AUTHOR=Bramini Mattia , Alberini Giulio , Colombo Elisabetta , Chiacchiaretta Martina , DiFrancesco Mattia L. , Maya-Vetencourt José F. , Maragliano Luca , Benfenati Fabio , Cesca Fabrizia TITLE=Interfacing Graphene-Based Materials With Neural Cells JOURNAL=Frontiers in Systems Neuroscience VOLUME=12 YEAR=2018 URL=https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2018.00012 DOI=10.3389/fnsys.2018.00012 ISSN=1662-5137 ABSTRACT=
The scientific community has witnessed an exponential increase in the applications of graphene and graphene-based materials in a wide range of fields, from engineering to electronics to biotechnologies and biomedical applications. For what concerns neuroscience, the interest raised by these materials is two-fold. On one side, nanosheets made of graphene or graphene derivatives (graphene oxide, or its reduced form) can be used as carriers for drug delivery. Here, an important aspect is to evaluate their toxicity, which strongly depends on flake composition, chemical functionalization and dimensions. On the other side, graphene can be exploited as a substrate for tissue engineering. In this case, conductivity is probably the most relevant amongst the various properties of the different graphene materials, as it may allow to instruct and interrogate neural networks, as well as to drive neural growth and differentiation, which holds a great potential in regenerative medicine. In this review, we try to give a comprehensive view of the accomplishments and new challenges of the field, as well as which in our view are the most exciting directions to take in the immediate future. These include the need to engineer multifunctional nanoparticles (NPs) able to cross the blood-brain-barrier to reach neural cells, and to achieve on-demand delivery of specific drugs. We describe the state-of-the-art in the use of graphene materials to engineer three-dimensional scaffolds to drive neuronal growth and regeneration