AUTHOR=Quarta Eros , Cohen Erez James , Bravi Riccardo , Minciacchi Diego TITLE=Future Portrait of the Athletic Brain: Mechanistic Understanding of Human Sport Performance Via Animal Neurophysiology of Motor Behavior JOURNAL=Frontiers in Systems Neuroscience VOLUME=14 YEAR=2020 URL=https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2020.596200 DOI=10.3389/fnsys.2020.596200 ISSN=1662-5137 ABSTRACT=

Sport performances are often showcases of skilled motor control. Efforts to understand the neural processes subserving such movements may teach us about general principles of behavior, similarly to how studies on neurological patients have guided early work in cognitive neuroscience. While investigations on non-human animal models offer valuable information on the neural dynamics of skilled motor control that is still difficult to obtain from humans, sport sciences have paid relatively little attention to these mechanisms. Similarly, knowledge emerging from the study of sport performance could inspire innovative experiments in animal neurophysiology, but the latter has been only partially applied. Here, we advocate that fostering interactions between these two seemingly distant fields, i.e., animal neurophysiology and sport sciences, may lead to mutual benefits. For instance, recording and manipulating the activity from neurons of behaving animals offer a unique viewpoint on the computations for motor control, with potentially untapped relevance for motor skills development in athletes. To stimulate such transdisciplinary dialog, in the present article, we also discuss steps for the reverse translation of sport sciences findings to animal models and the evaluation of comparability between animal models of a given sport and athletes. In the final section of the article, we envision that some approaches developed for animal neurophysiology could translate to sport sciences anytime soon (e.g., advanced tracking methods) or in the future (e.g., novel brain stimulation techniques) and could be used to monitor and manipulate motor skills, with implications for human performance extending well beyond sport.