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Optimal feedback control
successfully explains changes in
neural modulations during
experiments with brain-machine
interfaces
Miri Benyamini and Miriam Zacksenhouse*

Brain-computer Interfaces for Rehabilitation Laboratory, Department of Mechanical Engineering, Technion - Israel Institute of

Technology, Haifa, Israel

Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of

neural modulations increased abruptly upon starting to operate the interface, and

especially after the monkey stoppedmoving its hand. In contrast, neural modulations that

are correlated with the kinematics of the movement remained relatively unchanged. Here

we demonstrate that similar changes are produced by simulated neurons that encode

the relevant signals generated by an optimal feedback controller during simulated BMI

experiments. The optimal feedback controller relies on state estimation that integrates

both visual and proprioceptive feedback with prior estimations from an internal model.

The processing required for optimal state estimation and control were conducted in

the state-space, and neural recording was simulated by modeling two populations of

neurons that encode either only the estimated state or also the control signal. Spike

counts were generated as realizations of doubly stochastic Poisson processes with

linear tuning curves. The model successfully reconstructs the main features of the

kinematics and neural activity during regular reaching movements. Most importantly, the

activity of the simulated neurons successfully reproduces the observed changes in neural

modulations upon switching to brain control. Further theoretical analysis and simulations

indicate that increasing the process noise during normal reaching movement results in

similar changes in neural modulations. Thus, we conclude that the observed changes

in neural modulations during BMI experiments can be attributed to increasing process

noise associated with the imperfect BMI filter, and, more directly, to the resulting increase

in the variance of the encoded signals associated with state estimation and the required

control signal.

Keywords: brain-machine interfaces, neural modulations, optimal feedback control, computational motor control,

process noise

1. Introduction

Brain-Machine Interfaces (BMIs) have been developed to provide a direct communication
link between the brain and external devices, bypassing the remaining, potentially injured
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neuro-muscular system (Nicolelis, 2001; Taylor et al., 2002;
Lebedev et al., 2005). Additionally, BMIs provide a unique
window into information representation and processing in the
brain. In particular, it was observed that the extent of neural
modulations (during BMI experiments reported in Carmena
et al., 2003) increased abruptly upon starting to operate the
interface, and especially after the monkey stopped moving its
hand (Zacksenhouse et al., 2007). In contrast, neural modulations
that are correlated with the movement kinematics remained
relatively unchanged. Here we develop an optimal feedback
control model (OFC) of BMI experiments to explain the observed
changes in neural modulations and to investigate how they are
related to changes in state estimation during brain control.

OFC was recently proposed as a viable model for motor
control during reaching movements (Todorov and Jordan, 2002;
Todorov, 2005; Shadmehr and Krakauer, 2008). While the term
“optimal feedback control” emphasizes the optimality of the
control gains given the cost function, the main component of
interest here is optimal state estimation. This component is
hypothesized to integrate visual and proprioceptive information
with prior state estimation from an internal model to optimize
the posterior state estimate (Miall and Wolpert, 1996; Wolpert
and Ghahramani, 2000). The relative weights given to the
sensory measurements versus the internal estimation depend
on the relative variance of measurement and process noise,
and, for linear systems corrupted by Gaussian noise, are
determined by the Kalman filter (Schwartz, 2004; Stengel,
2012). The main hypothesis of this paper is that changes
in process and measurement noise caused by the switch to
brain control can explain the observed changes in neural
modulations.

OFC is adopted here, instead of alternative computational
motor control models, such as feedback error learning (Kawato
et al., 1987), active inference (Friston et al., 2010, 2011) and distal
teacher (Jordan and Rumelhart, 1992), for three main reasons.
First, OFC does not require explicit specification of the desired
trajectory of movement. While the desired trajectory can be
assumed to follow the minimum jerk profile, its specification
during brain control, when the initial stroke does not reach
the target, is not straightforward. In contrast, OFC generates
the trajectory implicitly, rather than following an externally
specified trajectory. Secondly, the optimization inherent in OFC
constrains the parameters of the state estimation filter and the
control gains, so the model has fewer free parameters that need
to be tuned. Thus, OFC provides a coherent and principled
framework for investigating possible mechanisms underlying
changes in neural modulations following the transition to brain
control. Finally, OFC explicitly accounts for the variance of the
process and measurement noise, which are assumed to change
when switching to brain control, and thus is most appropriated
for investigating how these mechanisms may contribute to the
observed changes in neural modulations.

The processing required for optimal state estimation and
control are conducted in the state-space. Neural recording is
simulated by modeling two populations of neurons that encode
the relevant signals, including either just the estimated state or
also the resulting control signal. Thus, the approach presented
here combines the dynamical perspective, which focuses on

how the brain commands movements, with the representational
perspective, which investigates what the neurons encode (Shenoy
et al., 2013), by suggesting that they encode the signals that
are relevant for the computations that underlie state estimation
and control. The goal of this work is to investigate whether the
resulting neural activity would produce the observed changes in
neural modulations during BMI experiments.

The above OFC framework for investigating the changes
in neural modulations during BMI experiments should be
distinguished from recent applications of state estimation
(Schwartz, 2004; Wu et al., 2006; Cunningham et al., 2011)
and OFC (Shanechi et al., 2013a,b) to improve neural decoders
for BMIs. BMI decoders estimate the state by integrating the
observed neural activity, which is assumed to encode the state
of the movement, with a presumed or learned model of reaching
movement dynamics. Advancedmodels (Shanechi et al., 2013a,b)
account for the effect of the control signal generated by the
brain on the movement dynamics by modeling the sensory
motor system in the brain as OFC. However, since the focus
of such models is the BMI decoder, the brain is assumed to
know the actual state of the movement via noise-free sensory
measurements, thereby eliminating the need for state estimation.
In contrast, our focus is on state estimation in the brain,
which is assumed to integrate noisy visual and proprioception
observations with an internal model of movement dynamics
(Miall and Wolpert, 1996; Wolpert and Ghahramani, 2000),
and how the changes in sensory and process noise affect those
estimations and the resulting neural activity.

In summary, this work investigates the hypothesis that the
observed changes in neural modulations following the transition
to brain control can be explained in the context of OFC model
of motor control. We hypothesize that neurons in cortical
motor areas, and in particular in primary motor area, M1,
and premotor dorsal, PMd, encode the relevant signals for
OFC of reaching movements, i.e., the estimated state and the
resulting control signal, as depicted in Figure 1. Thus, the
observed changes in neural rate modulations are hypothesized
to reflect corresponding changes in the variance of these signals.
Furthermore, we hypothesize that the increase in the variance
of the estimated state and control signal is due to the higher
process noise during brain control caused by the imperfect
BMI filter. These hypotheses are investigated in three levels: (i)
simulations of pole control and brain control, and evaluation
of the corresponding changes in neural modulations (Section
3.2), (ii) theoretical analysis of the effect of increasing process
noise during pole control (Section 2.4), and (iii) simulations
of the effect of increasing process noise on neural modulations
during pole control (Section 3.3). Other aspects of the model are
investigated in Sections 3.1, 3.4–3.6.

2. Materials and Methods

2.1. Experimental Methods
The proposed model is evaluated by comparing the different
properties of the simulated neural activity to those observed
during the BMI experiments described in Carmena et al. (2003).
The BMI experiments were conducted with macaque monkeys
whose goal was to move the cursor to randomly appearing
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FIGURE 1 | Schematic model of movement control during BMI

experiments under the hypothesis that the brain implements OFC

(A), and detailed block diagram of neural activity generation (B).

