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It is assumed that the cause of cognitive and behavioral capacities of living systems

is to be found in the complex structure-function relationship of their brains; a property

that is still difficult to decipher. Based on a neurodynamics approach to embodied

cognition this paper introduces a method to guide the development of modular

neural systems into the direction of enhanced cognitive abilities. It uses formally

the synchronization of subnetworks to split the dynamics of coupled systems into

synchronized and asynchronous components. The concept of a synchronization core

is introduced to represent a whole family of parameterized neurodynamical systems

living in a synchronization manifold. It is used to identify those coupled systems

having a rich spectrum of dynamical properties. Special coupling structures—called

generative—are identified which allow to make the synchronized dynamics more

“complex” than the dynamics of the isolated parts. Furthermore, a criterion for coupling

structures is given which, in addition to the synchronized dynamics, allows also for an

asynchronous dynamics by destabilizing the synchronization manifold. The large class

of synchronization equivalent systems contains networks with very different coupling

structures and weights all sharing the same dynamical properties. To demonstrate the

method a simple example is discussed in detail.

Keywords: connectivity (B), neurodynamics, complexity, synchronization, modularity

1. INTRODUCTION

That the complexity of neural systems, how ever defined, is the source for the cognitive and
behavioral capacities of living systems is an almost unquestioned assumption underlying most
discussions about the impressive abilities of brains and brain-like systems. Hidden in the term
complexity is the question for the still enigmatic structure-function-relationship in these systems.
This paper will use a theoretical approach to tackle this problem from the point of modular
neurodynamics. It is widely motivated by evolutionary robotics techniques (Nolfi and Floreano,
2000; Harvey et al., 2005; Nolfi et al., 2016), which were applied to study simple neural network
solutions for the control of animat behavior (Dean, 1998; Guillot and Meyer, 2001).

If one is using the term complexity in the context of brain-like systems there are at least two
different aspects which have to be addressed. One concerns the connectivity of networks; and there
are useful measures to quantify what one would term complexity of network connectivity (Sporns
et al., 2000; Sporns, 2002). In general, these measures will gain their importance for larger networks.

The other aspect is concerned with the properties of the dynamics running on these neural
networks. Complexity in this context will be related to what (Ashby, 1958) called the law of requisite
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variety. It states that the larger the variety of actions available
to a control system, the larger the variety of perturbations it is
able to compensate. This translates into saying that the larger
the number of appropriate “states” available to a neural system,
the more behavior relevant actions it may generate to cope
with occurring vital or life-threatening external situations. To
represent these “appropriate states” we identified the so called
dynamical forms of a neural system (Pasemann, 2017).

A crucial question to ask is that for the relationship between
the complexity of the connectivity and the complexity of the
dynamics which is realizable on a given network. In the context
of brain sciences this has been discussed for instance in Sporns
et al. (2000) and Sporns (2002, 2017).

For evolution or development of cognitive neural systems
modularity is certainly a good design principle. But already
Szentágothai and Arbib (1974), as well as Freeman (1975),
formulated the modular architecture of the nervous system as a
fundamental organizational principle, where certain brain areas
aremade up of smaller, repeating neural circuits, which are locally
interacting functional units generating the overall performance
of the system. Thus, it should be a promising strategy to develop
larger neural networks with enriched cognitive faculties by
coupling smaller networks in such a way that the resulting system
has an extended capacity for sensorimotor control and enhanced
cognitive solutions for challenging environmental situations.
This is one goal of a modular neurodynamics approach to
embodied cognition (Anderson, 2003; Ziemke, 2003).

Concerning “living” systems, neural dynamics is permanently
driven by external (and metabolic) sensor signals which can
serve, in a first approximation, as (slowly varying) control
parameters. For a given set of such parameters the corresponding
dynamical system may have a global attractor or a multitude
of co-existing attractors forming a so called attractor landscape.
A small change of parameters may change the whole attractor
landscape only marginally: attractors and their basin boundaries
are only slightly deformed, they are morphing (Negrello and
Pasemann, 2008). But at certain critical parameter values the
number and/or types of attractors are abruptly changed; i.e., a
bifurcation occurs. In Pasemann (2017) it was argued, that what
is of relevance for behavior is a whole class of parameterized
dynamical systems, called a dynamical form.

Now, to change behavior (or a mental content) the system
should switch from one dynamical form to another dynamical
form. In a sensory-motor loop sensor signals can drive
parameters across a bifurcation set into a different parameter
domain, thus switching to a different dynamical form with a
different number and/or different types of attractors. The co-
existence of a multitude of attractors in a dynamical form relates
to multi-stability, and is functional, for instance, for memory
properties. The existence of a larger variety of dynamical forms in
a neural structure will enable the system to discern more relevant
external (and internal) situations. Moreover, in the spirit of the
law of requisite variety, it is a reasonable hypothesis to assume
that having more dynamical forms available after the coupling
of neuromodules will provide an advantage for the development
of cognitive abilities. The goal of coupling subsystems therefore

is to enlarge the behavioral or cognitive capacities of neural
control systems.

To have a guide line for our analysis we will rely on a
set of reasonable assumptions concerning the properties of a
network. We will allow neurons to have positive or negative self-
connections. Second, the neuromodules which are to be coupled
are assumed to be strongly connected in the graph theoretical
sense, and the coupling of neuromodules is assumed to be
recurrent, so that the resulting system is again strongly connected.
Recurrent coupling will always introduce some additional cycles
(in graph theory parlance) into the system and therefore will also
influence the dynamics of the composed system.

