
ORIGINAL RESEARCH
published: 19 July 2021

doi: 10.3389/fnsys.2021.677688

Frontiers in Systems Neuroscience | www.frontiersin.org 1 July 2021 | Volume 15 | Article 677688

Edited by:

Marcello Rosa,

Monash University, Australia

Reviewed by:

Suraj Gowda,

iota Biosciences, Inc., United States

Eric Pohlmeyer,

Strategic Analysis, United States

*Correspondence:

Miriam Zacksenhouse

mermz@technion.ac.il

Received: 08 March 2021

Accepted: 15 July 2021

Published: 19 July 2021

Citation:

Benyamini M and Zacksenhouse M

(2021) Shifts in Estimated Preferred

Directions During Simulated BMI

Experiments With No Adaptation.

Front. Syst. Neurosci. 15:677688.

doi: 10.3389/fnsys.2021.677688

Shifts in Estimated Preferred
Directions During Simulated BMI
Experiments With No Adaptation
Miri Benyamini 1 and Miriam Zacksenhouse 1,2*

1 Brain-Computer Interfaces for Rehabilitation Laboratory, Faculty of Mechanical Engineering, Technion-Israel Institute of

Technology, Haifa, Israel, 2 Technion Autonomous Systems Program, Haifa, Israel

Experiments with brain-machine interfaces (BMIs) reveal that the estimated preferred

direction (EPD) of cortical motor units may shift following the transition to brain

control. However, the cause of those shifts, and in particular, whether they imply

neural adaptation, is an open issue. Here we address this question in simulations

and theoretical analysis. Simulations are based on the assumption that the brain

implements optimal state estimation and feedback control and that cortical motor

neurons encode the estimated state and control vector. Our simulations successfully

reproduce apparent shifts in EPDs observed in BMI experiments with different BMI filters,

including linear, Kalman and re-calibrated Kalman filters, even with no neural adaptation.

Theoretical analysis identifies the conditions for reducing those shifts. We demonstrate

that simulations that better satisfy those conditions result in smaller shifts in EPDs. We

conclude that the observed shifts in EPDs may result from experimental conditions,

and in particular correlated velocities or tuning weights, even with no adaptation. Under

the above assumptions, we show that if neurons are tuned differently to the estimated

velocity, estimated position and control signal, the EPD with respect to actual velocity

may not capture the real PD in which the neuron encodes the estimated velocity. Our

investigation provides theoretical and simulation tools for better understanding shifts in

EPD and BMI experiments.

Keywords: brain-machine interfaces, BMI filter, preferred direction, shifts in preferred direction, neural

modulations, neural encoding

1. INTRODUCTION

Firing rates of cortical motor neurons represent a diversity of motor, sensory, and cognitive signals,
and most notably the direction and speed of movement (Georgopoulos et al., 1986; Georgopoulos,
2000; Johnson et al., 2001; Paz et al., 2003). In particular, center-out reaching experiments indicate
that the firing rates of single cortical motor neurons are broadly “tuned” to the direction of
movement. Changes in firing rates with the direction of movement are well described by a cosine
function of the angle between movement direction and a neuron-specific direction, dubbed the
preferred direction (PD). Detailed investigations suggest that the activity of directionally tuned
cortical motor neurons is also modulated by the speed of movement (Moran and Schwartz, 1999).
While the activity of PMd neurons are modulated mainly by the direction and amplitude of the
movement (Messier and Kalaska, 2000; Hendrix et al., 2009), the activity of M1 neurons has been
shown to correlate also with the applied forces (Ashe, 1997; Todorov, 2000).
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During experiments with brain machine interfaces (BMIs),
the estimated PDs (EPDs) of some neurons seem to shift
after switching from manual control to brain control (Lebedev
et al., 2005; Fan et al., 2014). The observed shifts in EPDs are
usually assumed to reflect some process of adaptation, where
the term “adaptation” describe any change in the actual tuning
properties of the units, internal model or control strategy,
including adaptation to changes in context (Green and Kalaska,
2011; Chase et al., 2012; Fan et al., 2014; Orsborn et al., 2014).
Here we investigate whether shifts in EPDs may be observed
after switching to brain control or changing BMI filters, even
without any adaptation. Our hypothesis is that such shifts may
occur without any adaptation, just due to the effect of imperfect
BMI filters.

The investigation is conducted using the framework of
optimal state estimation and feedback control (OFC) as a
model for motor control (Todorov, 2005; Shadmehr and
Krakauer, 2008). Optimal state estimation is achieved by
integrating proprioceptive and visual measurements with prior
state estimation from an internal model. Optimal gains are
determined from a relevant cost function that penalizes for both
control effort and inaccuracies in final position.

We have previously developed this framework to explain
observed changes in neural modulations following the transition
to brain control (Benyamini and Zacksenhouse, 2015). Optimal
state estimation and control were conducted in the state-space,
and neural activity encoded the estimated state and control
signal. Spike counts were generated as realizations of doubly
stochastic Poisson processes with linear tuning weights. The BMI
filter was trained to decode the movement velocity from the
neural activity.

Here we use this framework to investigate potential causes
for the observed shifts in EPDs following the transition to brain
control or to new BMI filters. In particular, we address the
following research questions:

• Can the observed shifts in EPDs between different phases
of BMI experiments occur even without any adaptation, i.e.,
without any change in the actual tuning properties of the
recorded units or the internal model?

• Does the EPD in pole control agree well with the real PD of the
unit, implied by the assigned tuning weights?

• Is the shift in EPD evident already in open-loop BMI, i.e., is
there a shift between the EPD of the neural activity with respect
to hand velocity and the EPD of the neural activity with respect
to the velocity predicted (but not executed) by the BMI filter.

