with tetrodotoxin

application), cells increase excitability by trafficking calcium

permeable forms of AMPA receptor (CP-AMPARs) to the

synapse (Wierenga et al., 2005), CP-AMPARs are special types of

receptors that gate calcium and drive NMDA-like processes that

can induce LTP (e.g., Asrar et al., 2009). These GluR2 lacking

calcium permeable AMPA receptors have been shown to play a
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major role in promoting circuit lability and metaplasticity (Clem

and Huganir, 2010; Herry et al., 2010; Shepherd, 2012), and,

thus, can enable potentiation at deprived synapses. This increase

in lability occurs through the ability of the CP-AMPARs ability

to gate calcium, thus giving them potentiating potential when

NMDAR function is limited. This type of synaptic plasticity

falls into the category of meta-plasticity, where neural activity

can influence synaptic function at adjacent synapses over longer

timelines. In fact, CP-AMPARs appear to play a significant role

in activating silent synapses (Isaac et al., 1995; Liao et al., 1995).

Silent synapses exist in developing systems prior to the onset of

feed-forward activation in sensory systems. Here, primary inputs

achieve dominance of the network while latent inputs remain

muted. With adult-onset sensory deprivations, the latent inputs

can be unmasked and the silent synapses activated through

the CP-AMPARs.

As discussed above, an immediate unmasking of latent

inputs occurs after a network wide reduction in dominant

afferent drive with nerve injury (Merzenich et al., 1983b;

Schroeder et al., 1997b; Myers et al., 2000). This unmasking

is enabled by the removal of GABAA and GABAB receptors

from synaptic sites of deprived networks (Wellman et al.,

2002; Garraghty et al., 2006). In the weeks following this

unmasking, these latent inputs come to reliably activate the

deprived cortical region (Merzenich et al., 1983a,b; Garraghty

and Kaas, 1991a; Schroeder et al., 1997a), and this process

is NMDA receptor-dependent (Garraghty and Muja, 1996).

NMDA receptor potentiation typically requires strong levels

of feed forward activity to drive synaptic strengthening;

however, activity levels are greatly diminished in a deprived

network. This implied the existence of a previously hidden

form of metaplasticity that could facilitate the onset of the

NMDA dependent phase of sensory reorganization, which

is active by 2 weeks post injury (see Cusick et al., 1990).

Selective targeting of AMPA and GABA receptor subunits with

immunocytochemical techniques at 1 week post injury in the

deprived cortex showed receptor subunit configurations for

AMPA (Mowery and Garraghty, 2009) and GABAA/GABAB

receptors (Mowery et al., 2011) that were different from

those associated with the immediate unmasking phase and

the subsequent NMDA receptor-dependent phase of adult

somatosensory plasticity. This pattern of receptor expression

was more consistent with a recapitulation of “developmental”

plasticity (Figure 1).

In developing networks, this pattern is associated with a

reduced level of mature GluR2/3 subunit containing AMPAR

in the active synapses that instead contain an elevated level

of GluR1 subunits (Kumar et al., 2002; Eybalin et al., 2004;

Ho et al., 2007; Whitney et al., 2008). In these immature

networks, weak sensory afferent inputs (eyes, ears, and skin)

can be potentiated through GluR1 containing AMPA receptor-

mediated calcium gating that serves to un-silence the synapse

and tag it for GluR2 containing AMPA receptor delivery

and mature forms of NMDAR Hebbian strengthening. In the

adult primate somatosensory cortex, similar changes to the

expression of GluR1 and GluR2/3 subunits occurred shortly

after peripheral nerve injury (Mowery and Garraghty, 2009)

suggesting that GluR1 containing calcium permeable AMPARs

might govern synaptic excitatory plasticity in cases where

dominant excitatory inputs are severely reduced (injury) or

lost (amputation). After sensory loss in the adult, a re-

emergence of this mechanism could facilitate the synaptic

strengthening of latent subordinate synaptic connections located

in more distal regions of the dendritic trees of cortical neurons

(see Churchill et al., 2004).