(A) The brain model receives noisy proprioceptive (yP ) and visual (yC)

measurements from the hand and cursor, corrupted by proprioceptive

and visual measurement noise, ωP and ωV , respectively. These noisy

measurements are integrated with prior predictions from the internal

model to generate optimal state estimates x̂k|k and control signal uk ,

which are encoded by the neural activity. The control signal is corrupted

by hand process noise ξu. The BMI filter is trained based on the neural

activity in pole control and then used to move the cursor in brain

control. (B) The cumulative bin rate, Ŵ(k), at time step k, is modulated

by the encoded signals S =
[

s1, · · · , sM

]T
including the estimated

state x̂k|k and control signals uk . The spike-count N(k) is generated as

a doubly stochastic Point process given the rate parameter Ŵ(k). Here

we consider the special case of linear encoding, where Ŵ(k) is a linear

combination of the encoded signals (including the estimated speed and

the magnitude of the control signal), and doubly stochastic Poisson

processes (DSPP), where the spike count N(k) has a Poisson

distribution with rate Ŵ(k).

targets and hold the cursor on the target for 150 ms to
accept a juice reward. Each experiment included three control
modes: (i) pole control during which the monkey controlled
the cursor using hand-held pole, (ii) brain control with hand
movements (BCWHM), during which the cursor was controlled
by the output of the BMI interface while the monkey continued
moving the pole and (iii) brain control without hand movements
(BCWOHM), during which the cursor was controlled by the BMI
interface even though the monkey stopped moving the pole.

Neural activity was recorded from multiple brain area, but
mostly from the primary motor area (M1) and the dorsal
premotor area (PMd). The BMI interface binned the recorded
spike trains in 100ms bins, to generate the input to a linear filter.
The linear BMI filter was trained with data recorded during the
last 10 min of pole control, and held fixed during brain control.

2.2. Analysis Methods
2.2.1. Percent Overall Modulations
Spike-trains can be considered as realizations of point processes
(Johnson, 1996). The number of spikes recorded in a bin,
N, depends on the cumulative spike-rate during the bin, Ŵ

(Zacksenhouse et al., 2007), which can be modulated by the
encoded signals as outlined in Figure 1B. Since this dependence
is stochastic, the variance of the spike-count var(N) is higher than
the variance of the cumulative spike-rate var(Ŵ) (Zacksenhouse
et al., 2007). While the variance of the spike-count can be
measured directly, it is the variance of the cumulative spike-
rate that captures the effect of the encoded signals on rate
modulations. In order to quantify these rate modulations, the
percent overall modulation (POM) is defined as Zacksenhouse
et al. (2007)
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POM =
var[Ŵ]

var[N]
· 100% (1)

Since the variance of the bin-rate cannot be measured directly,
the POM cannot be estimated without further assumptions.
Consider first the simplest point process that can describe
stochastic rate modulations, i.e., the doubly stochastic Poisson
processes (DSPP), for which Snyder (1975), Zacksenhouse et al.
(2007)

E(NDSPP) = E(Ŵ)

Var(NDSPP) = var(Ŵ)+ E(Ŵ)
(2)

In this case, the POM can be estimated form the mean and
variance of the spike count as

ˆPOM[N] =
var[N]− E[N]

var[N]
· 100% (3)

where ˆPOM denotes the estimated POM. When applied to the
analysis of spike trains recorded during BMI experiments, we
assume that the movement is composed of an asynchronous
sequence of reaching movements (Zacksenhouse et al., 2014)
so the cumulative spike-rate and the binned spike-counts are
stationary processes. Hence, the POM is estimated from Equation
(3) using the temporal mean and variance rather than ensemble
mean and variance.

In the general case of doubly stochastic Point processes (not
necessarily Poisson distributed), the variance of the spike-counts
can be decomposed into Churchland et al. (2011)

var(N) = var[E[N|Ŵ]]+ E[var[N|Ŵ]] (4)

The first term on the right reflects the variance of the cumulative
spike-rate Ŵ, though is equal to it only for DSPPs. The second
term can be interpreted as the Point process noise, since it
contributes to the variance of the spike-counts even if Ŵ is
constant. While this term equals the mean rate only for DSPPs,
evidence suggests that in many cases it is proportional to the
mean rate (Tolhurst et al., 1983; Geisler and Albrecht, 1995),
i.e., var[N|Ŵ] = γE[N|Ŵ], (γ > 0) and hence E[var[N|Ŵ]] =

γE[N]. Hence, a revised definition of POM quantifies the ratio
between the first term on the right, which reflects the variance of
the cumulative spike-rate Ŵ, and the total variance in the spike
counts

POMREV (N) =
var[E[N|Ŵ]]

var(N)
· 100% (5)

This can be related to the POM estimated by Equation (3) by
inserting the expression for the point process noise in Equation
(4) and Equation (5) to get

ˆPOMREV (N) =
var[N]− γE[N]

var(N)
·100% = (γ ˆPOM−(1−γ )) · 100% (6)

Thus, changes in the POM estimated by Equation (3) reflect
proportional changes in the revised POM of Equation (5) up to a
positive scaling and positive or negative offset. Having established
this connection, the revised POM will not be used any further.

All the POM results described in Section 3 and shown in
the Figures are ˆPOM (Equation 3), estimated from temporal

statistics, while the theoretical analysis in Section 2.4 is based on
the definition of POM in Equation (1).

2.2.2. Percent Kinematics Modulations
Numerous studies suggested that the neural activity can be
related to the kinematics of the movement, including position,
velocity and speed, via a linear model (Georgopoulos et al.,
1986; Ashe and Georgopoulos, 1994; Moran and Schwartz, 1999;
Todorov, 2000; Zacksenhouse and Nemets, 2008; Chang et al.,
2014)

N(k) =

L2
∑

l=−L1

ωpcx (l)pcx(k+ l)+

L2
∑

l=−L1

ωpcy (l)pcy(k+ l) (7)

+

L2
∑

l=−L1

ωvcx (l)vcx(k+ l)+

L2
∑

l=−L1

ωvcy (l)vcy(k+ l)

+

L2
∑

l=−L1

ωS(l)Spc(k+ l)+ ω0 + ǫ(k)

where k is the index of the current bin, N(k) is the binned spike
count, pcx and pcy are the x and y components of the cursor
position, vcx and vcy are the x and y components of the cursor

velocity, Spc = 2

√

v2cx + v2cy is the cursor’s speed, l is the relative lag,

L1 and L2 are the number of preceding and succeeding lags, ωpcx ,
ωpcy , ωvcx , ωvcy and ωS are the corresponding regression weights,
ω0 is the bias parameters and ǫ(k) is the residual error.

The coefficient of determination of the spatio-temporal
regression, R2, describes the fraction of the variance in the binned
spike-count that is linearly related to variations in the temporal
profile of the kinematic signals in the surrounding temporal
window. Expressed as a percentage, R2 is referred to as the
percent kinematic-related modulation, or PKM (Zacksenhouse
et al., 2007).The PKM results reported here are computed with
L1= L2= 9.

2.3. Modeling methods
The simplifying assumptions on which the proposed OFC model
for BMI experiments is based are explicitly stated in Section
2.3.1. As depicted in Figure 1A, the model includes three main
parts: (1) Hand and cursor model, (2) Brain model, and (3) BMI
filter, as briefly explained in Sections 2.3.2–2.3.5, and detailed in
Appendices A and B. Model parameters are detailed in Section
2.3.6, and the effect of process noise in pole control is investigated
in Section 2.3.7.

2.3.1. Simplifying Assumptions
The goal of this work is to construct a simple model that can
capture the observed abrupt changes in neural modulations
following the transition to brain control, and to assess if those
changes can be attributed to increasing process andmeasurement
noise. Hence, within the framework of OFC (Todorov and
Jordan, 2002; Todorov, 2005; Shadmehr and Krakauer, 2008) we
made the following simplifying assumptions (SA):

SA1: Absolute delays are ignored, thought the relative time-
shift between the command to the muscle and the force
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it produces is captured by a second order muscle model
(Section 2.3.2). Thus, the model successfully reproduces
the observed time-lag in the cross-correlation between the
neural activity and the movement velocity (Lebedev et al.,
2005) as detailed in Section 3.1. The effect of sensory delays
on movement variability and bias can be accounted for
by sensory noise, at least when the perturbations are not
abrupt (Todorov and Jordan, 2002; Crevecoeur and Scott,
2013).