• Does the type of BMI filter affect the distribution of shifts in
EPDs?

• Under what conditions, if any, are the EPDs expected to
remain unaffected by the transition to brain control?

Due to inaccuracies in the BMI filter, movements generated in
brain control differ from the intended movements, and thus may
evoke adaptation. In the context of OFC models, adaptation may
involve changes in the internal model, the estimation gains or
the control gains (Green and Kalaska, 2011). In the context of
neural encoding, adaptation may involve shifts in neural tuning

properties, or functional change in network operation (Green
and Kalaska, 2011; Chase et al., 2012; Fan et al., 2014; Orsborn
et al., 2014). While adaptation may occur, here we investigate
whether the observed shifts in EPD, following the transition to
brain control, may occur even with no adaptation.

2. MATERIALS AND METHODS

We investigate shifts in EPDs using both simulations and
theoretical analysis. Simulation results are compared to
experimental results reported in the literature from two groups:
(1) Nicolelis’ Lab (Carmena et al., 2003; Lebedev et al., 2005), and
(2) Shenoy’s Lab (Fan et al., 2014). The data recorded in Nicolelis
Lab was further analyzed here to compute the histograms and
estimate the distributions of PD shifts.

BMI experiments in Carmena et al. (2003) and Lebedev
et al. (2005) involved movements to randomly placed targets,
and used a linear BMI filter. The BMI experiments in Fan
et al. (2014) included center-out reaching movements and used
different types of Kalman filters. For consistency, we focus on
simulations of the BMI experiments in Carmena et al. (2003)
and Lebedev et al. (2005), with movements to randomly placed
targets so the effects of the different BMI filters can be evaluated.
Nevertheless, for completeness, we also present results from
simulations of center-out movements. The BMI experiments are
briefly described first, followed by the description of the analysis
and modeling methods.

2.1. Experimental Methods
The BMI experiments in Carmena et al. (2003) and Lebedev
et al. (2005) included three stages: pole control (PC), brain
control with hand movements (BC-WHM) and brain control
without hand movements (BC-WO-HM). During pole control
the monkey controlled the position of a cursor on a computer
screen by moving a hand-held pole. Neural activity was recorded
from multiple brain areas, but mostly from the primary motor
area (56M1 units) and the dorsal pre-motor area (55 PMd units).
Spike counts were binned into 100 ms bins and a linear filter was
trained to predict the velocity from the current and previous 9
bins. Training was performed on data recorded during the last 10
min of pole control and held fixed during brain control. Initially,
the monkey continued to move the hand even after the transition
to brain control (BC-WHM), but eventually the monkey stopped
moving the hand (BC-WO-HM). For more details, see Carmena
et al. (2003).

The BMI experiments in Fan et al. (2014) included four stages:
hand control and brain control with three types of Kalman filters.
Data collected during hand control was used to build a Kalman
filter (KF). Brain control with KF was referred to as KF online
control. Data recorded during KF online control was used to re-
calibrate the initial KF either directly, resulting in a re-calibrated
KF (Re-KF), or after modifications that take into account the
intention, resulting in a re-calibrated feedback intention trained
Kalman filter (ReFIT-KF). Brain control with those filters was
referred to as Re-KF online control and ReFIT-KF online control,
respectively. Neural activity was recorded from M1 and PMd
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areas, and PD shifts were reported for 75–85 units in oneMonkey
and 30–45 units in the other Monkey.

To facilitate comparison with the respective literature, we use
the terminology in Carmena et al. (2003) and Lebedev et al.
(2005) to describe results derived from their experiments and
from simulations of BMI experiments with linear filters. The
terminology in Fan et al. (2014) is used to describe their results
and the simulations of BMI experiments with Kalman filters.

2.2. Tuning Curves
Tuning curves and PDs of cortical neurons were initially
estimated from spike trains recorded during center-out reaching
movements by fitting mean spike counts per direction with
a cosine function (Georgopoulos et al., 1986; Fan et al.,
2014). These computations can be extended to estimate tuning
curves and PDs during general reaching movements, including
movement to randomly placed targets (Lebedev et al., 2005;
Zacksenhouse and Nemets, 2008). This is usually performed by
regressing the binned spike counts on the binned velocity. During
general movements, the direction of movement may vary with
time, so the neural activity in each bin may depend on the
velocity at different bins. While tuning weights can be computed
with respect to multiple bins simultaneously (Zacksenhouse and
Nemets, 2008), here we follow (Lebedev et al., 2005) and apply
linear regression with respect to individual bins:

Ni(t + τ ) = ai(τ )Vx(t)+ bi(τ )Vy(t)+ ǫi(t, τ ) (1)

whereNi is the zero-mean neural activity of neuron i, τ is the lag,
ai(τ ) and bi(τ ) are the regression coefficients, and ǫi(t, τ ) is the
residual error (whose mean square value is minimized).

Thus, the estimated PD of neuron i at lag τ is defined by:

EPDi(τ ) = arctan

(

bi(τ )

ai(τ )

)

(2)

The neural activity is usually regressed on cursor velocity
(Equation 1). During PC, cursor velocity follows hand velocity,
while during BC cursor velocity follows the velocity predicted by
the BMI decoder. In order to assess the effect of the BMI filter
on EPD shifts, we regressed the neural activity in pole control
not only on the hand (pole) velocity, but also on the velocity
predicted by the BMI filter. The latter is referred to as EPD in
open-loop BMI.

2.3. Modeling BMI Experiments
The model of BMI experiments is depicted in Figure 1 and
briefly described here (for more details see Benyamini and
Zacksenhouse, 2015). Following current computational motor
control theories, the brain was assumed to implement optimal
state estimation and feedback control (Wolpert et al., 1995;
Todorov and Jordan, 2002; Todorov, 2005; Shadmehr and
Krakauer, 2008). For simplicity, computations were performed
in the state space, rather than their neural representations. BMI
experiments were modeled by simulating the population of
recorded units used by the BMI filter.