In an emerging sensory system, excitation and inhibition

are skewed toward excitatory processes to allow the onset of

peripheral input to engage synaptic strengthening mechanisms.

In very immature neural networks, GABAergic synapses form

first and are depolarizing until the chloride battery comes online

(see Ben-Ari, 2002). The onset of glutamatergic feedforward

activity begins the process. As the chloride transporter KCC2

matures, weak inhibitory hyperpolarization gradually emerges

as the chloride reversal potential moves toward adult levels.

This activity dependent step is vital for the progressive

rebalancing of excitatory and inhibitory synapses toward their

mature states (Cancedda et al., 2007). During development

lowered inhibition serves an important purpose, as the lack

of mature hyperpolarizing postsynaptic GABAA receptors

increases the probability of postsynaptic depolarization and

promotes CP-AMPA mediated potentiation. At the same time,

the lack of functional postsynaptic GABAB receptors, which

inhibit NMDA receptor activation, promotes NMDA induced

strengthening of the synapses (see Otmakhova and Lisman,

2004). Presynaptic GABAB receptors; however, are functionally

active during development. These autoreceptors regulate

postsynaptic GABAergic signaling in the face of immature

postsynaptic GABAergic synapses (McLean et al., 1996) that

lack a functionally relevant population of GABAA receptors

(Paysan et al., 1994). In network states where inhibitory tone has

been reduced, presynaptic GABAB autoreceptors likely regulate

GABAergic transmission.

In cases of sensory deprivation in the adult, a recapitulation

of this postsynaptic inhibitory configuration as described above

would again support the activation of silent latent synapses

from the remaining intact peripheral nerves. The reduction in

postsynaptic GluR2/3, GABAA, GABAB subunits, as well as the

increase in GluR1 and presynaptic GABAB subunits found in

adult primate somatosensory cortex 1 week after nerve injury

(Mowery and Garraghty, 2009; Mowery et al., 2011) mirrors

the conditions seen in developing networks (Figure 2). That

is, the excitatory/inhibitory (E/I) tone is imbalanced toward

excitation with low levels of active GABAA (Golshani et al., 1997;

Paysan and Fritschy, 1998) and postsynaptic GABAB receptors

(Fukuda et al., 1993; Fritschy et al., 1999) that are regulated

by presynaptic GABAB receptors (McLean et al., 1996). The

Frontiers in SystemsNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnsys.2022.1086680
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Mowery and Garraghty 10.3389/fnsys.2022.1086680

FIGURE 2

Parallels between critical period plasticity at developing synapses and developmental recapitulation at adult synapses. (A) Left: Cartoon showing

calcium permeable AMPAR at silent excitatory synapses being activated and recruiting mature GluR2/3 containing AMPAR to the active

dominant synapse. Right: Cartoon showing presynaptic GABAB autoregulation of inhibitory synapses prior to delivery of the mature

postsynaptic GABAA and GABAB receptors, which are a hallmark of the closure of critical period plasticity. (B) Left: Cartoon showing the

activation of calcium-permeable AMPAR at latent silent synapses after sensory deprivation of the normally dominant inputs. GluR2/3 containing

AMPAR are removed from the deprived synapses until CP-AMPAR mediated processes can establish new “dominant” inputs. Right: Postsynaptic

GABAB receptor autoregulation controls GABAergic inhibitory tone at synapses that have had the mature GABAA and GABAB receptors removed

to promote activation of silent synapses.

heightened excitatory state is only rebalanced to the mature

E/I tone after active synapses are re-established by the still

active latent inputs, which is a similar set of conditions these

networks are exposed to when feedforward peripheral activity

first emerges during development.