SA2: The process noise during pole control is assumed to be
signal independent white Gaussian noise. This assumption
is justified since the resulting velocity profile agrees well
with the commonly observed minimum jerk velocity
profile (Flash and Hogan, 1985). While evidence suggests
that the variance of the process noise increases with the
control signal (Harris and Wolpert, 1998; Wolpert and
Ghahramani, 2000), this was not modeled in order to focus
on the effect of brain control on process noise and neural
modulations.

SA3: The internal forward model is assumed to be identical
to the actual hand and cursor system in pole control.
Adaptation to brain control is ignored since the focus is
on the abrupt changes in neural modulations immediately
after the transition to brain control. Adaptation is
expected to be important in explaining the subsequent
gradual decrease in neural modulations with BMI sessions
(Zacksenhouse et al., 2007), and will be explored in future
work.

SA4: Spike counts are generated as realization of doubly
stochastic Poisson process with linear tuning curves (as
detailed in Section 2.3.4) (Zacksenhouse andNemets, 2008;
Cunningham et al., 2011; Chang et al., 2014).

2.3.2. Simplified Hand and Cursor Model
Following Todorov (2005) the hand is modeled as a point mass
driven by an over damped second order muscle model that
responds to the control signal from the brain. An additional
friction term is introduced to model the friction of the hand held
pole, as described by Equation (A2) in Supplementary Material.

As in the BMI experiments (Carmena et al., 2003), the cursor
position during brain control is generated by integrating the
velocity predicted by the BMI interface and filtering it with a high
pass filter (HPF) to remove low frequency drifts, as described by
Equation (A7) in Supplementary Material. During pole control,
the cursor position is determined in the same way, using the
actual hand velocity instead of the predicted velocity.

The simulation is updated at 100 Hz, and the discrete
dynamics of the combined system, including the hand, cursor
and target along a single degree of freedom, can be expressed as
(see Equation A10 in Supplementary Material)

x(k+ 1) = Ax(k)+ Buu(k)+ BBMIvBMI(k)+ ξp(k) (8)

where x is the combined state (specified by Equation A9 in
Supplementary Material), A,Bu, and BBMI are the matrices
describing the system dynamics, the effect of the control signal u
generated by the optimal feedback controller implemented by the
brain, and the integration of the velocity predictions vBMI during

brain control, respectively, as detailed in Equations (A11–A13 in
Supplementary Material). The 2-degrees of freedom simulations
are performed by evolving two independent systems for the x and
y directions, respectively.

During normal simulations of pole and brain control, the
process noise, ξp, stems only from the noise in the control signal
ξu (Equation A3 in Supplementary Material), i.e., ξp = Buξu.
Under assumption SA2, ξu is a white Gaussian noise, whose
variance (note that in the single dimension case ξu is a scalar) is
denoted by α2

u. Hence the covariance matrix of the process noise
can be expressed as

�p = α2
uBuB

′
u (9)

The position and velocity of the cursor are measured via
visual (V) feedback, while the position and velocity of the
hand are measured via proprioceptive (P) feedback. Both visual
and proprioceptive measurements are assumed to be corrupted
by zero mean white Gaussian measurement noise and the
covariance matrix of the combined measurement is denoted
by �m.

2.3.3. Brain Model
Following current computational motor control theories, the
brain is assumed to implement optimal state estimation and
feedback control (Kuo, 1995; Wolpert et al., 1995; Todorov
and Jordan, 2002). However, for simplicity, the computations
are performed in the state space, rather than their neural
representations. Neural recording is simulated by modeling
neurons that encode the relevant signals including the estimated
state and control signal (as detailed in Section 2.3.4). The brain
model includes three parts as depicted in Figure 1A and further
detailed in Appendix B (Supplementary Materials)(first two
parts) and Section 2.3.4 (third part):

A: Observer that implements optimal state estimation by
integrating the sensory feedback and internal model
predictions. Under assumption (SA2), optimal estimation is
achieved with Kalman filter (Wolpert et al., 1995; Stengel,
2012), as specified in Equation (B1 in Supplementary
Material). During simulations of normal reaching
movements (pole control) the internal model is assumed
to be accurate and the Kalman filter is based on the actual
covariance matrices of the process and measurements noise.
By assumption (SA3), the same covariance matrices are also
used for computing the Kalman filter when simulating brain
control.

B: Optimal controller that, under assumption (SA2), reduces to
Linear Quadratic Gaussian (LQG) controller (Stengel, 2012),
as specified in Equations (B5–B8 in Supplementary Material).
The controller gains were computed off-line to minimize a
standard cost function that includes penalty for the control
effort and for deviations from the target, as specified in
Equations (B2–B4 in Supplementary Material) (Kuo, 1995;
Wolpert et al., 1995; Todorov and Jordan, 2002).

C: Neural activity generator that converts the relevant signals
i.e., the internally estimated cursor state and the control
signal, into neural activity of a population of Nn simulated
neurons using linear multi-variable tuning functions (as
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detailed in Section 2.3.4). This population of neurons
simulates the population of neurons recorded during the
BMI experiments, so their activity is used to train and drive
the BMI filter during simulated pole and brain control,
respectively, as detailed in 2.3.5. By assumption (SA4), spike-
counts are generated as realizations of doubly stochastic
Poisson processes.

2.3.4. Neural Activity Generator
Many studies (Georgopoulos et al., 1986; Moran and Schwartz,
1999) demonstrated that during reaching movements the neural
activity is linearly correlated with several motor parameters,
including hand position, velocity, speed and gripping force. One
of the main hypotheses in this work is that the neurons encode
the estimated state and control signal, and that the observed
correlations with the above motor parameters result from this
encoding. Since we are interested in the statistics of the binned
spike-count (in bins of 100ms), we generate the binned spike-
counts directly (instead of simulating the spike-train, and then
binning the data). As outlined in Figure 1B, the binned spike-
counts of each neuron are generated as a realization of a DSPP
(Johnson, 1996; Dayan and Abbott, 2001) whose cumulative rate
Ŵ is a linear function of the encoded signals. Specifically, the
cumulative spike-rate of neuron i during the k-th bin, Ŵi(k), is
given by

Ŵi(k) = max(βi,0 + βT
i S(k), 0) (10)

where S(k) is the vector of encoded signals at time step k, βi,0 is
the bias of neuron i = 1 . . .Nn and βi is the vector of its tuning
weights.

Since the monkey is rewarded when the cursor is at the target,
independent of the position of the hand, we assume that only the
estimated cursor-state is encoded. Thus, the vector of encoded
signals

S =
[

p̂cx p̂cy v̂cx v̂cy Ŝp ux uy ue
]′

(11)

includes three 2-dimensional vectors: the estimated cursor
position p̂ =

[

p̂cx p̂cy
]′
velocity v̂ =

[

v̂cx v̂cy
]′
, and control

signal u =
[

ux uy
]′
, and the magnitude of the last two

(estimated speed Ŝp = ||v̂|| and control effort ue = ||u||).
The representation of the speed of movement in the neural
activity, beyond the representation of the velocity vector, is well
documented (Moran and Schwartz, 1999), and here we assume
it reflects the encoding of the estimated speed Ŝp. Similarity,
we assume that the magnitude of the control signal ue is also
encoded.

The tuning weights βi to the kinematic parameters (position,
velocity and speed) were selected to obtain PKM levels similar
to the PKM observed in the BMI experiments during pole
control. Specifically, the tuning weights for each kinematic
parameter were selected from a uniform distribution whose
variance was proportional to the destined PKM associated with
that kinematic parameter and inversely proportionally to its
variance. The tuning weights for the control signal were also
selected from a uniform distribution, but its variance was

adjusted to get the proper time-shift in the cross-correlation
between the neural activity and the velocity, which are described
in Section 3.1. The tuning vectors for the position, velocity and
control parameters define the respective, and in general different,
preferred directions (PD) and modulation depths.