Thus, the brain model included three parts: (A) Observer
that implements optimal state estimation by integrating sensory

feedback (visual, yV , and proprioceptive, yP) with internal model
predictions. The observer generates the estimated state, x̂k|k at
time step k. (B) Optimal controller with gains that minimize a
standard cost function involving control effort and deviations
from the target. The controller generates the control signal uk
from the estimated state. (C) Neural activity generator that
generates spike counts Nk as realizations of doubly stochastic
Poisson processes (Snyder, 1975; Zacksenhouse et al., 2007),
given the cumulative bin rate Ŵk, which encodes the relevant
signals using linear multi-variable tuning weights, as further
detailed below. Spike counts were generated in bins of 100 ms.

Two populations of 25 units each were simulated: (1) units
that encode just the estimated state (2-dimensional vectors of
estimated position and estimated velocity, and speed), and (2)
units that also encode the 2-dimensional optimal control vector
and its magnitude. Based on the evidence in the literature
(Georgopoulos et al., 1982; Ashe and Georgopoulos, 1994; Ashe,
1997; Messier and Kalaska, 2000; Hendrix et al., 2009), we expect
the behavior of simulated neurons in those two populations
to be similar to the behavior of recorded PMd and M1 units,
respectively, and hence refer to them as PMd-like and M1-like
neurons. The 1:1 ratio between the number of M1-like and
PMd-like units was based on a similar ratio (56:55) between
the number of recorded M1 and PMd units in Carmena et al.
(2003). The total number of units was selected in Benyamini and
Zacksenhouse (2015) to achieve the reported BMI performance,
as quantified by the coefficient of correlation between predicted
and actual velocity in open-loop BMI.

We previously showed (Benyamini and Zacksenhouse, 2015)
that the correlation between the velocity and neural activity
peaked at −200 ms for M1 neurons and at 0 ms for PMd
neurons, and that the correlation at −100 ms was close to the
peak correlation for both populations. Thus, we focus on EPD
shifts at −100 ms, but for completion report also EPD shifts at 0
ms and−200 ms.

In simulations with the ReFIT-KF, both populations also
encoded movement intention in the form of a 2-dimensional
target vector. Thus, each unit encoded up to four 2-dimensional
vectors and can be characterized by up to four real PDs, one
for each of those vectors (real PDs are defined in section 3,
Equation 4).

The hand was modeled as a point mass driven by an over-
damped second order muscle model that responds to the control
signal from the brain (Todorov, 2005). A friction term was added
to model the friction of the hand held pole as in Benyamini and
Zacksenhouse (2015).

The optimal controller was designed to minimize a cost
function that penalizes for deviations from the target at the
desired reaching time and during subsequent 150 ms holding
interval. Desired reaching times were uniformly distributed
between 1.7and2.2 s during PC and 2.4− 6 s in BC. The duration
of the resulting simulated movements were comparable to those
reported in Carmena et al. (2003), but about 4 times slower than
those in Fan et al. (2014).

As in the BMI experiments (Carmena et al., 2003; Fan et al.,
2014), the coefficients of the BMI filter were determined from
simulated training data, i.e., velocity and neural activity during
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FIGURE 1 | Schematic model of movement control during BMI experiments under the hypothesis that the brain implements optimal observer and controller. The

neurons are assumed to encode the estimated state x̂k|k and control signal, uk , in time step k. The cumulative bin rate Ŵk is a linear combination of the encoded

signals (including the estimated speed and the magnitude of the control signal). The spike-count Nk is generated as a doubly stochastic Poisson process (DSPP)

given Ŵk . The control signal is corrupted by hand process noise ξu. The brain model receives noisy proprioceptive yP and visual yV measurements from the hand and

cursor, corrupted by proprioceptive and visual measurement noise, ωP and ωV , respectively.

10 min of simulated pole control. The BMI filter predicted the
velocity based on the neural activity in the current and previous
9 bins. The resulting BMI filter was then used to predict the
velocity and, by proper integration, the position of the cursor
during simulated brain control. The BMI filter was also used to
predict the velocity in PC in order to compute EPDs in open-
loop BMI, as detailed at the end of section 2.2. PDs in PC and
in open-loop BMI were computed from testing data, i.e., another
section of 10 min that was not used to determine the BMI filter.

Kalman filters were determined as in Fan et al. (2014), with
the same constraints on the elements of the transition matrix.
In simulations with Re-KF and ReFIT-KF, the Kalman filter was
re-calibrated during 20 min of BC with the initial KF. PDs were
estimated from 20 min of simulated data in each stage.

2.4. Statistical Analysis of PD Shifts
Statistically significant shifts in EPDs were determined using
bootstrap analysis, similar to the one conducted in Fan et al.
(2014). Specifically, firing rates and velocities were re-sampled
with replacement 1,000 times per stage, and 1,000 EPDs were
computed for each stage and neuron. As mentioned before, here
we compute the EPDs from movements in random directions
using linear regression (Equation 1), while in Fan et al. (2014)
EPDs were computed by fitting a cosine function to mean spike
counts in 8 center-out directions. Thus, our bootstrap differs
from the one in Fan et al. (2014) in re-sampling the data from all
the directions rather than keeping the same number of samples
per direction.

Following Fan et al. (2014), the distribution of shifts in
EPDs between two specific stages was derived by computing
the difference between 1,000 randomly sampled pairs of EPDs,
one from each distribution. To assess statistical significance,
“noisy” shifts were computed from zero-mean distributions of
the EPDs in each stage (generated by subtracting the mean of the
distribution). T-test was conducted for each neuron to evaluate
if the shifts in EPDs between two stages were significantly larger
than the noisy shifts (p < 0.05).