Synchronization of neuron activities across separated areas
of brains was often discussed as a fundamental mechanism
underlying cognitive processes. Especially synchronization was
understood as a solution to the so called binding problem (Von
der Malsburg, 1995; Singer, 1996; Melloni et al., 2007; Maurer,
2016). But its contributions for a live sustaining behavioral
performance is still not fully understood and perhaps strongly
overestimated (Santos et al., 2012).

Instead of addressing the many roles ascribed to
synchronization, in this paper synchronization is considered
as a formal tool to understand how synaptic coupling of
neuromodules can lead to larger systems with a richer dynamical
spectrum. The idea here is the following: Suppose that for the
composed system already the lower dimensional synchronized
dynamics is at least as rich—for instance in terms of the number
of attractors—as that of the uncoupled neuromodules. If in
addition to this synchronized dynamics there exists a multitude
of asynchronous attractors outside the synchronizationmanifold,
then the coupled system is said to have a richer dynamical
spectrum than its isolated parts; i.e., the composed system will
provide a larger reservoir for different cognitive processes. The
goal here, then, is to find criteria for such a situation.

For that we introduce the concept of a synchronization
core of a composed system. It relates the synchronized
dynamics to that of a specific neural network of lower
dimension, the dynamics of which may be known. This
concept allows to classify a whole family of synchronization
equivalent neural networks all having different connectivities
but carrying qualitatively the same [i.e., topological conjugate
(Strogatz, 1996)] synchronization dynamics; i.e., they have the
same synchronization core. Concerning the structure-function-
relationship in neural systems this approach helps to derive
conditions for the dynamical “complexity” of coupled systems.

To enhance the dynamics of given larger neural systems one
may think about its decomposition into synchronization
equivalent submodules, thus identifying the modules
together with their coupling structure. Module connectivities
and/or couplings than can be optimized for a more
complex neurodynamics.

The organization of the paper is as follows. In the next
section a neuromodule is introduced as a parameterized family
of discrete-time dynamical systems together with the structure of
the underlying neural network. The corresponding concepts of
attractor landscapes and dynamical forms are shortly recalled.
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Section 3 then will present some basic definitions to
characterize the synchronized and asynchronous dynamics
of coupled neuromodules (compare also Pasemann, 1999;
Pasemann and Wennekers, 2000). It introduces synchronization
and obstruction weight matrices, synchronization cores, and
discusses the stability of synchronized and asynchronous
dynamics and the decomposition of larger networks into
synchronizable submodules. The following section 4 then
presents a simple example for demonstrating the arguments in
the former sections. Finally, the paper concludes with a short
discussion of results.

2. NEUROMODULES

Before discussing the role synchronization may play to
help understanding the interplay between connectivity and
dynamics of coupled neural networks we will introduce some
basic notations.

In the following Nn(θ ,w) refers to a neural network with n
neurons, given bias terms θ ∈ R

n and (n × n) weight matrix
w ∈ R

n×n. The transfer function of neurons is chosen to be the
sigmoid τ := tanh.

Although a neuromodule is generally understood as a neural
network which can be a part of a larger neural system, here,
being interested mainly in the qualitative aspects of dynamics
on networks with standard sigmoidal neurons, we will restrict
our considerations to discrete-time neurodynamics and describe
a neuromodule as a parameterized family of dynamical systems
A = (A, f ;Q), where A ⊂ R

n denotes the activation state space
of the network, Q ⊂ R

(n+1)×n the parameter space, and the map
f :Q× A → A the discrete-time dynamics defined by

ai(t + 1) = θi +

n
∑

j=1

wij τ (aj(t)) , i = 1, . . . , n . (1)

Here, ai denotes the activation of neuron i,wij the synaptic weight

from neuron j to unit i, θi = θ i+ Ii the sum of a fixed bias term θ i
and its stationary (slowly varying) external input Ii. The output oi
of unit i is then given by oi = τ (ai) := tanh(ai); and the output
space, denoted by A∗, is corresponds to the open n-cube A∗ =

(−1, 1)n ⊂ R
n. Denoting a parameter set by ρ := (θ ,w) ∈ Q we

also write A = (A, fρ) for the dynamics of the underlying neural
network Nn(θ ,w).

2.1. Connectivity, Structure, and
Configuration
To better understand the relation between dynamical and
network properties we discern between the connectivity of a
network Nn(θ ,w), its structure, and its configuration.

The connectivity of a network Nn(θ ,w) is best reflected by its
adjacency matrix C(w) which is given by the (n× n)-matrix with
zero elements on the main diagonal and entries Cij(w) defined by

Cij(w) :=

{

1 iff wij 6= 0
0 iff wij = 0 or i = j ,

(2)

i.e., the adjacency matrix ignores self-connections
(loops) of neurons.

Furthermore, if we want to put emphasis on the fact that there
exist inhibitory as well as excitatory synaptic connections in the
networkNn(θ ,w) we will refer to the structure matrix CS(w), also
called the structure, of the network Nn(θ ,w) given by

CS
ij(w) :=

{

sign(wij) iff wij 6= 0
0 iff wij = 0

(3)

The structure CS(w) of a network Nn(θ ,w) thus describes the
polarity of inter-connections as well as that of self-connections. It
is often represented by a signed directed graph. Keeping in mind
the underlying neural network Nn(θ ,w) of the neuromodule
A = (A, fρ), we also write CS(A) for its structure. The structure
CS(A) together with the corresponding family of parameterized
dynamical systems A = (A, fρ) is what we usually refer to
as a neuromodule.