The literature on cortical motor units suggests that neurons
in different areas in the brain encode different information.The
activity of M1 neurons has been shown to correlate with both the
kinematics, including velocity, speed and direction of movement
(Georgopoulos et al., 1982; Ashe and Georgopoulos, 1994) and
with the applied forces (Evarts, 1968; Ashe, 1997; Todorov,
2000). PMd neurons are modulated mainly by the direction and
amplitude of the movement (Messier and Kalaska, 2000; Hendrix
et al., 2009). In agreement with those studies, the activity of M1
units recorded during the BMI experiments considered here were
shown to predict well hand position, velocity and gripping force
(73, 66, and 83% of variance, respectively), while the activity of
the recorded PMd units predicted well hand position and velocity
(48 and 46% of variance, respectively), but not the gripping
force (29% of variance) (Carmena et al., 2003). Considering the
above evidence, we simulate the activity of two sub-populations
of neurons encoding either: (i) only the estimated cursor state
(position, velocity and speed), or (ii) both the estimated cursor
state and the control signal (vector and magnitude). Based on
the evidence in the literature, we expect that the behavior of
simulated neurons in those two sub-populations would be similar
to the behavior of recorded PMd and M1 units, respectively,
and hence refer to them as PMd-like and M1-like neurons.
Such similarities are demonstrated in Section 3.1, where the
cross-correlations between the movement velocity and either the
recorded or simulated neural activity are compared.

2.3.5. BMI Filter
As in the BMI experiments (Carmena et al., 2003), the velocity
in simulated brain control was predicted from the simulated
spike-counts by a linear multi-lag multi-variable BMI filter

vBMI(k) = θ0 +

Nn
∑

j= 1

0
∑

l=−L

θj(l)Nj(k+ l) (12)

where Nn is the number of simulated neurons, L = 10 the
number of lags used for prediction and Nj(k) the spike count of
neuron j in bin k. The filter parameters θ0 and θj(l), (where l is the
index of the lag) were computed using truncated Singular Value
Decomposition (Zacksenhouse et al., 2007). Two BMI filters were
trained to reconstruct the velocity in x and y, respectively, using
the last 10 min of simulated pole control.

The performance of the experimental BMI filter (similarly
trained on the last 10 min of pole control) was assessed by testing
its predictions on a different section of pole control and was
quantified by a coefficient of correlation of R(v̂, v) = 0.755 ±

0.02. We expect that this imperfect performance is critical for
generating the observed changes in neural modulations. Hence,
this performance served as a benchmark for tuning the number
of neurons and the process noise in the simulation to obtain a
similar performance (as detailed in Section 2.3.6).
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2.3.6. Model Parameters
Model parameters are detailed in Table 1. The basic parameters
of the hand model, visual measurement noise and cost function
were taken from Todorov (2005) as noted in Table 1. The basic
hand model was extended with a friction term to model the
friction of the hand held pole. The basic cost function was
augmented to describe the requirement for holding the cursor
on the target as described in Appendix B (Equations B2–B4 in
Supplementary Material) using the same weight parameters. The
reaching time tf (in Supplementary Equation B3) is uniformly
distributed between 1.7-2.2 s in pole control and 2.4-6 s in brain
control.

As detailed in our simplifying assumption SA2, the process
noise during pole control is assumed to be signal independent,
and its magnitude is quantified by of αu in Equation (9). Initial
simulations revealed that the performance of the experimental
BMI filter, quantified by R(v̂, v) (Section 2.3.5), is highly sensitive
to the process noise during simulated pole control, as shown
in Figures 2A,B. The magnitude of the process noise was
normalized by the equivalent signal-independent process noise
suggested in Todorov (2005), signal-independent process noise
suggested in the process noise factor defined as ku = αu

4.6N .
Figures 2A,C also depicts the effect of the total number of
simulated neurons Nn on R(v̂, v), while the ratio between the
two populations of simulated neurons, the M1-like and PMd-
like neurons, was kept constant (1:1). The results in Figure 2

are based on 15 simulated sessions of 20 min pole control, each
with a different, randomly selected targets, but all with the same
set of neural tuning weights. In each session the coefficient of
correlation between the actual and predicted velocity R(v̂, v) was
computed from the first 10 min, while training was conducted on
the last non-overlapping 10 min. Each data point and error bar
(in (B-C)) depict the average and standard deviation of R(v̂, v)

across the 15 sessions. Figure 2 suggests that with Nn = 50 and
ku = 0.1 the average performance of the BMI filter trained on
simulated activity is R(v̂, v) = 0.77, close to the observed BMI
filter performance. Hence, these are the default values used in all
other standard simulations as indicated in Table 1.

While proprioceptive measurement noise has little effect on
R(v̂, v) it has significant effect on the resulting changes in
neural modulations. This effect is investigated in Section 3.5 and
motivated the selection of a common 10-fold factor between the
diagonal covariance matrices of the proprioceptive and visual
measurements noise, as specified in Table 1. This proprioceptive
noise factor, denoted by km, was used during simulations of pole
control and BCWHM, while during simulations of BCWOHM
it was increased to infinity to reflect the lack of relevant
proprioception measurements in this mode.

2.3.7. Effect of Process Noise
Following our primary hypothesis that the observed changes
in neural modulations can be explained in the framework
OFC, we further hypothesize that these changes result from the
higher process noise generated by the imperfect BMI filter that
reconstructs the cursor velocity. This hypothesis is investigated
both by simulations of noisy pole control, as outlined here, and by
theoretical analysis in Section 2.4. Noisy pole control is simulated
by using Equation (8) with the matrices associated with pole
control (Equations A11–A13 in Supplementary Material), but
with process noise that includes also the simulated effect of the
BMI filter reconstruction error (as further explained in Appendix
A2, Supplementary Material). Thus, instead of Equation (9) the
covariance matrix of the process noise during noisy pole control
simulations is

�
p
noisy = α2

uBuB
′
u + α2

recBBMIB
′
BMI (13)

TABLE 1 | Model Parameters table.

Parameter Description Value References

1 Discretization time of the hand model 0.01[s] Todorov, 2005

m Hand mass 1[kg] Todorov, 2005

γ Coefficient of friction 7.7[
kg
s ] -

τ Time constant of the muscle model 0.04[s] Todorov, 2005

wv Velocity cost function weight 0.2 Todorov, 2005

wf Energy cost function weight 0.02 Todorov, 2005

tf Reaching time in pole control (range) 1.7− 2.2[s] Carmena et al., 2003

tf Reaching time in brain control (range) 2.4− 6[s] Carmena et al., 2003

σ2
Vp

Variance of the visual (V) position measurement noise (0.01m)2 Todorov, 2005

σ2
Vv

Variance of the visual (V) velocity measurement noise (0.1m
s )2 Todorov, 2005

σ2
Pp

Variance of the proprioception (P) position measurement noise km (0.01m)2 Section 2.3.6/3.5

σ2
Pv

Variance of the proprioception (P) velocity measurement noise km (0.1m
s )2 Section 2.3.6/3.5

km Proprioception measurement noise factor 10 Section 2.3.6/3.5

αu Magnitude of the hand process noise ku · (4.6[N]) Section 2.3.6

ku Hand process noise factor 0.1 Section 2.3.6

Nn Number of neurons 50 Section 2.3.6

T Bin size 0.1[s] Carmena et al., 2003
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FIGURE 2 | BMI filter performance as a function of the number of

neurons and the process noise factor. Results are based on 15 simulated

sessions of 20 min pole control, each with a different, randomly selected

targets, but all with the same set of neural tuning weights. In each session

the BMI filter was trained on the last 10 min and its performance was

quantified by the coefficient of correlation between the actual and predicted

velocity in the first 10 min. Each data point and error bar (in B,C) depict the

average and standard deviation of the coefficient of correlations across the

15 sessions for a specific process noise factor ku and total number of

neurons Nn. The effect of ku is evaluated with Nn = 50 (B), while the effect of

Nn is evaluated with ku = 0.1 (C). A fixed 1:1 ratio is kept between the

M1-like and PMd-like simulated neurons.