3. THEORETICAL ANALYSIS OF EPD
SHIFTS

The model presented in section 2.3 and Figure 1 assumes that
the neural activity encodes the estimated state (position and
velocity) and control signal. Theoretical analysis relates (1) the
EPD in PC to the real PD (RPD) with which the unit encodes the
estimated velocity, and (2) the EPD in open-loop BMI to the EPD
in PC. Since we focus on PC, for which the internal model is well
adapted, the estimated state is assumed to be the same as the real
state. Thus, theoretical analysis is based on the assumption that
the neural activity encodes the real velocity, V , and other signals
that are either correlated (e.g., control signal) or uncorrelated
(e.g., speed) with the velocity (denoted by C & U, respectively).
Specifically, the mean subtracted spike counts N ∈ R

Nn×Tn of
Nn neurons in Tn bins is assumed to be related linearly to the
mean subtracted V = [Vx Vy] ∈ R

2×Tn , C ∈ R
dC×Tn and
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U ∈ R
dU×Tn , by:

N = WVV +WCC +WUU + ǫ (3)

where dC and dU are the dimensions of the correlated and
uncorrelated signals, respectively, WV ∈ R

Nn×2, WC ∈

R
Nn×dC , WU ∈ R

Nn×dU are the tuning weights of V , C and U,
respectively, and ǫ is the neural noise, which is assumed to be
uncorrelated with any of the other signals.

The ratio between the x and y components of the tuning
weights by which a specific unit encodes a specific signal defines
the corresponding RPD. In particular, the RPD of neuron i with
respect to velocity is:

RPDi = arctan

(

WVx ,i

WVy ,i

)

(4)

To facilitate theoretical analysis, it is further assumed that the
correlated signals can be expressed as C = RVV + RZZ where
Z is uncorrelated with V , so:

N = (WV +WCRV )V + S (5)

where S = WCRZZ +WUU + ǫ ∈ R
Nn×Tn is uncorrelated with

V .
The velocity tuning weights α = [a b] ∈ R

Nn×2 can be
estimated by linear regression:

α = NV+ = NVT(VVT)−1 ∈ R
Nn×2 (6)

The estimated tuning weights in PC, αPC, and in open-loop BMI,
αBMI , are computed by regressing the neural activity in PC on
either the hand velocity or the velocity predicted by the BMI
filter, respectively.

First, we relate the tuning weights estimated in PC, αPC, to the
real tuning weights,WV .

Proposition 1A: Assuming the neural activity can be modeled
as in Equation 5, the tuning weights estimated from pole control,
αPC, are given by:

αPC ≈ WV +WCRV (7)

Proof of Proposition 1A: Since S is uncorrelated with V ,
SVT ≈ 0. Thus, Equation (7) can be derived directly by inserting
Equation (5) in Equation (6):

αPC = ((WV+WCRV )V+S)VT(VVT)−1 ≈ (WV+WcRV ). (8)

Next we relate the tuning weights estimated in open-loop BMI,
αBMI , to tuning weights estimated in PC, αPC. Proposition 1B
expresses this relationship for the simple case when the BMI filter
depends only on the current binned spike counts. Proposition 1C
extends this to the general case when the BMI filter depends on
the spike counts in the recent L bins.

Proposition 1B: Assuming the neural activity can be modeled
as in Equation 5, and the BMI filter is based only on the current

binned neural activity then the tuning weights in open-loop BMI,
αBMI , are given by:

αBMI ≈ αPC + 6SαPC(6V6αPC )
−1/Nn (9)

Where 6S = SST/Tn ∈ R
Nn×Nn ,6V = VVT/Tn ∈ R

2×2 and
6αPC = αT

PCαPC/Nn ∈ R
2×2 are the co-variance matrices of S,V

and αPC, respectively.
Proof of Proposition 1B: In the simple case, the predicted

velocity V̂ ∈ R
2×Tn is a linear function of the zero mean neural

activity N ∈ R
Nn×Tn : V̂ = WBMIN, Where WBMI ∈ R

2×Nn

is the BMI decoder weights. The weights of the decoder are
determined by linear regression of the zero-mean velocity Vt on
the zero-mean neural activity Nt recorded for training:

WBMI = VtN
+
t = VtN

T
t {NtN

T
t }

−1 =
1

Tn
VtN

T
t 6−1

N (10)

Where 6N = 1
Tn
NtN

T
t is the co-variance matrix of the

neural activity estimated from training data. As detailed in
Supplementary Material, αPCWBMI = INn×Nn , and Equation
(9) follows.

Proposition 1C: Assuming the neural activity can be modeled
as in Equation 5, and that the BMI filter is based on the binned
spike counts in the recent L bins of bin-width BW , the tuning
weights in open-loop BMI, αBMI(j), in lag τ = jBW , are given by:

αBMI(j) = αPC6V (|j−i|)6−1
V (i)+6S(|j−i|)αPC(6V (i)6αPC )

−1/Nn

(11)
where 6S(j) = SkS

T
k−j

/Tn and 6V (j) = VkV
T
k−j

/Tn are the co-

variance matrices of S and V , respectively, at lag τ = jBW , and
6αPC = αT

PCαPC/Nn is the co-variance matrix of αPC.
Proof of Proposition 1C: Similar to the proof of Proposition

1B as detailed in Supplementary Material.
Proposition 2: Under the conditions of Proposition 1, if the

co-variance matrices in Equation 11, 6S(j) and 6V (j) for j ≤ L
and6αPC , are scalar matrices (i.e., are proportional to the identity
matrix), then the tuning weights in open-loop BMI at each lag
are proportional to the tuning weights in pole control: αBMI(k) ∝
αPC.