An explicitly given weight matrix w of a neuromodule A =

(A, fρ) is called its configuration. Finally, the bias terms θ =

(θ1, . . . , θn) ∈ R
n together with the synaptic weights wij of the

weight matrix w ∈ R
n×n represent the parameters ρ ∈ Q ⊂

R
(1+n)×n of the neuromoduleA = (A, fρ).
Thus, given a certain connectivity C(w) of a network

Nn(θ ,w), there can be a manifold of different structures CS(w)
consistent with this connectivity. And there will be a manifold of
configurations wij for one and the same neural structure CS(w).

Given a parameter vector ρ ∈ Q there may exist not only one
attractor, but many attractors of the same type or even of different
types. The metaphor attractor landscape Lρ for ρ ∈ Q then
represents the state spaceM marked by all attractors, their basins
of attraction together with their basin boundaries. A dynamical
form than can be understood as a bundle of such landscapes over
a certain set of parameters ρ ∈ Q for which the corresponding
dynamical systems fρ are structurally stable; i.e., topologically
conjugate (Pasemann, 2017).

Because a practicable and meaningful complexity measure for
our purposes seems to be not yet at hand, we will use the term
richness of the dynamical spectrum in a purely intuitive way to
characterize the dynamical properties of a neuromodule. As an
example: a neural network Nn(θ ,w) with given weight matrix w,
allowing only a global fixed point attractor for all bias terms θ is
assumed to be dynamically less rich than a network for which,
for instance, a period doubling route to chaos can be observed in
a bifurcation diagram. On the other hand, a network allowing a
parameter domain providing a dynamical form with k different
attractors is termed to be dynamically richer than a network
providing only l < k coexisting attractors, where k is the maximal
number of attractors for all (A, fρ), ρ ∈ Q inherited by a given
structure CS(w).

2.2. Coupled Neuromodules
In the following an n-dimensional neuromodule A = (A, f ;Q)
is assumed to be given by a strongly connected neural network
Nn(θ ,w); i.e., its weight matrix w is assumed to be irreducible.

Let A = (A, f ;Q) and B = (B, g;Q′) denote two
neuromodules with (n × n)-weight matrices wA and wB,
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respectively. Their corresponding parameter sets are denoted by
ρA = (θA,wA) ∈ Q and ρB = (θB,wB) ∈ Q′, and the neural
activations of module A and B will be denoted by ai and bi,
i = 1, ..., n, respectively.

A system composed ofA andB corresponds to a neuromodule
M = (M, h;R), with M : = (A × B), h :R × M → M, and
(Q × Q′) ⊂ R; i.e., the new parameters space R includes the
parameters ofQ andQ′ and is enlarged by the weights of synaptic
connections between neurons of the two modulesA and B.

The connections from module B to module A are described
by an (n × n)-coupling matrix wAB, connections from A to B by
(n × n)-coupling matrix wBA. Thus, the (2n × 2n) weight matrix
wM of the coupled systemM is of the form

wM
:=

(

wA wAB

wBA wB

)

. (4)

The pair (wAB,wBA) of matrices comprising the coupling
connections is simply called the coupling of modules A and B. It
is called recurrent if wAB 6= 0 and wBA 6= 0. A recurrent coupling
(wAB,wBA) is called symmetric, iff wAB = wBA. Recurrent
couplings will lead again to strongly connected neural networks
M with irreducible weight matrix wM ; i.e., to neuromodules.

3. DYNAMICS OF COUPLED
NEUROMODULES

The dynamics of coupled neuromodules will depend on the
strength of the coupling connections and on their type, i.e., being
excitatory or inhibitory. It will also depend on the type (even
or odd) and length of the cycles established by the coupling
connections. Recall, that a cycle is termed even (odd) if the
number of inhibitory connections in the cycle is even (odd). To
get some first results concerning the effect of different couplings
we assume that the neuromodules A and B have the same
dimension n. For the more general case where modules have
different dimensions see e.g., Pasemann and Wennekers (2000).

In the following M = (M, h;R) denotes a system of coupled
n-modules A and B with weight matrix wM given by Equation
(4). The activation state spaceM = A× B of the coupled system
is 2n-dimensional, and its parameterized discrete-time dynamics
will be denoted by

hρ :M → M , ρ ∈ R ,

where ρ : = (ρA, ρB, wA, wB, wAB, wBA) denotes a set of

parameters for the coupled system (M, hρ). The dynamics hρ is
then given for i = 1, . . . , n in the form

ai(t + 1) = θAi +

n
∑

j=1

wA
ij τ (aj(t))+

n
∑

j=1

wAB
ij τ (bj(t)) , (5)

bi(t + 1) = θBi +

n
∑

j=1

wB
ij τ (bj(t))+

n
∑

j=1

wBA
ij τ (aj(t)) . (6)

Definition Given a coupled system M = (M, h;R). Suppose
there exist a subset D ⊂ M, such that (a0, b0) ∈ D implies

lim
t→∞

| (ai(t; a0))− κ · bi(t; b0) | = 0 , i = 1, . . . , n , κ ∈ [−1, 1] ,

(7)
where (a(t; a0), b(t; b0)) denotes the orbit inM under hρ through
the initial condition (a0, b0) ∈ D. Then this process is called
a (complete) synchronization of modules A and B if κ = 1. If
κ = −1 the dynamics is called (completely) anti-synchronous.
Otherwise the dynamics is called asynchronous.

3.1. Synchronized Module Dynamics
Let M = (M, h;R) denote the system of coupled modules
A = (A, f ;Q) and B = (B, g;Q′) which can be completely
synchronized. Then the synchronized dynamics is restricted to
the synchronization manifold Ms which is an n-dimensional
hyperspace Ms ∼= R

n ⊂ M. One can immediately verify the
following lemma by subtracting Equation (6) from Equation (5);
i.e., by equating ai = bi, i = 1, . . . , n.

