AUTHOR=Manzella Francesca M. , Joksimovic Srdjan M. , Orfila James E. , Fine Brier R. , Dietz Robert M. , Sampath Dayalan , Fiedler Hanna K. , Tesic Vesna , Atluri Navya , Raol Yogendra H. , Jevtovic-Todorovic Vesna , Herson Paco S. , Todorovic Slobodan M. TITLE=Neonatal Ketamine Alters High-Frequency Oscillations and Synaptic Plasticity in the Subiculum But Does not Affect Sleep Macrostructure in Adolescent Rats JOURNAL=Frontiers in Systems Neuroscience VOLUME=14 YEAR=2020 URL=https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2020.00026 DOI=10.3389/fnsys.2020.00026 ISSN=1662-5137 ABSTRACT=
Exposure to sedative/hypnotic and anesthetic drugs, such as ketamine, during the critical period of synaptogenesis, causes profound neurotoxicity in the developing rodent and primate brains and is associated with poor cognitive outcomes later in life. The subiculum is especially vulnerable to acute neurotoxicity after neonatal exposure to sedative/hypnotic and anesthetic drugs. The subiculum acts as a relay center between the hippocampal complex and various cortical and subcortical brain regions and is also an independent generator of gamma oscillations. Gamma oscillations are vital in neuronal synchronization and play a role in learning and memory during wake and sleep. However, there has been little research examining long-term changes in subicular neurophysiology after neonatal exposure to ketamine. Here we explore the lasting effects of neonatal ketamine exposure on sleep macrostructure as well as subicular neuronal oscillations and synaptic plasticity in rats. During the peak of rodent synaptogenesis at postnatal day 7, rat pups were exposed to either 40 mg/kg of ketamine over 12 h or to volume matched saline vehicle. At weaning age, a subset of rats were implanted with a cortical and subicular electroencephalogram electrode, and at postnatal day 31, we performed