Proof: Directly from Equation 11.
Corollary: Proposition 2 implies that under the indicated

conditions, EPDs in PC are the same as EPDs in open-loop
BMI (see Equation 2). However, the BMI experiments and the
population of recorded units have to be well structured in order
to satisfy those conditions:

• 6V (j), j ≤ L are scalar matrices if Vx and Vy in different bins
are uncorrelated and have the same co-variance.

• 6αPC is a scalar matrix if during pole control, the two
components of the tuning weights of all the units, αPC =

[aPC bPC], are uncorrelated and have the same variance.
• 6S(j), j ≤ L are scalar matrices if all the components of

Z and U, which are included in S, are uncorrelated across
different bins and have the same co-variance. Furthermore,
the corresponding tuning weights should be ortho-normal, a
condition that cannot be satisfied when the number of neurons
is larger than the number of signals.
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Proposition 3: Under the conditions of Proposition 1A, ifWC ∝

WV and RV is a scalar matrix, then αPC ∝ WV .
Proof: directly from Equation 7.
Corollary: Proposition 3 implies that under the indicated

conditions, EPDs in pole control are the same as RPDs (see
Equations 2, 4). Again, the BMI experiments and the population
of recorded units have to be well structured in order to satisfy
those conditions:

• WC ∝ WV is satisfied if all the signals that are correlated with
the velocity are encoded with the same RPD as the velocity.

• RV is scalar matrix if all the signals that are correlated with the
velocity are proportional to the velocity.

Those conditions are not under experimental control, and are not
expected to be satisfied in regular experiments.

4. RESULTS

4.1. PDs in BMI Experiments With Linear
Filters
Figure 2 depicts representative velocity tuning of a recorded
M1 unit (upper panels) and a simulated M1-like unit (lower
panels). Velocity tuning is represented in 2-dimensional color
plots where the color indicates mean spike-count in 100 ms bins
as a function of Vx and Vy. Velocity tuning for different stages of
the experiment (PC, BC-WHMand BC-WO-HM) and lags (from
−300 ms to +300 ms) are shown in different rows and columns,
respectively. It is apparent that both the real and simulated
units encode the speed (the magnitude of the velocity) and the
direction of the velocity, since the mean firing rate changes with
both the radius and the angle. The directions of the EPD at−100
ms (computed using Equation 2) are marked by black arrows.

The upper panels in Figure 2 demonstrate a case in which the
EPD at −100 ms rotated by about 130◦ after switching from PC
(EPD = 283.◦, with respect to x axis) to BC-WO-HM (EPD =
151.4◦). The lower panels in Figure 2 demonstrate that a similar
rotation can also be observed in a simulated neuron. Here, the
EPD at −100 ms rotated by about 115◦ from pole control (EPD
= 267.8◦) to BC-WHM (EPD = 153.7◦). Furthermore, the EPD
differed from the RPD, which was 328.2◦ as marked by red
arrows, even in PC but especially in BC.

Figure 3 depicts histograms of the magnitudes (absolute
values) of EPD shifts at −100 ms lag, between different stages of
BMI experiments for: (a) 56 recorded M1 units, (b) 25 simulated
M1-like units, (c) 55 recorded PMd units, and (d) 25 simulated
PMd-like units (25). The means and standard deviations of
the magnitude of EPD shifts in BMI experiments and in BMI
simulations are summarized and compared in Table 1, for M1
units (upper part) and PMd units (lower part) for three lags
(0,−100 and−200 ms).

The upper panel of each sub-plot in Figure 3 represent
histograms of the magnitude of EPD shifts between PC and
open-loop BMI (i.e., shift in PD of the same neural activity
with respect to either the velocity predicted by the BMI decoder
or pole velocity). Simulations successfully reproduce units with
significant EPD shifts from PC to open-loop BMI (44 − 64% of

the recorded or simulated units). The mean EPD shift is similar
for simulatedM1-like units and recordedM1 units, but is smaller
for simulated PMd-like units compared to recorded PMd units.
This may indicate that the simulations do not include all the
signals that the PMd units encoded during the experiments. In
any case the results indicate that the imprecision of the BMI filter
contributes to the observed shift in EPD.

The middle and lower panels of each sub-plot in Figure 3

depict histograms of the magnitude of EPD shifts from PC to
BC (with and without hand movements, respectively). Table 1
indicates that during BMI experiments, EPD shifts fromPC to BC
were higher than from PC to open-loop BMI. This phenomenon
is successfully reproduced in simulations. Thus, the apparent
EPD shifts can be introduced by the BMI filter, even if there is
no adaptation or change in context.

4.2. PDs in BMI Experiments With Kalman
Filters
BMI experiments with Kalman filters, reported in Fan et al.
(2014), investigated PD shifts from hand control to BC with KF
(referred to as KF online control) and PD shifts from KF training
data, recorded during KF online control, to Re-KF and ReFIT-
KF online control. They reveal that (see Figures 4A, 5A and
related text in Fan et al., 2014): (1) The distributions of EPD shifts
from KF training data to Re-KF or ReFIT-KF online control are
narrower than the distribution of EPD shifts from hand control
to KF online control, and (2) the distribution of EPD shifts from
KF training data to ReFIT-KF online control is narrower than
the distribution of EPD shifts from KF training data to Re-KF
online control.

Figure 4 demonstrates that those phenomena are successfully
reproduced in our simulations. The different panels depict
histograms of the magnitude of PD shifts at−100 ms lag between
different stages of simulated BMI experiments with KF, re-KF,
and reFIT-KF. Note that here we present the distributions of
the magnitude (absolute value) of EPD shifts rather than the
distributions of the signed EPD shifts (±180 deg). The first
three columns of Table 2 summarize the simulation results
for three lags: 0, −100 and −200 ms. It is evident that the
mean magnitude of EPD shifts between hand control and KF
online control is larger than the mean magnitude of EPD shifts
between KF training data to Re-KF online control or ReFIT-KF
online control.