Lemma 3.1. Let the parameter sets ρA ∈ Q, ρB ∈ Q′ of the
modulesA and B satisfy

θA = θB, (wA−wBA) = (wB−wAB) , wBA 6= 0 , wAB 6= 0 .
(8)

Then every orbit of hρ :M → M with initial condition a(0) =

b(0) ∈ Ms is constrained toMs for all times; i.e., Ms is an invariant
manifold for hρ .

Equation (8) is called the synchronization condition for coupled
neuromodules, and it shows that synchronization can be achieved
for modules with different weight matrices wA and wB, as well
as with different coupling matrices wAB and wBA, as long as
(8) is satisfied.

For a more detailed study of the synchronized dynamics it
is appropriate to introduce new coordinates (ξ , η) for M which
are parallel and orthogonal, respectively, to the synchronization
manifoldMs:

ξi :=
1

2
(ai + bi) , ηi :=

1

2
(ai − bi) , i = 1, . . . , n . (9)

An orbit on the synchronization manifold Ms then will be
given by ηi = 0, i = 1, . . . , n. Furthermore, the hyperspace
M⊥ ⊂ M defined by ξi = 0, i = 1, . . . , n, will be called the
obstruction manifold.

In terms of the (ξ , η)-coordinates the general dynamics
hρ :M → M of the coupled system then reads

ξi(t + 1) =
1

2
· (θAi + θBi )+

1

2

n
∑

j=1

(wA
ij + wBA

ij ) · G+(ξj(t), ηj(t))

+
1

2

n
∑

j=1

(wB
ij + wAB

ij ) · G−(ξj(t), ηj(t)) , (10)

ηi(t + 1) =
1

2
· (θAi − θBi )+

1

2

n
∑

j=1

(wA
ij − wBA

ij ) · G+(ξj(t), ηj(t))

−
1

2

n
∑

j=1

(wB
ij − wAB

ij ) · G−(ξj(t), ηj(t))) , (11)
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where i = 1, . . . , n, and the functions G± are defined by

G±(x, y) := τ (x± y) , x, y ∈ R . (12)

These functions have the following properties:

G±(x, 0) = τ (x) , (13)

G+(0, y) = −G−(0, y) = τ (y) , (14)

∂xG
+(x, y)|y=0 = ∂xG

−(x, y)|y=0 = τ ′(x) , (15)

∂yG
+(x, y)|y=0 = −∂yG

−(x, y)|y=0 = τ ′(x) , (16)

where τ ′ denotes the derivative of the sigmoid τ = tanh. Recall
that 0 < τ ′(x) ≤ 1, x ∈ R, and τ ′(0) = 1 so that the linearization
Dhρ of the general dynamics hρ at the origin 0 ∈ M is equal to
the weight matrix wM of the coupled system; i.e.,

Dhρ(0) = wM .

Defining the synchronization matrix w+ by

w+
:= (wA + wAB) = (wB + wBA) , (17)

and setting

θ := θA = θB ,

the synchronized dynamics hsρ :Ms → Ms is given, in terms of the
ξ -coordinates, by the n equations

ξi(t + 1) = θi +

n
∑

j=1

w+
ij · τ (ξj(t)) , i = 1, . . . , n . (18)

Thus, the synchronized dynamics hsρ corresponds to that of an

n-module with weight matrix w+ depending on the bias terms
θ : = θA = θB. It may have fixed point attractors as well as
periodic, quasiperiodic, or chaotic attractors, all constrained to
Ms. Although the persistence of the synchronized dynamics is
guaranteed by the synchronization conditions (8), it is not at all
clear that the synchronized dynamics (18) is asymptotically stable,
in the sense, that small perturbations will not desynchronize
the system. Thus, an orbit in M may be an attractor for the
synchronized dynamics fρ |Ms but not for the global dynamics fρ
of the coupled system (Ashwin et al., 1996).

Furthermore, if the synchronization conditions (8) are
satisfied then the corresponding obstruction dynamics
h⊥ρ :M⊥ → M⊥ is given in terms of the η-coordinates by
the equations

ηi(t + 1) =

n
∑

j=1

w−
ij · τ (ηj(t)) , i = 1, . . . , n , (19)

where w− denotes the obstruction matrix defined by

w−
ij := (wA

ij − wBA
ij ) = (wB

ij − wAB
ij ) . (20)

Observe that the obstruction dynamics h⊥ρ does not depend

on bias terms, as long as θA = θB. This means that the

origin η0 ∈ M⊥ is always a fixed point for the η-dynamics
(19). As long as η0 ∈ M⊥ is an asymptotically stable fixed
point for h⊥ρ the corresponding synchronized dynamics will be

asymptotically stable. Recall that the obstruction matrix w− is
identical with the linearization of the obstruction dynamics at the
origin; i.e., Dh⊥ρ (η

0) = w−.
Usually asymptotic stability of Ms is discussed in terms of

the synchronization Liapunov exponents λsi and the transversal
Liapunov exponents λ⊥i , i = 1, . . . , n, for the synchronized
dynamics hsρ onMs, as for instance in Pasemann andWennekers
(2000). There it was shown that the synchronization manifold
Ms is asymptotically stable, if the largest transversal Lyapunov
exponent λ⊥1 satisfies λ⊥1 < 0 for all orbits in Ms. But since
this is the case if all eigenvalues ǫi of the obstruction matrix
w− satisfy |ǫi| < 1, i = 1, . . . , n, the asymptotic stability
of the synchronization manifold Ms can be controlled by the
obstruction matrix w− alone.