Evidence for the recapitulation of
developmental plasticity in other
sensory and central systems after
deprivation and injury

The onset of “adult-like” cortical inhibition is highly

correlated with the closure of the critical period of plasticity in

the visual cortex (e.g., Huang et al., 1999; Hensch, 2005) and

auditory cortex (Mowery et al., 2015, 2019). After this period,

both visual (Hubel and Wiesel, 1963; Berardi et al., 2000) and

auditory systems become resistant to general changes in sensory

input (Takesian et al., 2012; Mowery et al., 2016). However,

drastic changes to sensory input comparable to somatosensory

nerve injuries (e.g., retinal and cochlear denervation) induce

retinotopic reorganization of the adult visual cortex (Kaas

et al., 1990) and tonotopic reorganization in the adult auditory

cortex (Schwaber et al., 1993; Eggermont, 2017). Furthermore,

the reorganization phase occurs after an “unmasking” phase

where latent intact inputs are immediately expressed in visual

(e.g., Chino et al., 1992) and auditory cortex (e.g., Irvine and

Rajan, 1997; Mossop et al., 2000). Thus, it seems plausible

that the previously hidden phase of plasticity revealed in the

somatosensory cortex exists for the visual and auditory systems

as well.
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A careful review of the literature in which data exist

for intermediary time-points between unmasking and

reorganization does provide some initial evidence that a

brief window of developmental recapitulation opens. However,

carefully designed research will be needed to confirm this

(e.g., see Nahmani and Turrigiano, 2014 for review). A

reduction of GABAergic inhibition is present at all three

stages of reorganization so studies supporting this effect are

not surprising. Thus, many studies have provided evidence of

reduced GABAergic inhibition related to lowered expression

or down-regulation of GABA subunits in the deprived ocular

dominance column of the visual cortex (Hendry et al., 1994)

or areas of the auditory neuraxis after cochlear ablation (e.g.,

inferior colliculus, Bledsoe Jr et al., 1995; Mossop et al., 2000)

or denervation (e.g., auditory cortex, Balaram et al., 2019).

To date, no studies have investigated the effect of adult onset

visual or auditory sensory loss for either pre- or post-synaptic

GABAB expression or function. On the other hand, a hallmark

of the developmental plasticity is a reduction of the GluR2

containing AMPA receptors, which are replaced by calcium

permeable homomeric GluR1 receptors. Both monocular

deprivation and cochlear denervation lead to an acute reduction

of GluR2 receptor in the deprived visual dominance column

(Wong-Riley and Jacobs, 2002) and the inferior colliculus

or auditory cortex (Balaram et al., 2019). Furthermore, an

increase in phosphorylation of the GluR1 containing AMPAR

(serine 845 site) accompanied the appearance of CP-AMPARs

at synapses following visual deprivation (Goel et al., 2011).

Direct studies of this phenomenon in the visual or auditory

cortex have not been carried out as of yet, but there is evidence

to support preliminary investigation. It is worth noting that

similar evidence for the emergence of developmental plasticity

has been reported after other forms of central nervous system

injuries (Emery et al., 2003), such as ischemia (e.g., Gorter et al.,

1997), spinal cord injury (e.g., Harel and Strittmatter, 2006),

and epilepsy (e.g., Rivera et al., 2005). Together, these pieces

of evidence from many brain regions provide the rationale to

search for a universal neural mechanism governing this brief

window of plasticity.

The role of developmental
recapitulation in the onset of
maladaptive plasticity

Sensory deprivation during the critical period of

development leads to persistent changes in sensory receptive

fields (for review see Pedrosa et al., 2022). This can include

massive reorganizations within a sensory modality or even

across modalities such as when children are born deaf or blind

(Sadato et al., 2002; Sathian, 2005). As we have outlined above,

similar reorganizations happen in the adult networks when

changes to dominant sensory inputs occur, but it is important

to outline any possible differences between developmental

plasticity in neonates and developmental recapitulation in adult

neural networks. Topographic mapping in non-human primate

neonates using microelectrode recordings (Krubitzer and Kaas,

1988) or fMRI (Arcaro et al., 2019) have shown that the cortical

topographic map in infants are basically indistinguishable

from those in older monkeys. Given this fact, it is perhaps

not surprising that nerve transections performed on infant

primates resulted in patterns of topographic reorganization very

comparable to the map changes with adult-onset nerve injury

(Wall et al., 1992a,b).