The above results are based on simulations of movements
to random targets and linear regression estimates of PD as in
Lebedev et al. (2005). For completeness, the last column of
Table 2 indicates that the same phenomena are also apparent
when PDs are estimated by fitting a cosine to mean spike
counts per direction in center-out simulations, as in Fan et al.
(2014). Based on those results, the mean EPD shifts following the
transition from KF training to Re-KF or ReFIT-KF decreased by
a factor of 1.67 and 2.17, respectively, compared to mean EPD
shifts following the initial transition from hand control to KF.
Thus, the simulations reproduced not only the PD shifts, but
also the effect of re-training (Re-KF) and especially the effect of
intention (ReFIT-KF) on narrowing the distribution of PD shifts,
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FIGURE 2 | Velocity tuning of a recorded M1 unit (upper panels) and a simulated M1-like unit (lower panels) in different lags and stages demonstrating shifts in

estimated PDs after switching from pole control (PC, top) to brain control with hand movements (BC-WHM, middle) or without hand movements (BC-WO-HM,

bottom). Color plots of the mean spike-count (in bins of 100 ms) as a function of Vx (x-axis) and Vy (y-axis) in cm/s. Different color code for each panel. Estimated PDs

at −100 ms are marked by black arrows, while actual PDs in simulations are marked by red arrows.
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FIGURE 3 | Histograms of the magnitude of EPD shifts at −100 ms lag between different stages of BMI experiments for 56 recorded M1 units (A), 25 simulated

M1-like units (B), 55 recorded PMd units (C) and 25 simulated PMd-like units (D). Upper panels: magnitude of PD shifts between open-loop BMI and PC. Middle and

lower panels: magnitude of EPD shifts between PC and BC-WHM and BC-WO-HM, respectively. Red bars indicate statistically significant shifts (p < 0.05).

though further analysis is needed to compare the magnitude of
the effects.

4.3. Real vs. Estimated PD
Given that the simulations successfully reproduce the observed
shifts in EPD, they provide a powerful tool for further
investigation of EPDs. Here we investigate whether EPDs in
PC, estimated using Equation 2 with respect to cursor velocity,
capture well the RPD with which the unit encodes the estimated
velocity, as defined by the corresponding tuning weights and
Equation 4. Figure 5 depicts the histogram of the magnitude
of deviations between RPD and EPD in PC at −100 ms lag.
Table 1 (last column of each part) indicates that the mean
magnitude of deviations at 0, −100 and −200 ms range from
35.0–39.6◦ to 7.0–8.6◦ for the simulated M1-like and PMd-
like units, respectively. These deviations may occur when the
conditions of Proposition 3 are not satisfied. In particular, they
can be attributed to deviations between RPDs with respect to
estimated velocity and RPDs with respect to any other signal
that is correlated with velocity (e.g., the control signal). Since
only M1-like units encode the control signal, the deviations
between EPDs and RPDs are larger for M1-like units compared
to PMd-like units.

4.4. Filter Effects on EPDs
Figure 6 compares the distributions of EPD shifts between pole
and brain control during simulations with three different BMI

filters: linear filter (as in Lebedev et al., 2005), KF and ReFIT-
KF (as in Fan et al., 2014). The distributions were estimated
from a total of 1,000 simulated units, from 20 runs (of 20min
and 50 different units). Statistical analysis indicates that the
type of filter has a significant effect on the distribution of EPD
shifts in most cases (Wilcoxon signed-rank test, p < 0.025,
except for the distributions of PD shifts after the transition to
BC-WHM with linear compared to KF, p = 0.06). However,
EPD shifts from hand to brain control are significant in all
cases: the mean magnitude of EPD shifts from hand control
to BC-WHM is 60.5◦, 55.6◦, and 49.4◦ for linear filter, KF
and ReFIT-KF, respectively, while the mean magnitude of EPD
shifts from hand control to BC-WO-HM is 59.3◦, 54.3◦, and
48.6◦, respectively.

4.5. Simulations Supporting Theoretical
Analysis
Theoretical conditions under which EPDs in open-loop BMI
should remain the same as in PC are specified in Proposition
2, section 3. The first and third conditions require that
the components of each of the encoded signals should be
uncorrelated across different bins and have the same co-variance.
To better satisfy these conditions we simulated center-out
BMI experiments to 8 equally spaced directions, and trained
the BMI filters on longer sections, (3-times longer: 30 min
for training linear and KF, and 60 min for re-calibration).
We note that there may still be correlations between the
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TABLE 1 | Mean ± standard deviation of estimated PD shifts (in degrees) between different stages of BMI experiments and simulations.