Thus, to reserve the full dynamical spectrum provided by an n-
module with weight matrixw+ for a pure synchronized dynamics
of a coupled system one just has to choose a coupling (wAB,wBA)
such that the moduli of the eigenvalues of the corresponding
obstruction matrix w− are all smaller than 1 (compare the
example in section 4, Figure 12).

To get a reasonable estimate for the weights w−
ij one can apply

for instance a theorem like the one in Hammer and Tiňo (2003)
to obtain

Theorem 3.2. Given an n-dimensional obstruction dynamics
(M⊥, h⊥ρ ) with respect to an obstruction matrix w−. If

max
ij

(w−
ij ) <

1

n
, i, j = 1, . . . , n ,

then the origin η0 ∈ M⊥ is a global fixed point attractor
for h⊥ρ , and the corresponding synchronization dynamics hsρ is
asymptotically stable.

Following the Liapunov exponent approach as in Pasemann
and Wennekers (2000) one will trivially derive

Lemma 3.3. Let Nn(θ ,w) be a synchronizable neuromodule with
synchronization matrix w+ and obstruction matrix w−. Let
ǫi, i = 1, . . . , n, denote the eigenvalues of the obstruction
matrix w−. If

max
i

|ǫi| < 1 , (21)

then the synchronization manifold Ms is asymptotically stable.

Correspondingly, to destabilize a synchronization manifold
Ms, one has to chose a coupling (wAB,wBA) such that the
eigenvalues of the obstruction matrix w− are non-zero with
moduli large enough to make contributions to the positivity of
the largest transversal exponent λ⊥1 .

3.2. Synchronization Cores
Being interested again not only in the synchronized dynamics of a
specific configuration of coupled neuromodules, which depends
on a given set of parameters (θ ,w) ∈ R, but in the full dynamical
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spectrum of synchronization available for coupled neuromodules
we refer to the following

Definition Given a systemM of coupled modulesA and B with
coupling (wAB,wBA) satisfying (8). The structure CS(w+) of its
synchronization matrix w+ is called the synchronization core of
the coupled systemM.

There can be many different structures and module
configurations of A and B with many different coupling
matrices wAB and wBA all leading to the same synchronization
core. An example can be seen in section 4 Figure 14 where
three different structures all have the same synchronization core
w+ ∈ R

n×n shown in Figure 5 (right). All these different
modules and different couplings will lead to the same
parameterized family of synchronized dynamics. Therefore,
at the same time a synchronization core w+ stands for a whole
class of synchronizable neural networks of dimension n, and
we define

Definition Two coupled systems M and M′ with
synchronization cores CS(w+) and CS(w′+) are called
synchronization equivalent if they have the same synchronization
core; i.e., there exists a coupling (wAB,wBA) such that

CS(w+) = CS(w′+) .

With respect to the structure-function relationship in coupled
systems one then can ask for the effects different couplings
(wAB,wBA) will have for the resulting dynamics on the modular
neural network. To answer this question the following definition
is introduced.

Definition Given a system M of coupled modules A and B

with coupling matrices wAB and wBA satisfying (8). Let CS(w+)

denote its synchronization core. If there exists at least one pair
of indices (i, j) such that w+

ij 6= 0 but wA
ij = 0 and wB

ij = 0,

then the corresponding coupling (wAB,wBA) is called generative.
Otherwise it is called conservative.

A synchronization core CS(w+) may be identical to the structures
CS(wA) or CS(wB) of the isolated modules A or B, or it may
be of different type. If it is generative it represents a family of
parameterized dynamical systems different from those of the
modules A and B. And it may allow for a richer dynamical
spectrum than that of the isolated partsA and B.

In Figures 1, 2 examples of a conservative and of a generative
coupling of two odd 3-cycles are shown (left). For odd 3-cycles
one observes, besides global fixed point attractors, only one
dynamical formwith co-existing period-2 and period-6 attractors
(Pasemann, 1995). To illustrate the differences, the graphs are
twisted (middle) revealing that a generative coupling introduces
an additional 4-cycle into the system. That this coupling is
generative can be seen by the synchronization core (right).

Although in the first case the synchronization core is again an
odd 3-cycle, in the generative case one observes a new odd 2-
cycle in the synchronization core. The resulting 3-dimensional
synchronized dynamics in the 6-dimensional network now
displays many new periodic attractors up to quasi-periodicity,
as simulation experiments show. This supports the hypothesis
that generative couplings of neuromodules can enable a richer
dynamical spectrum than that of the isolated modules.

3.3. Decomposition of Neural Networks
Having used synchronization so far as a tool to compose larger
neural systems from smaller neuromodules to derive a richer
dynamical spectrum one may now ask if it can also be used to
determine how larger systems can be configured in such a way
that their dynamical spectrum is enhanced. For that we try to

FIGURE 1 | Conservative coupling of two odd 3-cycles (left), the same structure but twisted (middle), and the synchronization core CS(w+) (right).

FIGURE 2 | Generative coupling of two odd 3-cycles (left), the same structure but twisted (middle), and the synchronization core CS(w+) (right).
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decompose a large network into two sub-modules which can
be completely synchronized. One can then optimize the system
by choosing an appropriate coupling (wAB,wBA) which gives
the desired properties of the corresponding synchronization and
obstruction matrices w+ and w−. So first we have

Definition Given a neuromodule Nn(θ ,w) of even dimension
n = 2m with structure CS(w). It is called decomposable into
synchronizable submodules, or s-decomposable, if there exist
two recurrent sub-modules A and B with structures CS(wA)
and CS(wB), and a coupling (wAB,wBA) which satisfies the
synchronization condition (8) such that

w =

(

wA wAB

wBA wB

)

. (22)

FIGURE 3 | A six-neuron module which is not s-decomposable into two

three-neuron modules. It is a basic module.