Unfortunately, no time course or acute mapping studies

were carried out after the infant-onset nerve transections,

so it cannot be known that the mechanisms involved in

the map reorganizations from following early sensory loss

are the same as those discussed above for adult-onset nerve

transections. However, the comparability of the topographic

maps in infant and adult primates (Krubitzer and Kaas,

1988; Arcaro et al., 2019) does suggest that similar neural

mechanisms guide the neural response to deprivation and injury

in neonates and adults. Therefore, the major difference between

the two states of critical period plasticity and developmental

recapitulation doesn’t involve the plasticity mechanism, but the

neural scaffolding that is available to harness this plasticity. In

adults, nerve injuries are often accompanied by the emergence

of chronic side effects that greatly lower quality of life.

For example, after somatosensory injury, chronic pain and

phantom sensations often emerge (Flor et al., 2006). In the

auditory system, the onset of tinnitus (phantom auditory tones)

accompanies recovery from auditory nerve/hair cell injury

(Baguley, 2002). For the visual system, retinopathy can lead to

reorganization that eventually causes visual field defects (Safran

and Landis, 1999).

These reorganizations are thought to be the consequence

of maladaptive plasticity, and the etiological culprit could be

related to the re-emergence of critical period-like states that

allow aberrant functional connections to form between synapses

deprived of their dominant inputs and adjacent intact functional

synapses. This could offer an important clue toward the

development of classes of drugs targeting the calcium permeable

AMPARs or GABARs at these sensitive points to prevent

this maladaptive plasticity from taking hold. Being able to

evoke developmental recapitulation in the adult nervous system

outside of reorganizing injuries would also be an interesting line

of research toward the development of effective interventions

for chronic nerve injuries that are largely untreatable. In the

auditory system, exposure to auditory noise, has been suggested

to “re-open” the auditory critical period (Zhou et al., 2011).

Bavelier et al. (2010) used a pharmacological approach to re-

induce the critical-period and treat amblyopia. Perhaps a similar

approach using tactile stimulation or neuromodulators could

be explored toward the treatment of nerve injury induced

somatosensory disorders.
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Conclusion

Our first foray into the issue of adult somatosensory

plasticity examined the sizes of thalamocortical axonal arbors,

as this was an essential piece of information needed to

guide subsequent experiments. If thalamocortical axonal arbors

precisely terminated in topographically appropriate patches of

cortex, the sprouting of new connections would seemingly

be required to move receptive fields across the cortex. As

it turned out, we found that the axonal arbors were larger

than the zones of cortex where their receptive fields were

manifested. This “degenerate” anatomy (Edelman, 1987) clearly

suggested that subthreshold inputs existing in the cortex gained

strength during the reorganizational process. Thus, research

in the field came to center on the mechanism(s) by which

this strengthening occurred. Experiments targeting GABAergic

mechanisms revealed the contribution of this neurochemical

system to the immediate unmasking that followed the sensory

loss. The relaxation of feedforward inhibition also permitted

glutamatergic mechanisms to contribute to the latter phases

of reorganization. With the finding that glutamatergic NMDA

receptors are necessary for the latter stages of reorganization,

we began view the peripheral nerve transection paradigm as

a platform for studying adult neural plasticity per se, and not

merely a feature of the somatosensory system. Ultimately, in

our view, this nerve injury model in adult primates has revealed

mechanisms of neural change that apply broadly across the

brain, and the recapitulation of developmental plasticity is an

important feature of experience-dependent adult plasticity.
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