Lag = 0 Lag = −100 ms Lag = −200 ms

M1

Experiment

PC vs. Open loop BMI 29.1± 30.6 30.5± 41.7 22.9± 31.1

PC vs. BC-WHM 40.8± 39.5 52.8± 56.7 37.0± 42.3

PC vs. BC-WO-HM 53.1± 39.8 67.6± 48.1 76.2± 47.2

Simulation

PC vs. Open loop BMI 25.8± 30.0 21.7± 17.0 26.2± 25.4

PC vs. BC-WHM 48.7± 39.8 44.0± 33.7 46.0± 35.5

PC vs. BC-WO-HM 52.2± 44.6 60.3± 47.2 64.4± 48.3

Real vs. PC 35.0± 25.7 36.4± 27.0 39.6± 29.3

PMd

Experiment

PC vs. Open loop BMI 37.4± 36.5 29.8± 35.0 38.7± 42.7

PC vs. BC-WHM 39.7± 40.0 47.8± 42.4 56.6± 48.4

PC vs. BC-WO-HM 53.3± 51.2 72.4± 47.8 72.4± 48.6

Simulation

PC vs. Open loop BMI 14.4± 11.4 12.3± 12.9 15.2± 15.3

PC vs. BC-WHM 69.6± 42.4 70.1± 43.5 69.7± 44.8

PC vs. BC-WO-HM 74.1± 47.7 75.2± 47.8 75.0± 48.0

Real vs. PC 7.0± 5.4 8.2± 8.0 8.6± 9.3

FIGURE 4 | Histograms of the magnitude of EPD shifts at −100 ms lag between stages of simulated BMI experiments with different Kalman filters. Upper: EPD shifts

between hand control and KF online control. Middle: EPD shifts between KF training data and Re-KF online control. Lower: EPD shifts between KF training and

ReFIT-KF online control. Red bars indicate statistically significant shifts (p < 0.05).
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TABLE 2 | Mean ± standard deviation of EPD shifts (in degrees) between stages of simulated BMI experiments with different Kalman filters. EPDs were estimated using

either linear regression (Equation 2) on binned data generated in simulations of random movements or using cosine fit of mean neural activity in center-out simulations.

Movement Random Center-out

PD estimation Linear regression Cosine-fit

Ref Lebedev et al., 2005 Fan et al., 2014

Shift conditions Lag = 0 Lag = −100 ms Lag = −200 ms

Hand control vs. KF 49.8± 37.7 51.6± 42.0 53.1± 41.7 47.6± 40.9

KF training vs. Re-KF 31.0± 37.4 33.6± 39.0 37.0± 40.5 28.5± 45.1

KF training vs. ReFIT 28.5± 40.3 29.4± 42.1 31.4± 44.3 21.9± 45.9

FIGURE 5 | Histogram of magnitude of deviations between RPDs, as defined by the tuning weights of the simulated neural activity with respect to the velocity, and

EPD in PC at −100 ms lag for simulated M1-like (A) and PMd-like (B) units.

FIGURE 6 | Estimated distributions of the magnitude of EPD shifts between hand control and either BC-WHM or BC-WO-HM during simulations with different filter

types (linear, KF, and ReFIT-KF). Distributions were estimated over 20 runs of 20 min with 50 different units each (total of 1,000 simulated units).

components of the signals, and especially the components of
the control signal. The third condition also requires that the
tuning weights of the signals that are uncorrelated with the
velocity would be ortho-normal, however, this condition is

left unsatisfied at this stage. The second condition requires
that the regression weights aPC and bPC of all the units
should be uncorrelated and have the same variance. To
better satisfy this condition we increased the number of
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simulated units from 50 to 150, and assigned them uniformly
distributed RPDs.

To better satisfy the conditions of Proposition 2, the effect
of signals that are uncorrelated with the velocity was reduced
by conducting additional simulations with only PMd-like units,
which do not encode the control signal. Furthermore, each PMd-
like unit was characterized by a single RPD that was used to
encode both the estimated velocity and estimated position. Thus,
these simulations also satisfied the conditions for Proposition 3,
under which EPDs should equal RPDs.

Figure 7 depicts estimated distributions of shifts in EPDs
during the simulations that better satisfy the conditions of
Proposition 2 (Figure 7A), and simulations that best satisfy the
conditions of both Propositions (Figure 7B). Since EPDs were
estimated using cosine fit, a single PDwas estimated for each unit.
The distributions were estimated from a total of 3, 000 simulated
units from 20 runs (with 150 units each). The distributions for the
regular case (’conditions not satisfied’) are shown for comparison
(same as in Figure 6 but shown separately for M1-like and PMd-
like units). The distributions of EPD shifts are clearly more
narrow when the conditions of Proposition 2 are better satisfied,
especially for PMd-like units which do not encode the control
signal. The distributions of EPD shifts become even more narrow
when the conditions of both Propositions are best satisfied
(Figure 7B), since those simulations involve only PMd-like units.
In particular, under the conditions that better satisfy Proposition
2, the mean magnitude of EPD shifts from PC to BC-WHM
and BC-WO-HM decreased to 42.8◦ and 38.2◦, respectively, for
M1-like units, and to 17.5◦ and 17.1◦, respectively, for PMd-like
units. Under the conditions that best satisfy both Propositions,
the mean EPD shifts from PC to either BC-WHM or BC-WO-
HM decreased further to 8.5◦ for the single population of PMd-
like units. Thus, the simulations support Proposition 2, which
lists the conditions for reducing the shifts in EPDs from PC to
open-loop BMI.

Figure 8 depicts the deviations between RPDs and EPDs
in PC for the simulations that better satisfy the conditions of
Proposition 2 (Figure 8A) and simulations that best satisfy both
Propositions (Figure 8B). Under the conditions that better satisfy
Proposition 2, the distribution of the deviations for M1-like units
is narrower than before (compare to section 4.3 and Figure 5)
with a mean of 24.8◦. Nevertheless, it is still wider than the
distribution of deviations for PMd-like units, which is similar to
that under normal conditions with mean of 9.1◦. As mentioned
before, the deviations between RPD and EPD are larger for
M1-like units since they encode the control signal too. Under
the conditions that best satisfy both Propositions, the mean
deviations further decreased to 6.9◦ (for the single populations
of PMd-like units). Thus, the simulations supports proposition 3,
which lists the conditions under which EPDs should be the same
as RPDs.