The first term represents the contribution of the noise
in the control signal, and is the same as during regular
pole control (Equation 9). The second term represents the
additional noise introduced by the imperfect BMI filter, and
its magnitude is quantified by αrec. The effect of varying
the magnitude αrec on neural modulations is investigated in
Section 3.4.

2.4. Theoretical Analysis of POM
As detailed in Section 2.3.7, we hypothesize that the observed
changes in neural modulations following the transition to brain
control result from the higher process noise introduced by
the imperfect BMI filter. Here we investigate theoretically the
effect of increasing process noise during simulations of normal
reaching movements on POM defined theoretically in Equation
(1), and show that under the assumptions of linear decoding and
invariant internal model (see theoretical assumptions 1 and 2
below), the POM indeed increases with the process noise. The
covariance matrix of the process noise,�p, is assumed to increase
from a nominal low level �

p
L to a high level �

p
H such that the

difference �
p
H − �

p
L is positive semi-definite (psd) (Horn and

Johnson, 2012) and is denoted by �
p
H − �

p
L < 0 or equivalently

by �
p
H < �

p
L. Note that this analysis is general and does not rely

on the specific structures of �
p
L and �

p
H suggested by Equations

(9, 13), respectively.
We make the following simplifying theoretical

assumptions (TA):

TA1: The cumulative spike-rate Ŵ encodes a linear combination
of the estimated state. Since the optimal control signal
is proportional to the estimated state, this includes also
the control signal. However, non-linear functions, and in
particular the estimated speed Ŝp and the magnitude of the
control effort ue, which are included in Equation (11), are
not considered here.

TA2: The internal model of the process noise does not change.
This assumption follows directly from the simplifying
assumption (SA3) that there is no adaptation to brain
control.

Within the framework of state estimation and OFC, (TA1)
implies that Ŵ can be expressed as the output of an extended

linear system whose state x̃ =
[

xk x̂k|k 1
]T

includes both the
actual and estimated states (of the hand and cursor). Following
the details in Equations (C2–C5 in Supplementary Material), the
extended system can be described as:

x̃k = Ãkx̃k−1 + ξ̃k (14)

Ŵk = H̃kx̃k

where ξ̃ is the process noise of the extended system, which
captures both the process noise of the actual system and the
estimation error (Equation C4 in Supplementary Material). Since
both are assumed to be white Gaussian noise, so is ξ̃ , and its

covariance matrix E[ξ̃iξ̃j] = �
p̃
i δij is given by (see Equation C6 in

Supplementary Material):
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�
p̃

k
=





�
p

k
0 0

0 Kk+ 1H�
p

k
HTKT

k+ 1
+ Kk+ 1�

mKT
k+ 1

0

0 0 0



 (15)

Given (TA2), the Kalman gains Kk are optimized for the nominal
system with the low process noise and are not updated to reflect
the higher process noise.
Proposition: Let ŴL

k
and ŴH

k
be the outputs of two systems

described by Equations (14,15) with the same parameters except
for the process noise that is either �

p
L or �

p
H , respectively, where

�
p
H < �

p
L. Let POM

L and POMH be the POM (Equation 1) of
the resulting spike counts generated by DSPPs from ŴL

k
and ŴH

k
,

respectively, then POMH ≥ POML.
Proof: Proposition C1 in Appendix C (Supplementary Material)
proves that under the conditions of the proposition, the
cumulative spike-rates ŴL

k
and ŴH

k
satisfy two conditions: (i)

Em[Ŵ
L
k
] = Em[Ŵ

H
k
] and (ii) Em[(Ŵ

H
k
)2] ≥ Em[(Ŵ

L
k
)2] ,

where Em[·] denotes ensemble average over different movements
starting from the same distribution of initial conditions.
Proposition C2 indicates that those two conditions assure that
the POMs of the spike counts generated by DSPPs from ŴL

k
and

ŴH
k
, i.e., POML and POMH , respectively, satisfy POMH ≥ POML.

3. Results

The OFC model detailed in Section 2.3 was used to simulate
60 min sessions of BMI experiments equally divided into pole
control, BCWHM and BCWOHM. Unless otherwise specified,
new neural tuning weights and targets were randomly generated
(as detailed in Sections 2.3.4 and 2.3.6) for each session. Since the
performance of the BMI filter, quantified by R(v̂, v) (see Sections
2.3.5, 2.3.6), depends on the specific set of the neural tuning
weights, only simulated sessions for which R(v̂, v) was between
0.65 and 0.85 were considered for further analysis (as further
detailed in Section 3.2).

Simulated reaching movements under pole control resulted
in an average speed profile that agrees well with the expected
minimum jerk velocity profile (Flash and Hogan, 1985).
Representative traces of the cursor during simulated pole control
and BCWHM are shown in Figure 3. In order to facilitate
comparison, the same sets of targets and desired reaching times
were used. While in both phases the depicted traces reach
the targets, they differ considerably, and are more variable in
simulated BCWHM than in simulated pole control. In particular,
the variance of the velocity (estimated over 2 min intervals) is
significantly higher in simulated BCWHM than in simulated pole
control (Wilcoxon rank sum test, p < 0.0001). This reproduces
well the significant increase in the variance of the velocity
from the experimental pole control to experimental BCWHM
(Wilcoxon rank sum test, p < 0.0002).

The resulting cross correlations between the cursor velocity
and neural activity generated during simulated pole control
are investigated in Section 3.1 and compared with the cross-
correlations derived from the BMI experiments. The main results
regarding the changes in neural modulations are reported in
Section 3.2. In Section 3.3 we investigate the effect of process
noise on neural modulations during pole control, to support
our hypothesis that increasing process noise introduced by the
imperfect BMI filter contributes to the observed changes in
neural modulations in brain control. Sections 3.4 and 3.5 evaluate
the effect of the baseline measurement and process noise on
estimated POM, respectively, and Section 3.6 investigates the

effect of imperfect internal model. The ˆPOM results described
in this section and shown in the Figures were estimated from
temporal statistics as detailed in Section 2.2.1 using Equation (3).

3.1. Cross Correlation between Cursor Velocity
and Neural Activity
The average cross correlations between the recorded cursor
velocity and the recorded neural activity of either PMd

A

B

C

0 5 10 15
−0.1

0

0.1

0.2

0.3

X
 [

m
]

 

 

0 5 10 15
0

0.2

0.4

0.6

time [sec]

Y
 [

m
]

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

X [m]

Y
 [

m
] 

Pole control

Brain control WHM

Noisy pole control 

FIGURE 3 | Movement trajectories. Representative traces of the cursor during simulated pole control, brain control and noisy pole control (with αrec = 0.035). To

facilitate comparison, the same set of targets (marked by green circles) and desired reaching times was used in these three simulations.
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(Figure 4A) or M1 units (Figure 4B), demonstrate different
temporal relationships. While there is no dominant time shift
between the recorded neural activity of PMd neurons and the
cursor velocity, the neural activity of M1 neurons clearly precede
the velocity (Lebedev et al., 2005). The average cross correlations
were computed by first calculating the cross-correlation for each
unit from each non-overlapping 2-min interval, then averaging
across units to get the ensemble-mean cross correlation, and
finally averaging across intervals. Error bars depict the standard
deviations of the ensemble-means across the non-overlapping 2-
min intervals. Lags at which the cross correlation is significantly
lower than the peak at either 0 s in (A) or−0.2 s in (B) are marked
with open circles and stars, for significance level of p = 0.05
(standard) or p = 0.005 (Bonferroni corrected for 10 multiple
comparisons), respectively (Wilcoxon rank sum test). It is evident
that for M1 units, the peak at −0.2 s in Figure 4B is significantly
higher than the cross-correlation at zero lag. In contrast, for PMd
units, the cross-correlation at negative or positive lags are either
significantly lower than the peak at 0 s or at least not significantly
different (Figure 4A).

Similar temporal relationships are also observed in the
simulations, depending on whether the simulated neurons

encode only the estimated state or also the control signal.
Figure 4C demonstrates that the activity of neurons that encode
only the estimated state do not exhibit any dominant time shift
with respect to the velocity, in agreement with the temporal
relationship depicted by the recorded PMd units. As detailed
in Section 2.3.4, this agreement is in line with the literature
on PMd neural encoding (Messier and Kalaska, 2000; Hendrix
et al., 2009), so we refer to these simulated neurons as PMd-like
neurons.