Equation (22) is called an s-decomposition of Nn(θ ,w). A
neuromodule Nn(θ ,w), n = 2m, is called basic if it
is not s-decomposable.

Definition Given an s-decomposable neuromodule Nn(θ ,w)
with submodules A and B, coupling (wAB,wBA), and
synchronization matrix w+. Its s-decomposition is called
generative if the synchronization matrix w+ is generative.
Otherwise it is called conservative. A neural network is called
basic if it is not s-decomposable.

Under the assumed condition of complete synchronization, it
is clear that an s-decomposable neuromoduleNn(θ ,w) must be of
even dimension. But s-decompositionsmay be generalized also to
partial synchronized neuromodules (Pasemann and Wennekers,
2000).

The following figures show examples of a basic module
with six neurons (Figure 3), and an s-decomposable module
with its synchronization core CS(w+), demonstrating that this
s-decomposition is generative (Figure 4).

Analyzing the generative synchronization core CS(w+) of the
s-decom-posable module in Figure 4, one observes again that the
synchronized dynamics has a richer dynamical spectrum than
the isolated 3-modules. For instance, the core CS(w+) allows
for quasiperiodic attractors, although the parts, that is the basic
(even or odd) 3-cycles can display only r-periodic attractors with
r = 1, 3 and r = 2, 6, respectively.

The identification of neural structures that are s-
decomposable or basic may help to develop networks with
a desired rich dynamical spectrum. Proving conjectures like the
following can help to find larger classes of such structures:

• If the connectivity of a neural network corresponds to the
Cayley graph of a finitely generated Abelian group, then
it is s-decomposable.

• If the connectivity of a neural network does not contain a cycle
of even length, then it is not s-decomposable.

FIGURE 4 | A six-neuron neuromodule (left) which is s-decomposable and the resulting synchronization core CS(w+) (right), showing that its s-decomposition is

generative.
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4. A SIMPLE EXAMPLE

Some interesting features of coupled neural networks can be
studied already for the special case of coupling identicalmodules.
For our discussion this is not an essential restriction, but
allows a simpler notation. To illustrate the foregoing theoretical
arguments we therefore choose the following simple example.
Coupled are two identical odd 2-cycles without self-couplings
(compare Figure 5) leading to a 4-dimensional neural network
M = (M, h;R). With respect to the synchronization condition
(8 the notation then reduces to bias terms satisfying

θ1 := θA1 = θB1 , θ2 := θA2 = θB2 , (23)

and with w := wA = wB one has

w11 = w22 = 0, w12 = −w21 6= 0 . (24)

Such odd 2-cycles come in only two dynamical forms: one
with a global fixed point attractor, and one with a global
period-4 attractor.

The recurrent coupling wcoup = wBA = wAB is chosen to have
only one non-zero element

w
coup
11 = wAB

11 = wBA
11 < 0 ,

so that the synchronization and obstruction matrices read

w+ =

(

w
coup
11 w12

w21 0

)

, w− =

(

−w
coup
11 w12

w21 0

)

. (25)

This leads to the structure CS(M) of the composed system
M depicted in Figure 5 (left) and to its synchronization core
CS(w+) (right). One observes that the recurrent coupling
wcoup is generative: it generates a negative self-connection of

neuron 1 which was absent in the original 2-neuron networks.
But structures like the synchronization core CS(w+) allow
for configurations which display periodic, quasi-periodic and
even chaotic attractors (Pasemann, 2002), so that already the
synchronized dynamics of the coupled system M has a much
richer dynamical spectrum than the original odd 2-cycles.

To go into deeper analysis we consider first the stability
properties of the synchronized dynamics hsρ onMs. Because here

the eigenvalues ofw+ andw− have identical moduli, from section
3.1 we know that the largest synchronization exponent here is
equal to the largest transversal exponent:

λs1 = λ⊥1 . (26)

Thus, for λ⊥1 > 0 orbits will never be asymptotically stable on all
ofM; and in fact, synchronized chaos will always be hyperchaotic.

To analyze this situation we choose the weights of the
synchronization matrix w+ large enough to allow for chaotic
dynamics by setting

w+ =

(

−4 1.6
−1.6 0

)

, (27)

which is obtained by setting

w =

(

0 1.6
−1.6 0

)

, wcoup =

(

−4 0
0 0

)

. (28)

The obstruction matrix then reads

w− =

(

4 1.6
−1.6 0

)

. (29)

Analyzing the synchronous dynamics using the synchronization
matrix (27) and fixing θ2 = 0 one realizes in the

FIGURE 5 | The structure CS(M) of the coupled system M (left) and its synchronization core CS(w+) (right).
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corresponding bifurcation diagram for θ1 (Figure 6) a chaotic
domain around−4.75 < θ1 < −3.1.

Because this configuration has quite interesting dynamical
properties and may serve as an example for what was called
a “rich dynamical spectrum,” we will identify the coexistent
attractors for certain bias values θ1 from this interval. For that we
use their projections onto the (oA1 , o

B
1 )-output space. As suggested

by the bifurcation diagram in Figure 6 we check the situation for
θ1 = −4 and find five different attractors for this configuration: a
period-3 and a chaotic attractor in the synchronization manifold
Ms shown in Figure 7, and an asynchronous period-6 attractor
together with two asynchronous chaotic attractors, as can be seen
in Figure 8. They are derived by using random initial conditions
in the 4-dimensional output space M∗. One further observes
that all asynchronous attractors are symmetric with respect to
the synchronization manifold Ms, which is typical for coupled
identical modules (Pasemann, 1999).

