AUTHOR=Liu Guangda , Xiao Ruolan , Xu Lanyu , Cai Jing TITLE=Minireview of Epilepsy Detection Techniques Based on Electroencephalogram Signals JOURNAL=Frontiers in Systems Neuroscience VOLUME=15 YEAR=2021 URL=https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2021.685387 DOI=10.3389/fnsys.2021.685387 ISSN=1662-5137 ABSTRACT=

Epilepsy is one of the most common neurological disorders typically characterized by recurrent and uncontrollable seizures, which seriously affects the quality of life of epilepsy patients. The effective tool utilized in the clinical diagnosis of epilepsy is the Electroencephalogram (EEG). The emergence of machine learning promotes the development of automated epilepsy detection techniques. New algorithms are continuously introduced to shorten the detection time and improve classification accuracy. This minireview summarized the latest research of epilepsy detection techniques that focused on acquiring, preprocessing, feature extraction, and classification of epileptic EEG signals. The application of seizure prediction and localization based on EEG signals in the diagnosis of epilepsy was also introduced. And then, the future development trend of epilepsy detection technology has prospected at the end of the article.