In contrast, the activity of simulated neurons that encode both
the estimated state and the control signal, precedes the simulated
cursor velocity, as demonstrated in Figure 4D. In particular,
the peak cross correlation at −0.2 s is significantly higher than
the cross correlation at zero-lag.This is in agreement with the
cross correlation depicted by the recorded M1 units. Given this
agreement, and the literature on M1 neural encoding (Evarts,
1968; Kalaska et al., 1989; Todorov, 2000), we refer to these
simulated neurons as M1-like neurons. The delay in the cursor
velocity can be attributed to the effect of the muscles, which are
modeled as a second order over-damped filter, and thus introduce
a delay in the forces and eventually the movements that are
generated in response to the control signal.
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FIGURE 4 | Cross correlation between velocity and neural activity

during pole control. Averaged cross correlation of: (A) recorded data from

PMd units (B) recorded data from M1 units (C) simulated PMd-like neurons

(D) simulated M1-like neurons. Error bars depict standard deviations across

non-overlapping 2-min intervals. Open circles and stars indicate

cross-correlations that are significantly lower than the peak at 0 s in (A,C),

and at −0.2 s at (B,D) with significance level of either p = 0.05 (standard) or

p = 0.005 (Bonferroni corrected for 10 multiple comparisons), respectively.
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3.2. Neural Modulations in Simulated Pole and
Brain Control
Simulated neural activity generated by the model described
in Section 2.3, based on the framework of OFC, successfully
depicts the observed changes in neural modulations, as shown in
Figure 5. Figures 5A,B depicts the results from a single session
to facilitate direct comparison with the experimental results,
while Figures 5C,D demonstrates the robustness of the results
across a number of sessions with different sets of random tuning

weights. As in Zacksenhouse et al. (2007), mean ˆPOM and PKM

were computed by first estimating the ˆPOM and PKM from
non-overlapping 2-min intervals of the binned spike-counts of
individual neurons, then averaging across the relevant neurons
to get the ensemble mean, and finally averaging across the 10
intervals of each control mode. Error bars in Figures 5A,B depict
the standard deviations across the 10 intervals.

Figure 5 demonstrates that the ˆPOM estimated from a single
simulated session increases significantly when switching to brain
control, with no matching increase in PKM. Focusing first
on the detailed results from a single session in Figures 5A,B,

the ensemble-mean ˆPOM during simulated brain control

is significantly higher than of ensemble-mean ˆPOM during
simulated pole control (Wilcoxon rank sum test, p = 0.001 for
both BCWHM and BCWOHM), while the ensemble mean PKM
did not differ significantly (p > 0.55). This behavior is evident

in the simulated neural activity of both PMd-like and M1-like
simulated neurons. This reproduces well the significant increase

in the ensemble mean ˆPOM from experimental pole control to
BCWHM or BCWOHM (Wilcoxon rank sum test, p < 0.008),
with no significant increase in the ensemble mean PKM (p >

0.39).
The robustness of the changes in neural modulations

following the transition to brain control was investigated by
simulating 100 sessions, each with a different set of tuning
weights. Pole control was simulated first, while brain control was
conducted only in the 78 sessions in which the performance of
the BMI filter was within the constraint described above (0.65 <

R(v̂, v) < 0.85). The scatter plot in Figure 5C demonstrates
that in these cases the ˆPOM in BCWHM and BCWOHM are
significantly higher than the ˆPOM in pole control (Wilcoxon rank
sum test, p < 10−10). In contrast, the scatter plot in Figure 5D

demonstrates that the PKM in BCWHM and BCWOHM are not
significantly higher than the PKM in pole control (p = 0.13 and
p = 0.08, respectively).

3.3. Effect of Process Noise on Neural
Modulations
Our main hypothesis is that the higher ˆPOM in brain control,
without matching increase in PKM, results from higher process
noise introduced by the imperfect performance of the BMI filter.
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FIGURE 5 | Estimated POM and PKM of simulated neural activity.

Estimated POM and PKM were computed by first estimating the POM

and PKM of the binned spike-counts of individual neurons in 2-min

intervals, and then averaging across the relevant neurons and across

the 10 intervals of each control mode. Mean estimated POM (A) and

PKM (B) across all neurons and across neurons that encode only the

estimated state (PMd-like) or also the control signals (M1-like). Error

bars depict the standard deviations across the 10 intervals. Scatter plot

of estimated POM (C) and PKM (D) in brain vs. pole control for 78 out

of 100 sessions (each with a different set of tuning weights) in which

the performance of the BMI filter satisfied 0.65 < R(v̂, v) < 0.85. Dashed

lines depict the identity relationship.

Frontiers in Systems Neuroscience | www.frontiersin.org 11 May 2015 | Volume 9 | Article 71

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Benyamini and Zacksenhouse Interpreting BMI experiments: control perspective

As detailed in Section 2.3.7, this hypothesis is investigated here
by simulating noisy pole control in which the covariance of
the process noise is characterized by Equation (13) instead of
Equation (9). The additional term in Equation (13) describes
the equivalent noise introduced by the imperfect BMI filter
with magnitude that is quantified by αrec. Figure 3 demonstrates
that indeed the cursor movements during noisy pole control
(with αrec = 0.035) are more similar to those during brain
control than those during pole control. In particular, the variance
of the velocity in the simulated trajectories generated with
αrec = 0.0035 was 88 ± 7[( cmsec )

2], comparable with the variance
of the velocity in the simulated trajectories during BCWHM
(75 ± 29[( cmsec )

2] ), and significantly higher than the variance
of the velocity in the simulated trajectories during pole control
(Wilcoxon rank sum test, p < 0.0001).

The effects of αrec on ˆPOM and PKM are depicted in Figure 6

both when the internal model of the noise is not updated (in
line with simplifying assumption SA3 that there is no adaptation)
and when it is updated to match the actual process noise. All
simulated sessions analyzed in Figure 6 were performed with the
same set of randomly selected targets and neural tuning weights.

At each αrec, the average ˆPOM and PKM and their standard
deviations were computed from a singe simulated session as
detailed in Section 3.2.

Figure 6 demonstrates that as the process noise increases,
due to increasing αrec, ˆPOM increases while PKM does not
change or even decreases. This is evident by the high positive
(> 0.99) and negative (< −0.96) cross correlations between

αrec and either ˆPOM or PKM, respectively. Furthermore, at all
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FIGURE 6 | Estimated POM and PKM during simulated noisy pole

control. Noisy pole control includes both the baseline process noise due to

the control signal, and an additional process noise, simulating the contribution

of the BMI filter reconstruction error, as quantified by the magnitude of αrec in

Equation (13). At each αrec and for each adaptation option (updated or not),

the average estimated POM and PKM were computed from a single 20 min

session of simulated pole control as detailed in the caption of Figure 5.

Standard deviations were computed across the 10 2-min intervals and stars

indicate the estimated POM (for not-updated case) that are significantly larger

than the estimated POM at the standard process noise (αrec = 0) as

determined by Wilcoxon rank sum test, with Bonferroni corrected significance

level p = 0.005, corrected for 10 multiple comparisons. All sessions were

performed with the same randomly selected targets and neural tuning weights.

the noisy pole control cases analyzed in Figure 6, the ˆPOM was

significantly higher than the ˆPOM with the standard process
noise (i.e., with αrec = 0, Wilcoxon rank sum test, with
Bonferroni corrected significance level of p = 0.005, corrected for
the 10 multiple comparisons), as marked by stars in Figure 6.
The effect is similar whether the internal model of the process
noise is updated to match the actual process noise or not. The
results shown in Figure 6 are averaged ˆPOM and PKM across
all the simulated neurons, but similar trends were also observed
when averaging across PMd-like and M1-like simulated neurons
separately.