We may also have a look at the situation for θ1 = −3.0
where coexisting attractors can be assumed according to the
shaded structure in Figure 6. Using again randomly chosen initial
conditions on m∗ we are able to identify at least eight different
coexisting attractors: In the synchronization manifold Ms there
co-exists a period-5 attractor together with a chaotic attractor
(Figure 9). Furthermore there are six asynchronous attractors,
one of them is a period-10 attractor, the other five attractors are
chaotic. The projections to the (oA1 , o

B
1 )-output space of all these

attractors are displayed in Figures 10, 11.

4.1. Globally Stable Synchronization
Manifolds
If one wants to keep the full dynamical spectrum of the
synchronization core CS(w+) with w+ as in Equation (27), but
wants to keep the dynamics being strictly synchronous for all
varying θ , one has to choose a configuration such that the
synchronizationmanifoldMs is globally stable. This is guarantied
if the obstruction matrix w−, according to section 3.1, has
eigenvalues all satisfying |λi| < 1, i = 1, . . . , n. For that, instead
of (29), one may choose an obstruction matrix

w− =

(

−1.35 0.6
−0.6 0

)

, (30)

which has eigenvalues −0.984 and −0.366, respectively. Then
one may define a convenient weight matrix w = wA = wB for
the modules and calculate the corresponding coupling wcoup =

wAB = wBA as in the following

w =

(

−2.675 1.1
−1.1 0

)

, wcoup =

(

−1.325 0.5
−0.5 0

)

. (31)

The corresponding configuration is shown in Figure 12 having
the same synchronization core CS(w+) as the structure discussed
above (Figure 5).

FIGURE 6 | Bifurcation diagram for the varied bias term θ1 of the synchronous dynamics according to w+ given by (27). The bias term θ2 = 0 is fixed. Shown is the

mean output o = 0.5 · (o1 + o2) of the 2-neuron module corresponding to the synchronization core CS(w+) in Figure 5 (right). Coexisting attractors are marked by

gray shaded domains.

Frontiers in Systems Neuroscience | www.frontiersin.org 9 March 2021 | Volume 15 | Article 606074

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Pasemann Neurocores

FIGURE 7 | The two synchronized attractors in Ms for θ1 = −4: A period-3 and a chaotic attractor. Shown are their projections to the (oA1 ,o
B
1 )-output space.

FIGURE 8 | The three asynchronous attractors in M for θ1 = −4: a period-6, and two chaotic attractors. Shown are their projections to the (oA1 ,o
B
1 )-output space.

4.2. Discussion of the Example; Generative
Couplings
Although the example of this section is very simple, the dynamics
for two specific parameter values, characterized in the figures
above, clearly demonstrate what we termed a “rich dynamical
spectrum.” And it also makes clear that this richness is the
direct cause of the generative coupling of the two odd 2-cycles.
Furthermore, the strong coupling w

coup
11 = −4 leads to a large

modulus of the eigenvalues of the synchronization matrix w+

and also of the obstruction matrix w− given in (29). Therefore,
also the largest transversal Lyapunov exponent satisfies λ⊥1 > 0
and therefore the synchronization manifold Ms is destabilized;
but, recall, orbits with initial conditions in the synchronization
manifold Ms will stay in Ms. With initial conditions outside
of Ms one observes additional asynchronous attractors in the
state space M of the coupled system, even if the synchronization
condition (8) is satisfied. Thus, it depends essentially on the

initial conditions whether the coupled system M will follow a
synchronous or asynchronous orbit.

Further analysis shows that smaller negative coupling values

w
coup
11 will drive the synchronized dynamics of the coupled system

M into a domain with quasi-periodic attractors. But because

the modulus of the largest eigenvalue of w− remains still large
enough to destabilize the synchronization manifoldMs there will

still exist also some asynchronous attractors inM. In fact, besides
a synchronized quasi-periodic attractor inMs there is a multitude

of asynchronous quasi-periodic attractors inM for certain values

of the bias term θ1. Even if one changes the strength of the

connections w12 = −w21 the synchronization manifold Ms will
stay unstable, and there exist some asynchronous attractors as

well until the modulus of the largest eigenvalue of w− is smaller
than 1.0. This demonstrates that a generative coupling guaranties
over a large θ-parameter domain co-existing synchronous as well
as asynchronous attractors.
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FIGURE 9 | The two synchronized attractors for θ1 = −3: a period-5 and a chaotic attractor. Shown are their projections to the (oA1 ,o
B
1 )-output space.

FIGURE 10 | Three asynchronous chaotic attractors for θ1 = −3. Shown are their projections to the (oA1 , o
B
1 )-output space.

FIGURE 11 | The additional two asynchronous chaotic attractors for θ1 = −3, and an asynchronous period-10 attractor for θ1 = −3. Shown are their projections to

the (oA1 , o
B
1 )-output space.
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It should be mentioned here that one may even couple
non-recurrent networks, like the feedforward networks in
Figure 13, to obtain the same synchronization core CS(w+) as
in our example, Figure 5 right. So synchronization cores are

FIGURE 12 | The example of a conservative coupling of 2n-modules allowing

the same dynamical spectrum corresponding to the synchronization matrix w+

(27) in a globally stable synchronization manifold Ms.

well defined not only for coupled neuromodules but, more
generally, also for coupled non-recurrent networks. To observe
the same synchronized dynamics of such systems it is only
necessary that they have the same synchronization matrix w+

and obstruction matrix w−. This indicates that in general the
class of synchronization equivalent networks comprises a large
number of structures that are all able to carry exactly the
same types of synchronized dynamics. And that generative
couplings of “simple” networks can lead to networks with a
much richer dynamical spectrum than that observed for the
original subsystems.