5. CONCLUSIONS

We investigated shifts in EPD using simulations in which the
brain is assumed to implement state estimation and control, and

recorded neurons are assumed to encode the relevant signals in
a linear way. Under those assumptions, we demonstrated that
the observed shifts in EPDs following the transition to brain
control may occur even without any adaptation of the actual
tuning weights of the neurons or the internal model. The results
captured well the relative magnitude of the EPD shifts reported
in the literature, with different types of BMI filters. Thus, we
conclude that the observed EPD shifts after the transition to brain
control or after switching to a new BMI filter or stage, may not
imply neural adaptation.

Focusing on BMI experiments with linear filters, we
demonstrated that part of the shift in EPDs is already evident
when comparing EPDs with respect to hand velocity (pole
control) with EPDs with respect to the velocity predicted by the
BMI filter (open-loop BMI). Theoretical analysis, supported by
simulation results, reveals the conditions under which these shifts
could be minimized. Some conditions are under experimental
control, and in particular the lack of correlation between the
components of velocity during BMI training. However, other
conditions, and in particular the lack of correlation between the
components of the tuning weights, are not. We demonstrated
that simulations that better satisfy those conditions result in
significantly smaller EPD shifts from hand to brain control.
We conclude that under the assumptions of our model, the
observed EPD shifts may result from imperfect BMI filters, due
to experimental conditions, and in particular correlated velocities
or tuning weights.

The theoretical relationship between the estimated tuning
weights in open-loop BMI (αBMI) and in PC (αPC, Equation
9), depends on the co-variance of the encoded signals that are
uncorrelated with the velocity (third condition in Corollary
to Proposition 2). Since those signals and the corresponding
tuning weights are unknown, this co-variance matrix cannot
be computed. Thus, the analysis provides a basis for evaluating
the conditions for minimizing the shifts and the effect on the
distribution of EPDs rather than predicting EPD shifts for
specific units.

Focusing on BMI experiments with Kalman filters, before and
after re-calibration, the simulations reproduce the observed EPD
shifts and the effect of re-calibration on their magnitude Fan et al.
(2014). In particular, (1) the magnitudes of EPD shifts between
KF training data and Re-KF or ReFIT-KF online control were
smaller than those between hand control and KF online control.
(2) the magnitude of EPD shifts between KF training data and
ReFIT-KF were smaller than those between KF training data and
Re-KF. Thus, the effect of re-calibration of KF on PD shifts is
reproduced well even with no adaptation.

The simulations facilitate further investigations into EPD
shifts that are impossible to perform in actual experiments.
In particular, we demonstrated that when neurons encode the
estimated velocity, estimated position and control signal with
different RPDs (i.e., the RPD of the estimated velocity differs from
the RPD for estimated position or control vector), the EPD with
respect to actual velocity may not capture the RPD at which the
neuron encode the estimated velocity.

Our simulation is based on optimal state estimation and
control, which was proposed as a viable model for motor
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FIGURE 7 | Estimated distributions of the magnitude of EPD shifts during simulations that better satisfy the conditions of Proposition 2 (A) and simulations that best

satisfy both Propositions (B). In particular, simulations that better satisfy Proposition 2 involved center-out rather than random movements, included 150 units with

uniformly distributed RPDs rather than 50 units with random RPDs in each simulation, and used filters that were trained over 3-times longer sections. Simulations that

best satisfy both Propositions were similar but included only PMd-like units, each with a single RPD that was used to encode both the estimated velocity and

estimated position. Distributions were estimated from 3, 000 simulated units during 20 simulations. Graphs for “conditions not satisfied” are shown for comparison

(same as in Figure 6 but shown separately for M1-like and PMd-like units).

control during reaching movements (Todorov and Jordan,
2002; Todorov, 2005; Shadmehr and Krakauer, 2008). We
have previously developed this simulation for investigating
BMI experiments and demonstrated that it successfully explains
the observed changes in neural modulations (Benyamini
and Zacksenhouse, 2015). Here we demonstrated that the
same simulation successfully reproduces the observed shifts
in EPD (Carmena et al., 2003) following the transition to
brain control without any adaptation of the actual tuning
weights of the neurons or the internal model. Furthermore,
the simulation was extended to include also brain control
with different Kalman filters as in Fan et al. (2014), and

successfully reproduced the observed EPD shifts with those
filters too.

Adaptation processes may still occur, but are not necessary to
explain the observed shifts in EPDs after the transition to brain
control or after switching to a new BMI filter or stage. However,
long term adaptation may be required to explain the observed
shifts in EPDs while using the same BMI filter (Ganguly and
Carmena, 2009). Further analysis is needed to investigate whether
those changes necessarily imply changes in the actual tuning
properties of the units or can be explained by adapting only
the internal model. Internal model adaptation refers to changing
the internal representation of the dynamics of the cursor to
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FIGURE 8 | Estimated distributions of the magnitude of deviations between

RPD and EPD during simulations that better satisfy the conditions of

Proposition 2 (A) and simulations that best satisfy both Propositions (B). See

Figure 7 and text for more details.

reflect its behavior in brain control, when it depends on the BMI
filter, rather than in pole control, when it follows the muscle
activated hand.

Our work indicates that EPD shifts are smaller when
the tuning weights of the units used in the BMI filter are
uncorrelated, so it might be advantageous to use a subset of units
that are more uniformly distributed. However, further analysis is
needed to investigate the trade-off between the number of units
used for the BMI filter and the uniformity of the distribution of
their PDs.

In summary, our work questions the common assumption
that observed EPD shifts after the transition to brain control
reflect neural adaptation. Instead, we conclude that the observed

EPD shifts may result from imperfect BMI filters, due to
experimental conditions, and in particular correlated velocities,
correlations between components of other encoded signals or
non-uniformly distributed RPDs among the decoded units. Our
investigation provides theoretical and simulation tools for better
understanding RPD shifts and BMI experiments.
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