3.4. Sensitivity to Baseline Measurement Noise
In this and the next section we investigate the sensitivity of
ˆPOM to the baseline covariance matrices of the different sources

of noise, i.e., the covariance matrices of the measurement and
process noise during pole control. Since the internal model is
assumed to be well-adapted for pole control, these are also the
covariance matrices of the internal model of the noise. Each
sensitivity analysis is conducted with 15 sessions simulated with
the same set of neurons but different sets of targets. This is
equivalent to simulating longer sessions, which improves the

accuracy of the estimated POM. In particular, the mean ˆPOM
across all the simulated neurons was estimated from each session
and the average and standard deviations were computed across
the 15 sessions.

The Kalman filter depends on the relative size of these
covariance matrices, so the value of one of the elements can
be kept constant. Furthermore, since we found that the ˆPOM
is insensitive to the ratio between visual position and velocity
measurements noise, we kept the diagonal covariance matrix
of the visual measurement noise fixed and equals to the one
suggested in Todorov (2005).

Focusing first on the sensitivity of ˆPOM to the baseline

proprioceptive measurement noise, we found that the ˆPOM
is insensitive to the proprioceptive position measurement
noise. Hence, Figure 7A depicts only the effect of a common
scaling factor between the covariance matrices of the visual
and proprioceptive measurements noise, i.e., the effect of
the proprioceptive measurement noise factor km in Table 1.
Figure 7A indicates that the ˆPOM is sensitive to km only in
BCWHM. When the covariance matrices of the proprioceptive
and visual measurement noise are comparable (0.5 < km <

2), the ˆPOM in simulated BCWHM is significantly larger

than the ˆPOM during the experimental BCWHM (Wilcoxon

rank sum test, p < 0.004) and even larger than the ˆPOM
in BCWOHM, in contrast with the observed relationship in
the BMI experiments (Zacksenhouse et al., 2007). When the
proprioceptive measurement noise is 10-fold larger than the

visual measurement noise (km = 10), the ˆPOM in simulated
BCWHM does not differ significantly from the ˆPOM during

the experimental BCWHM and is lower than the ˆPOM in
BCWOHM, as in the BMI experiments. Further increase in
the the proprioceptive measurement noise has little effect on
the ˆPOM even in BCWHM. These observations motivated the
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FIGURE 7 | Sensitivity of estimated POM to proprioceptive

measurement noise (A) and magnitude of baseline process noise (B).

The proprioceptive measurement noise factor km quantifies the ratio between

the variance of the proprioceptive and the visual measurement noise (same

factor for both position and velocity measurements). The process noise

factor ku quantifies the magnitude of hand process noise, as specified in

Table 1. Each sensitivity analysis was conducted by simulating 15 sessions

with the same set of neurons but different sets of targets. The mean

estimated POM over the simulated neurons was computed for each session

and the average and standard deviations across the 15 sessions are plotted.

selection of km = 10 as the default factor in all other simulations
(Table 1).

The lack of sensitivity to proprioceptive measurement
noise during pole control can be attributed to the perfect
internal model and low baseline process noise, which cause
state-estimation to be based mainly on the internal model. The

high ˆPOM during BCWHM when the baseline proprioceptive
and visual measurements noise are comparable can be attributed
to the resulting similar Kalman gains for those two modalities.
Due to the imperfect BMI filter, the estimation measurement
error in brain control is high, and during BCWHM the
proprioceptive measurement may differ from the visual
measurement. When both modalities are given similar Kalman
gains, the deviation between the proprioceptive and visual
measurements contributes to higher variance in the resulting
estimated state. Finally, during BCWOHM the proprioceptive
measurement noise is increased to infinity to model the lack
of relevant proprioceptive feedback in this mode, and hence
the ˆPOM in this mode does not depend on the baseline
proprioceptive measurement noise.

3.5. Sensitivity to Baseline Process Noise
During regular pole control, the covariance of the process noise
is described by Equation (9) and its magnitude is quantified by
αu , or alternatively by the process noise factor ku, as described in
Section 2.3.6 and Table 1. As noted in Section 2.3.6 and Figure 2,

adequate performance of the BMI filter in the simulated BMI
sessions can be achieved with ku = 0.1. Here we investigate the

effect of ku on ˆPOM .
Figure 7B depicts the changes in the ˆPOM as a function of the

process noise factor ku. It is apparent that ˆPOM in brain control
is always higher than ˆPOM in pole control, in agreement with

the observed changes in the ˆPOM during the BMI experiments.

However, for ku = 1, the ˆPOM in each of control mode
is too large compared with the experimentally observed ˆPOM
(Wilcoxon rank sum test, p < 0.002 for each control mode). This
further supports the selection of a smaller process noise factor,
and in particular ku = 0.1, made in section 2.3.6 based on the
performance of the BMI filter. For this process noise, the relation
between the ˆPOM in BCWHM versus BCWOHM agrees well
with the experimental observations.

Figure 7B also shows that ˆPOM increases with the magnitude
of the process noise. This is in agreement with the results
described in Section 3.4, though in that section the magnitude
of the process noise described by Equation (13) was manipulated
by changing of αrec instead of αu (via ku).

3.6. Internal Model Variations
The simulations presented so far were based on simplifying
assumption SA3, so the internal model did not change due to
transition to brain control. Since the monkey stopped moving its
hand in BCWOHM, the internal model may change to account
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FIGURE 8 | Effect of internal model variations during pole control. The

value of the mass (A) or the coefficient of friction (B) in the internal model is

normalized to the value of the actual parameter. Simulations are conducted

with either the baseline proprioceptive measurement noise characteristic of

pole control or infinite proprioceptive measurement noise characteristic of

BCWOHM. At each parameter value, and for each level of the proprioceptive

measurement noise, the average estimated POM and PKM were computed

from a single 20 min session of simulated pole control as detailed in the

caption of Figure 5. Standard deviations were computed across the 10 2-min

intervals and stars indicate estimated POMs that are significantly larger than

the estimated POM at the nominal parameter (internal model factor = 1), as

determined by Wilcoxon rank sum test with Bonferroni corrected significance

level p = 0.007, corrected for 7 multiple comparisons. All sessions were

performed with the same randomly selected targets and neural tuning weights.

for the lack of hand movements. Figure 8 evaluates the effect of
changing the parameters of the internal model, and in particular
the mass (Figure 8A), or the coefficient of friction (Figure 8B),
during pole control while keeping the external model the same.
In both cases, the x-axis is the normalized parameter of the
internal model (mass or coefficient of friction) relative to the
nominal value of the parameter of the external model. The effect
is evaluated both with the baseline proprioceptive measurement
noise characteristic of pole control and BCWHM, and with
infinite proprioceptive measurement noise characteristic of
BCWOHM. All simulated sessions analyzed in Figure 8 were
performed with the same set of randomly selected targets and
neural tuning weights, but not the same set used in other sections.
At each parameter value, and for each level of the proprioceptive
measurement noise, the average ˆPOM and PKM in Figure 8 and
their standard deviations were computed from a single simulated
session as detailed in Section 3.2.

Figure 8 indicates that when the internal model deviates from
the external model, the ˆPOM increases significantly, while the
PKM does not change significantly or even decease over most

of the range. Parameter values at which the ˆPOM (generated in
simulations with infinite process noise) is significantly higher

than the ˆPOM at the nominal parameter are marked by stars
(Wilcoxon rank sum test with Bonferroni corrected significance

level p = 0.007, corrected for 7 multiple comparisons). The
effect of increasing the covariance matrix of the proprioceptive
measurement noise to infinity, as in BCWOHM, is negligible.
Hence, changes in the parameters of the internal model may

further contribute the observed change in ˆPOM upon switching
to brain control, and especially to BCWOHM.