4.3. Discussion of the Example;
Conservative Couplings
Now then, what is the effect of conservative couplings? Because
the result of these couplings is a synchronization core CS(w+),
which is the same as the structure of the parts CS(A) = CS(B),
it will not generate a synchronized dynamics with a richer
dynamical spectrum than that of the parts. Examples of such
non-generative couplings, all having the same synchronization
core CS(w+) as our example (Figure 5), are shown in Figure 14.
One therefore can infer that all the corresponding different
network configurations will have a synchronized dynamics which
is identical with the synchronized dynamics discussed in the
example above. But here the dynamical spectrum is identical with
that of the coupled 2-neuron networks (Pasemann, 2002).

4.4. Discussion of the Example; Relation to
K-Sets
One may further remark that, based on the neurophysiological
findings, Freeman (1975) identified 10 basic neurodynamical
modules, the Katchalsky K-sets, that help to explain how neural
populations can create the complex dynamics essential for

FIGURE 13 | Coupled feedforward networks resulting in the same synchronization core of this example.
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FIGURE 14 | Examples of network structures all having the same synchronization core CS(w+) as our example shown in Figure 5 right. They all have the same

parameterized family of 2-dimensional synchronized dynamics.

FIGURE 15 | The structure of a Freeman KII-set CS(KII) (left) and its synchronization core CS(w′+ ) (right).

cognition. One of the simplest modules, called the Freeman KII-
set, consists of two excitatory and two inhibitory populations.
The structure CS(KII) of a KII-set is displayed in Figure 15

(left) together with its synchronization core CS(w′+) (right).
Although this synchronization core has an additional positive
self-connection, the synchronized dynamics of the KII-set is not
qualitatively different from that of the example discussed above,
i.e., it has the same dynamical spectrum. Having this in mind, it is
not a surprise that a corresponding structure for artificial neurons
served as a versatile module for dynamic memory designs, for
robust classification, for pattern recognition, and for navigation
tasks (Kozma, 2008; Kozma and Freeman, 2009).

5. SUMMARY

Based on the assumption that cognitive abilities of brains

and brain-like systems rest on their dynamical properties, the

development of artificial neural networks providing cognitive

abilities calls for systems having a manifold of different non-
trivial attractors between which can be switched by external (and

internal) sensor signals (Pasemann, 2017).

As a guideline for generating neural systems with such a
desired “rich dynamical spectrum,” for instance by applying an

evolutionary algorithm, we propose to couple synchronizable
subsystems with a certain dynamical spectrum to obtain a
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neural network with an even richer dynamical spectrum.
For two neuromodules of dimension n, represented by their
signed connections (structures), which can be synchronized
by applying appropriate interconnections, we observe that the
resulting synchronized dynamics of the 2n-dimensional network
is identical to that of an n-dimensional neuromodule, defined by
the synchronization matrix w+ and named the synchronization
core CS(w+).

Using so called generative couplings, even the n-dimensional
synchronized dynamics may have a richer dynamical spectrum
than the isolated n-dimensional subsystems. Furthermore,
based on the obstruction matrix w− criteria are given for
the co-existence of asynchronous attractors outside of the
synchronization manifold, so that at the same time there exist
attractors for the synchronized dynamics as well as for an
asynchronous dynamics; i.e., the dynamical spectrum of the
composed system is much richer. Thus, a network composed
according to these rules will provide a larger variety of attractors
for use as memories or for action control. For applications, as
usual, which attractor goes into actions depends on bias terms
(slow sensor inputs), the crossing of bifurcation manifolds or
applied initial conditions (Pasemann, 2017).

To demonstrate the basic ideas, we concentrated on
the recurrent coupling of two identical 2-dimensional
neuromodules, two 2-cycles. Although this is an extremely
simple configuration we made visible a manifold of co-existing
synchronous and asynchronous attractors for what was a
generative coupling. For such 2 × 2-dimensional networks also
conservative (non-generative) couplings where discussed, and an
example provides the presumpsion that the concept of generative
couplings can be extended to not strongly recurrent, but still
synchronizable subsystems. Also a comparison with Freeman
KII-sets, which were derived from neurophysiological findings,
is given.

From our results one can infer that the class of
synchronization equivalent neural structures contains very

many even dimensional networks, all having the same properties
of their synchronous dynamics. And, furthermore, networks
displaying a rich dynamical spectrum do not need to have many
connections. This observation may be related to the small world
view of network functionality (Watts and Strogatz, 1998).

Although concepts of the paper relate only to completely
synchronized even dimensional composed systems, a
generalization to partially synchronized neural networks
(Pasemann and Wennekers, 2000) is straight forward.

The ultimate goal of this approach is to develop strategies
for selecting reasonable neuromodules which can serve as
individuals for the initial population of an evolutionary
neuro-robotics run. Evolutionary programs, like for instance
the Interactively Constrained Neuro-Evolution (ICONE)
(Rempis and Pasemann, 2012) program, are prepared to
use populations of neuromodules (instead of neurons) and
coupling connections as basic elements for an evolution of
behavior relevant neural control-networks for autonomous
robots.
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