4. Discussion

4.1. Modeling
The implemented OFC model successfully moves the hand and
cursor in simulated pole control to reach randomly selected
targets. Neural activity is generated to simulate neural recording
and perform brain control. The simulated neurons are assumed
to encode the signals that are relevant for OFC, i.e., the estimated
state and the control signal, and spike-counts are generated as
doubly stochastic Poisson processes. The model parameters were
taken from the literature or selected to match the experimental
observations. In particular, the magnitude of the process noise
and the number of neurons were selected so the performance of
the BMI filter trained on the simulated neural activity matches
the performance of the BMI filter trained on the recorded neural

activity. The resulting model successfully generates the main
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phenomena that it was developed to explain: the POM of the

neural activity in brain control is higher than the POM in pole

control with no matching increase in PKM.
OFC involves different computational tasks that can be

mapped to different brain regions. In particular, it has been

suggested (Shadmehr and Krakauer, 2008) that expected costs
and rewards are evaluated by the basal ganglia, the forwardmodel
is implemented by the cerebellum, and the predicted sensory

feedback is combined with the actual sensory feedback at the

parietal cortex to estimate the state. Given the estimated state,
the pre-motor and primary motor cortices are hypothesized

to generate the control signals associated with visual and
proprioceptive feedback, respectively. As mentioned above

(Introduction and Section 2.3.3) the OFC is simulated in the state
space, so all these computational tasks are included regardless
of where they are implemented in the brain. In contrast, neural
activity is generated to simulate neural recording from M1 and
PMd only, since those are the main brain regions recorded in the
BMI experiments considered here.

4.2. Neural Encoding
Neural encoding is an open and important research question.
Common strategies to investigate this issue involve quantifying
the correlation between the neural activity and different relevant
signals, or assessing howwell those signals can be predicted by the
neural activity. However, those strategies are usually restricted
to measurable signals. In particular, many studies investigated
the correlation between the activity of cortical motor units and
different kinematics and kinetics signals (Georgopoulos et al.,
1984, 1986, 1992; Kalaska et al., 1989; Ashe and Georgopoulos,
1994; Ashe, 1997; Moran and Schwartz, 1999; Paninski et al.,
2004; Kalaska, 2009). Since correlations do not imply causality,
the observed correlations with any of the measurable signals
do not imply that the neurons indeed encode these signals.
Instead, the neurons may encode internal, hidden signals, which
are also correlated with the measurable signals (Zacksenhouse
et al., 2014) including, for example, muscle activation patterns
(Todorov, 2000).

Here we suggest that cortical motor neurons encode signals
that are relevant for performing state estimation and control, i.e.,
the estimated state and the control signal. Since these signals are
internal signals generated by the brain, direct correlation cannot
be evaluated. Nevertheless, during normal reaching movements,
the actual movement should agree well with the estimated state,
and thus the neural activity would appear to be correlated with
the movement. However, in other conditions, and in particular
during brain control, the estimated state may deviate from the
measured state. This work suggests that the higher POM during
brain control with no matching increase in PKM may arise from
such deviations.

We noted that the neural activity recorded fromM1 and PMd
units exhibited different cross-correlations with the velocity. In
particular, the average cross-correlations between the velocity
and the recorded neural activity during pole control indicate
that there is no time-shift between the neural activity of PMd
units and the cursor velocity, while the neural activity of M1
neurons precedes the velocity. These temporal relationships are

reproduced well by simulated neurons that encode only the
estimated state or also the control signal, respectively. The time
shift in the latter case can be ascribed to the delay in the response
of the muscles. Hence, the different types of observed cross-
correlations, with and without time shift, can be attributed to
encoding different signals within the framework OFC, including
and excluding the control signal, respectively. Encoding the
control signal in M1 but not in PMd neurons agrees well with
evidence that the activity of PMd neurons is modulated mainly
by the direction and magnitude of movements while the activity
of M1 neurons is correlated also with the forces (Evarts, 1968;
Kalaska et al., 1989). Further support is provided by previous
investigation of the BMI experiments considered here, which
indicated that PMd neurons can predict well the position and
velocity but not the force, while M1 neurons can predict well the
force too (Carmena et al., 2003). While this specific distinction
between M1 and PMd neurons may result from the specific
sample of units recorded during the BMI experiments considered
here, it is well reproduced by the simulated model based on OFC.

4.3. Process Noise
Our main hypothesis is that the observed increase in POM
following the transition to brain control reflects increasing
variance of the encoded signals due to higher process noise.
The latter is assumed to occur in brain control due to the
limited accuracy of the BMI filter. This hypothesis was proved
theoretically and by simulations. Theoretical proof was limited to
the case when the estimated process noise in the internal model
is not updated, and the neurons encode linear combinations of
the estimated state. The simulations demonstrate that increasing
process noise during pole control results in higher POM even
when neurons encode non-linear functions of the estimated state
(e.g., speed and magnitude of the control signal) and regardless
of whether the internal model is updated or not.

4.4. Implications for BMI
The proposedmodel attributes the increase in POM following the
transition to brain control to the higher process noise introduced
by the imperfect performance of the BMI filter. This suggests
that the POM is a proxy for the performance of the BMI filter:
High POM indicates that the BMI filter performs poorly while
low POM indicates that the BMI filter performs well. As a proxy
signal for the performance of the BMI filer, the POM could
be used to adapt the BMI filter using reinforcement learning
(DiGiovanna et al., 2009; Mahmoudi et al., 2013), especially in
cases when an error signal cannot be determined (Bensmaia and
Miller, 2014). Furthermore, the proposed model developed here,
provides a framework for investigating this and other suggestion
for improving BMIs. Finally, the proposed model can be used
to investigate other changes that occur following the transition
to brain control and in particular the changes in neural tuning
(Lebedev et al., 2005).

4.5. Alternative Hypotheses
Our main hypothesis is that the observed changes in neural
modulations following the transition to brain control are related
to changes in the process and measurement noise induced by
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the transition, and in particular, the increase in process noise
due to the imperfect BMI filter. OFC provides a coherent and
concise framework for relating the changes in process and
measurement noise to changes in the estimated state and control
signals, and finally to changes in neural modulations. However,
the key elements are state estimation and the encoding of the
estimated state, so other models that include those components
may produce similar results. In particular, state estimation and
control may not be optimal, but only satisficing (Simon, 1956;
Brown et al., 2004). The OFC framework was adopted here since
optimization constrains the parameters of the estimation filter
and the gains of the control law, resulting in fewer free parameters
to be tuned, thus granting the resulting model higher credibility.

An alternative hypothesis that may contribute to the changes
in neural modulations involve changes in the internal model.
As was shown in Section 3.6, deviations between the internal
model and the external system, and in particular deviations in

the mass or the coefficient of friction, result in higher ˆPOM with
no matching increase in PKM. Thus, changes in the internal
model of the mass or coefficient of friction, may contribute to

the increase in ˆPOM beyond what is attributed to the increase
in process noise. Since the transition to BCWOHM involves
stopping hand movements, it is conceivable that it is associated
with a switch to a different internal model, with lower mass and
coefficient of friction. However, the change in the internal model
is not justified in the transition to BCWHM, when the monkey
continues to make hand movements.

Alternative frameworks for explaining the changes in neural
modulations may be provided by intermittent predictive control
(Doeringer and Hogan, 1998; Gawthrop et al., 2011) and active
inference (Friston et al., 2010, 2011). Intermittent predictive

control alleviates the computational load of prediction that is
necessary to address time delays (Doeringer and Hogan, 1998;

Gawthrop et al., 2011). Due to the imperfect BMI filter, the
transition to brain control is expected to result in more frequent
updates of the predictor, and hence in higher variability in the
predicted state. Since intermittent predictive control is based
on OFC, this is an extension of the current model, and will be
considered in future work. Indeed it could be argued that due to
the inaccurate movements of the cursor during brain control, the
monkey is making explorative movements to adapt to the new
environment. While the explorative movements may contribute
to higher POM, they are expected to also increase the PKM, in
contrast with the observation.

In summary, we demonstrated that the observed changes in
neural modulations following the transition to brain control can
be successfully explained under the assumption that the neurons
encode the estimated state and control signal. To be concrete
we used the framework of OFC, but similar results are expected
even if the controller is not optimal, as long as it relies on state
estimation that deteriorates upon switching to brain control.
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